Response to Referee #2

The authors would like to thank the referee for its helpful comments and suggestions. Below are our responses to the questions and suggestions brought up by the referee. Referee comments and our responses are written in blue and in black, respectively. Changes refer to the revised manuscript that we will submit to ACP.

1. The validation with ozonesonde observations can be conducted in a more meticulous way as we compare this paper with other papers that performed similar comparisons between satellite remote sensing of atmospheric species and sounding data or between satellite instruments. Examples include Nassar et al. (2008) and Dupuy et al. (2009) for ozone. Why do the authors use ozonesonde data from only 14 stations, not all the stations?

We fully agree with this comment. At the time of this study (which ended in December 2008) only a limited number of stations provided data to validate IASI observations. In the paper, we report on the comparison with all of the data that were made available to us at that time, ie 14 stations that we used to validate our IASI ozone profile retrievals. A few other stations over Europe (5 stations) linked to the NADIR database made further data available before the completion of this work. It was felt however, that including these would lead to an undesired bias over Europe and the mid-latitudes.

During the review process other data became available. At this stage, it would be a big amount of work to add them due to large computational time required by the radiative transfer calculation, and the additional information may not be worth this large effort.

A fast version of the Atmosphit software is presently being developed, building on the effort already applied to CO retrievals (FORLI software, Turquety et al., George et al., 2009). A more complete validation will be undertaken using these fast retrievals, including all ozonesonde stations and other in situ observations (e.g. MOZAIC aircraft data).

Can the authors provide a more detailed comparison by region, by altitude, and by season?

Table 1 gives a more detailed comparison by region, altitude and season. However we did not include this Table in the new manuscript because it doesn't add so much information. Moreover, some values may be not significant because of the poor number of data (c.f. notation). It is worth noting that the altitude has an impact on the [surface-6 km] partial columns. The agreement is better for stations in altitude; this is due to the sensitivity of IASI which is maximum in the free troposphere but very low near the surface.

	Jan-Feb-Mar		Apr-May-Jun		Jul-Aug-Sep		Oct-Nov-Dec	
	Corr coef	Bias (1o)	Corr coef	Bias (1o)	Corr coef	Bias (1o)	Corr coef	Bias (1o)
Ground-6 km columns								
All latitudes	0.94	0.06 (0.96)	0.97	-0.22 (0.90)	0.95	-0.11 (0.94)	0.84	0.39 (1.03)
High latitudes	0.987^{1}	-0.09 (0.77)	0.995 ¹	0.01 (0.41)	0.97^{1}	0.35 (1.18)	0.527	0.54 (0.80)
Mid latitudes	0.887	0.18 (0.96)	0.906	-0.28 (0.93)	0.918	-0.06 (0.80)	0.922	0.53 (0.78)
Tropics	0.963^{1}	-0.82 (0.78)	0.925	-0.18 (1.03)	0.828	-0.65 (1.03)	0.710^{1}	-0.32 (1.73)
Stations in altitude	0.966	0.01 (0.80)	0.984	-0.30 (0.68)	0.977	-0.11 (0.70)	0.958	0.68 (0.71)
Stations at sea level	0.792	0.10 (1.07)	0.798	-0.16 (1.04)	0.758	-0.12 (1.16)	0.606	0.21 (1.16)
Ground-12 km columns								
All latitudes	0.629	1.44 (5.57)	0.797	1.76 (4.52)	0.805	2.09 (4.10)	0.677	2.34 (4.45)
High latitudes	0.138 ¹	-3.04 (9.95)	0.090^{1}	0.69 (6.82)	0.748^{1}	4.46 (3.66)	0.312^{1}	1.96 (4.41)
Mid latitudes	0.753	2.52 (4.30)	0.794	2.43 (3.95)	0.791	2.51 (3.82)	0.753	3.29 (3.89)
Tropics	0.794^{1}	-2.75 (3.81)	0.729	0.21 (3.98)	0.663	-1.22 (3.60)	-0.24^{1}	-1.48 (4.95)
Stations in altitude	0.42	0.89 (6.34)	0.735	1.17 (5.03)	0.769	2.16 (4.05)	0.875	3.86 (3.23)
Stations at sea level	0.702	1.84 (4.98)	0.818	2.22 (4.05)	0.824	2.01 (4.18)	0.602	1.36 (4.87)

Table 1. Summary of the correlation, the bias and the (1σ) standard deviation (RMS) of the IASI tropospheric ozone column relative to the ground-based data, for each season. The bias and the standard deviation are given in Dobson units.

¹ Number of coincidences lower than 20.

Can some intercomparison of ozone data also be made between IASI and other satellite instruments?

We have already extended the validation of total ozone with total ozone ground-based measurements from the Dobson-Brewer network (c.f. comments from Anonymous Referee #1). A full paragraph (Section 3.1.2) with two figures and two Tables were added in the new manuscript in order to describe the comparison of IASI total ozone with ground-based measurements from the Dobson-Brewer network. The additional section is given at the end of this document. As it is not an exhaustive validation, we think the validation is now significant. Moreover we compared IASI and GOME2 as both instruments are on the same platform.

2. The title of the paper is "Measurement of total and tropospheric ozone from IASI". In the paper, the troposphere is not explicitly defined. Instead, ozone values from the surface to 6 km or from the surface to 12 km is presented. It should be pointed out that the tropopause is not fixed and ozone from the surface to 12 km may include some stratospheric ozone, especially in high latitudes.

We added in the manuscript (section 3.2) :

"It is worth noting that the tropopause level is not fixed and ozone from the surface to 12 km may include some stratospheric ozone, especially at high latitudes."

3. In Figure 5, the secondary ozone maximum at 11 km seems to be more than the primary ozone maximum higher up! It would be helpful to show a profile in the mixing ratio. This is an interesting case, only I am not totally convinced that the interpretation of this ozone peak is correct. The authors talk about a low pressure system. However, the potential vorticity (PV) would be a more convincing variable to examine for the stratospheric influence.

Fig. 1 represents the ozone vertical profile in mixing ratio units. It confirms the second ozone maximum near 11 km but this maximum is not emphasized, so we decided to keep the profile in density units. We also investigated the potential vorticity (PV) at 380 K for that day and it corroborates our interpretation that there is a stratospheric intrusion in the tropopause region above the Canary Island (see the figure of PV here: http://ether.ipsl.jussieu.fr/ether/pubjpsl/mim_img/2008/02/pv08021512_n380.png).

Unfortunately the initial data required in order to draw again this plot with another scale and projection are not available. That is why we did not include the PV distribution in the paper. But we added this sentence:

"Potential vorticity, which is a tracer of stratospheric air that is transported into the troposphere was also examinated and it corroborates our interpretation of the stratospheric intrusion."

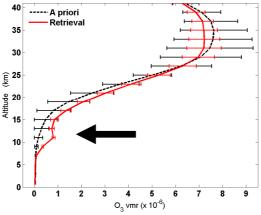


Fig. 1. Retrieved (red) and apriori (black) ozone profile in volume mixing ratio.

Also, it would be good to look at the CO/H2O profile for this case since IASI gives that too.

As suggested, we had a look to the CO/H2O vertical profile for the 15 February 2008 but it gives no additional information as it can be seen in Fig. 2.

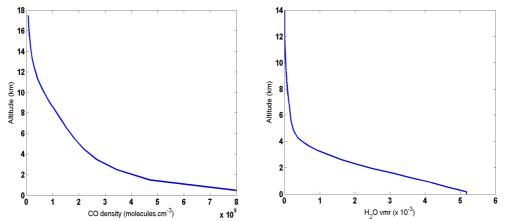


Fig. 2. CO and H2O profile in volume mixing ratio for the 15 February 2008.

A low pressure system implies existence of clouds. How does this condition affect the quality of ozone retrieval?

The ozone retrievals are performed on cloud-free spectra as it is described in detail in Clerbaux et al (2009). Therefore this specific event is cloud free and the quality of the retrieval is not affected.

Specific:

Page 2, Line 27: A reference or references are needed for the accuracy and vertical resolution. Also reference(s) are needed for Page 7, Line 21.

Done for both.

Page 5, Line 18-19: more explanations or some references are needed.

The averaging kernel characteristics are described in Rodgers, (1976, 2000). We added these references.

Page 7, Line 3: Can this internal report be cited as a reference?

Done.

Table 2: Add sample size to each case. More discussion can be given to Table 2. Why does IASI compare poorly with GOME-2 in northern high latitudes during winter?

We think that Table 2 would not be readable if we add sample size to each case. We added sample size to each period on Figure 9 (all merged latitudes). The radiances are a function of the surface temperature but at high latitude, especially in northern high latitude during winter, surface temperature is very low, which implies a very low signal recorded by IASI and therefore a very low signal noise ratio.

Figure 3: Add latitude/longitude to the figure. Done.

Figure 6a: This figure itself is good. However, an overview on behavior of the averaging kernels globally would be helpful to the reader, such as similar plots by latitude, longitude or by land cover types. The same comment applies to Figure 6b.

We agree with you but we just intended to show an example of IASI averaging kernels and the associated error budget. An overview of the averaging kernels behaviour is out of the scope of this paper. A description of the averaging kernels properties is to be found in Clerbaux et al. (2009).

Figure 11: Add latitude/longitude of the station to the caption.

Done

Technical corrections: Table 1: Pression should be Pressure. Done.

Section we added in the new manuscript:

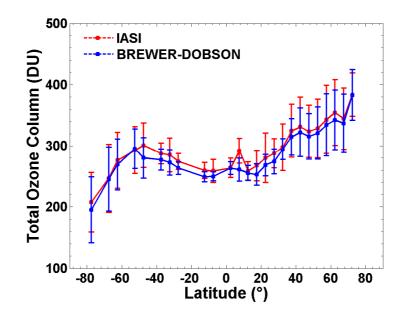
3.1.2 Comparisons with ground-based measurements

The ground-based total ozone data used in this study are from Dobson and Brewer UV spectrophotometer measurements. Total ozone can be derived from direct sun, zenith sky or focused moon observations at different wavelengths. The Dobson instrument, originally developed in the 1920s (Dobson, 1931), uses four wavelengths (two pairs) to determine total ozone quantities. The most commonly used pairs are the AD double pair (305.5/325.5 nm and 317.6/339.8 nm) and the CD pair (311.45/332.4 nm and 317.6/339.8 nm). The Brewer spectrophotometer, available since the early eighties (Brewer, 1973) relies on the same principle as the Dobson instrument, however, the instrument uses several wavelength pairs from five wavelengths between 306.3 and 320.1 nm to derive total ozone. Both Dobson and Brewer instruments present similar performances (Kerr et al., 1988). Dobson and Brewer total ozone measurements have already been used for the validation of satellite derived total ozone measurements (Balis et al., 2007; Weber et al., 2005).

For the comparisons with IASI total ozone columns, we used all the Dobson and Brewer data derived from direct sun and zenith sky observations available for 2008 from the WOUDC archives. The data format currently used consists of daily total ozone values expressed in Dobson units. We set the coincidence criteria to 0.5° radius from the ground-based station, and to the same day of observation. IASI measurements collocated to ground-based measurements were then averaged. 39 Brewer and 50 Dobson stations were considered for the comparison. The stations are summarized in Table 3 and 4.

Fig. 10 shows the collocated total ozone distributions averaged over 5° latitude bands for the year 2008. A positive bias between the two distributions is apparent, with larger differences at low and mid-latitudes, in particular in the southern hemisphere. The variability associated with IASI total ozone columns is somewhat larger than that of the ground-based measurements, except at high latitudes where the latter increases.

A statistical comparison of the columns is represented for the year 2008 in Fig. 11. The correlation, bias, standard deviation and number of collocated observations are also indicated. Globally and on average over the year, the agreement between the two distributions is good with a correlation of 0.85, a bias value of about 9.3 DU (\sim 3%) and an RMS error of 27 DU (9.8%).


These values are consistent with those found for the comparison with GOME-2 measurements. As mentioned in the previous section (3.1.1), the bias observed are partly attributed to the different observation methods used.

WMO station	Station name (country)	Latitude,	Longitude,	Height,
number	-	°N	°E	m
262	Sodankyla (Finland)	67.34	26.51	179
284	Vindeln (Switzerland)	64.24	19.77	225
165	Oslo (Norway)	59.91	10.72	90
279	Norrkoeping (Switzerland)	58.58	16.15	43
352	Manchester (Great Britain)	53.48	-2.23	76
174	Lindenberg (Germany)	52.21	14.12	112
316	De bilt (Netherlands)	52.10	5.18	9.5
318	Valentia observatory (Irland)	51.93	-10.25	14
353	Reading (Great Britain)	51.45	-0.93	66
53	Uccle (Belgium)	50.80	4.35	100
96	Hradec kralove (Czech Republic)	50.18	15.83	285
331	Poprad-ganovce (Slovakia)	49.03	20.32	706
99	Hohenpeissenberg (Germany)	47.80	11.02	975
100	Budapest-lorinc (Hungary)	47.43	19.18	139
35	Arosa (Switzerland)	46.78	9.68	1840
326	Longfengshan (China)	44.73	127.60	317
405	La coruða (Spain)	43.33	-8.47	62
411	Zaragoza (Spain)	41.63	-0.91	250
308	Madrid / barajas (Spain)	40.46	-3.65	650
348	Ankara (Turkey)	39.95	32.88	896
447	Goddard (USA)	38.99	-76.83	100
346	Murcia (Spain)	38.00	-1.17	69
213	El arenosillo (Spain)	37.10	-6.73	41
295	Mt. waliguan (China)	36.29	100.90	3810
332	Pohang (Korea)	36.03	129.38	6
336	Isfahan (Iran)	32.48	51.43	1550
376	Mrsa matrouh (Egypt)	31.33	27.22	35
349	Lhasa (China)	29.67	91.13	3640
10	New delhi (India)	28.49	77.16	247.5
95	Taipei (Taiwan)	25.02	121.48	25
30	Minamitorishima (Japan))	24.30	153.97	9
468	Cape d'aguilar (HongKong)	22.21	114.26	60
187	Poona (India)	18.53	73.85	559
322	Petaling jaya	3.10	101.65	61
475	Bandung (India)	-6.90	107.58	731
473	Punta arenas (Chile)	-53.14	-70.88	3
351	King george island (Uruguay)	-62.18	-58.90	10
454	San martin (Argentina)	-68.13	-67.10	30
314	Belgrano ii (Argentina)	-77.87	-34.63	255

Table 3. List of Brewer stations used for the ozone validation.

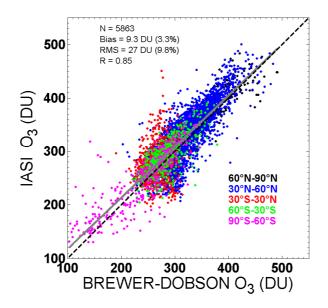

number °N °E m 105 Fairbanks (college) (USA) 64,817 -147,867 138 43 Lerwick (Great Britain) 60,1315 -1,183 80 53 Uccle (Belgium) 50,8 4,35 100 96 Hradec kralove (Czech Republic) 50,18 15,833 285 99 Hohenpeissenberg (Germany) 47,8 11,02 975 20 Caribou (USA) 46,767 -100,75 511 40 Haute provence (France) 43,13 0,367 597 12 Sapporo (Japan) 43,08 44,25 2070 67 Boulder (USA) 40,085 -105,25 1689 203 Athens (Greece) 37,988 -75,443 13 252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,2317 -119,633 73 106 Nashvilie (USA) <th>WMO station</th> <th>Station name (country)</th> <th>Latitude,</th> <th>Longitude,</th> <th>Height,</th>	WMO station	Station name (country)	Latitude,	Longitude,	Height,
43 Lerwick (Great Britain) 60.1315 -1.183 80 53 Uccle (Belgium) 50,8 4,35 100 96 Hradec kralove (Czech Republic) 50,183 15,833 285 99 Hohenpeissenberg (Germany) 47,8 11,02 975 20 Caribou (USA) 46,76 9,68 1840 19 Bismarck (USA) 46,77 -100,75 511 40 Haute provence (France) 43,933 5,7 674 474 Lannemezan (France) 43,13 0,367 597 12 Sapporo (Japan) 43,06 141.3315 19 410 Amberd (Armenia) 40,38 44,25 2070 67 Boulder (USA) 37,98 -75,483 13 252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,317 -119,633 73 106 <					
53 Uccle (Beigum) 50.8 4.35 100 96 Hradec kralove (Czech Republic) 50.183 15,833 285 99 Hohenpeissenberg (Germany) 47,8 11,02 975 20 Caribou (USA) 46,867 -68.03 192 35 Arosa (Switzerland) 46,767 -100,75 511 40 Haute provence (France) 43,933 5,7 674 474 Lannemezan (France) 43,13 0,367 597 12 Sapporo (Japan) 40,085 -105,25 1689 208 Xianghe (China) 39,975 116,37 80 293 Athens (Greece) 37,88 23,748 195 107 Wallops island (USA) 37,898 -75,483 13 252 Seoul (Korea) 37,1 -6,733 41 341 Hanford (USA) 36,25 -86,657 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 452					
96 Hradec kraĭove (Czech Republic) 50,183 18,833 285 99 Hohenpeissenberg (Germany) 47,8 11,02 975 20 Caribou (USA) 46,867 -68,03 192 35 Arosa (Switzerland) 46,76 -100,75 5111 40 Haute provence (France) 43,133 0,367 597 12 Sapporo (Japan) 43,06 141,315 19 410 Amberd (Armenia) 40,38 44,25 2070 67 Boulder (USA) 40,085 -105,25 1689 208 Xianghe (China) 39,975 116,37 80 213 Athens (Greece) 37,989 -75,483 13 252 Seoul (Korea) 37,567 126,95 84 213 El arenositilo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,317 -119,633 73 106 Nashville (USA) 36,25 -88,567 182 14					
99 Hohenpeissenbeirg (Germany) 47,8 11,02 975 20 Caribou (USA) 46,867 -68,03 192 35 Arosa (Switzerland) 46,767 -100,75 511 40 Haute provence (France) 43,933 5,7 674 474 Lannemezan (France) 43,13 0,367 597 12 Sapporo (Japan) 43,06 141,3315 19 410 Amberd (Armenia) 40,38 44,25 2070 67 Boulder (USA) 39,975 116,37 80 203 Athens (Greece) 37,98 27,748 195 107 Wallops island (USA) 36,317 -119,633 73 252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,625 -86,567 182 14 Tateno / tsukuba (Japan) 36,606 140,1 31 152					
20 Caribou (USA) 46,867 -68,03 192 35 Arosa (Switzerland) 46,78 9,68 1840 19 Bismarck (USA) 46,767 -100,75 511 40 Haute provence (France) 43,933 5,7 674 474 Lannemezan (France) 43,13 0,367 597 12 Sapporo (Japan) 43,06 141,3315 19 410 Amberd (Armenia) 40,38 44,25 2070 67 Boulder (USA) 40,085 -105,25 1689 208 Xianghe (China) 39,975 116,37 80 233 Athens (Greece) 37,98 25,483 13 252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,251 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 106 Nashville (U					
35 Arosa (Switzerland) 46,767 100,75 511 40 Haute provence (France) 43,933 5,7 674 474 Lannemezan (France) 43,13 0,367 597 12 Sapporo (Japan) 43,06 141,3315 19 410 Amberd (Armenia) 40,38 44,25 2070 67 Boulder (USA) 40,085 106,25 1689 208 Xianghe (China) 39,975 116,37 80 293 Athens (Greece) 37,98 23,748 195 107 Waltops island (USA) 37,898 -75,483 13 252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,217 -119,633 73 106 Nashville (USA) 36,25 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 152 C					
19 Bismarck (USA) 46,767 -100,75 511 40 Haute provence (France) 43,933 5,7 674 474 Lannemezan (France) 43,13 0,367 597 12 Sapporo (Japan) 43,06 141,3315 19 410 Amberd (Armenia) 40,38 44,25 2070 67 Boulder (USA) 39,975 116,37 80 293 Athens (Greece) 37,988 -75,483 13 252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,317 -119,633 73 106 Nashville (USA) 36,25 -86,667 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 152 Cairo (Egypt) 27,28 33,75 7 10 New delhi (India) 26,2 127,683 27 74 Varanasi (India) </td <td></td> <td></td> <td></td> <td></td> <td></td>					
40 Haute provence (France) 43,933 5,7 674 474 Lannemezan (France) 43,13 0,367 597 12 Sapporo (Japan) 43,06 141,3315 19 410 Amberd (Armenia) 40,38 44,25 2070 67 Boulder (USA) 40,085 -105,25 1689 208 Xianghe (China) 39,975 116,37 80 293 Athens (Greece) 37,898 -75,483 13 252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,317 -119,633 73 106 Nashville (USA) 36,25 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 152 Cairo (Egypt) 30,08 31,283 37 10 New delhi (India) 28,49 77,16 247.5 409 Hurghada (· · · · · · · · · · · · · · · · · · ·			
474 Lannemezan (France) 43,13 0,367 597 12 Sapporo (Japan) 43,06 141,3315 19 410 Amberd (Armenia) 40,38 44,25 2070 67 Boulder (USA) 40,085 -105,25 1689 208 Xianghe (China) 39,975 116,37 80 203 Athens (Greece) 37,988 -75,483 13 252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,317 -119,633 73 106 Nashville (USA) 36,25 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 464 University of tehran (Iran) 35,73 51,38 1419 152 Cairo (Egypt) 27,28 33,75 7 100 New dehi (India) 25,317 83,03 76 209 Kunming (China) 25,03 102,683 1917 245 Aswan (E					
12 Sapporo (Japan) 43,06 141,3315 19 410 Amberd (Armenia) 40,38 44,25 2070 67 Boulder (USA) 40,085 -105,25 1689 208 Xianghe (China) 39,975 116,37 80 203 Athens (Greece) 37,98 23,448 195 107 Wallops island (USA) 37,898 -75,483 13 252 Seoul (Korea) 37,167 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,65 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 152 Cairo (Egypt) 30,08 31,283 37 10 New delhi (India) 28,49 77,16 247,5 409 Hurghada (Egypt) 27,28 33,75 7 190 Naha (Japan) 26,2 127,683 277 140 Hurghada (Egypt) <td></td> <td></td> <td></td> <td></td> <td></td>					
410 Amberd (Årmenia) 40,38 44,25 2070 67 Boulder (USA) 40,085 105,25 1689 208 Xianghe (China) 39,975 116,37 80 293 Athens (Greece) 37,98 23,748 195 107 Wallops island (USA) 37,889 775,483 13 252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,25 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 152 Cairo (Egypt) 30,08 31,283 37 10 New delhi (India) 28,49 77,16 247,5 409 Hurghada (Egypt) 27,28 33,75 7 190 Naha (Japan) 26,2 127,683 27 74 Varanasi (India) 25,31 102,683 1917 245 Aswan (Egypt) 23,967 32,78 193 2 Tamanrasset (Algeria) <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
67 Boulder (USA) 40,085 -105,25 1689 208 Xianghe (China) 39,975 116,37 80 293 Athens (Greece) 37,988 -75,483 13 252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,11 -6,733 41 341 Hanford (USA) 36,25 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 464 University of tehran (Iran) 35,73 51,38 1419 152 Cairo (Egypt) 30,08 31,283 37 10 New delhi (India) 28,49 77,16 247,5 409 Hurghada (Egypt) 27,28 33,75 7 190 Naha (Japan) 26,2 127,683 27 74 Varanasi (India) 23,967 32,78 193 2 Tamanrasset (Algeria) 22,8 5,517 1377 31 Mauia loa (U					
208 Xianghe (China) 39,975 116,37 80 293 Athens (Greece) 37,98 23,748 195 107 Wallops island (USA) 37,98 -75,483 13 252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,25 -86,567 182 106 Nashville (USA) 36,25 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 464 University of tehran (Iran) 35,73 51,38 1419 152 Cairo (Egypt) 27,28 33,75 7 10 New delhi (India) 28,49 77,16 247,5 409 Hurghada (Egypt) 23,967 32,78 193 2 Tamanasset (Algeria) 22,8 5,517 1377 31 Mauna loa (USA) 19,533 155,574 3405 218 M					
293 Athens (Greece) 37,98 23,748 195 107 Wallops island (USA) 37,898 75,483 13 252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,317 -119,633 73 106 Nashville (USA) 36,25 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 464 University of tehran (Iran) 35,73 51,38 1419 152 Cairo (Egypt) 30,08 31,283 37 10 New delhi (India) 28,49 77,16 247,5 409 Hurghada (Egypt) 27,28 33,75 7 190 Naha (Japan) 26,2 127,663 27 74 Varanasi (India) 25,317 83,03 76 209 Kunming (China) 25,03 102,663 1917 245 Aswan (Egypt) 23,967 32,78 193 2 Tamanraset (Algeria) <td></td> <td></td> <td></td> <td></td> <td></td>					
107 Wallops island (USA) 37,898 -75,483 13 252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,217 -119,633 73 106 Nashville (USA) 36,25 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 464 University of tehran (Iran) 35,73 51,38 1419 152 Cairo (Egypt) 20,08 31,283 37 10 New delhi (India) 28,49 77,16 247,5 409 Hurghada (Egypt) 27,28 33,75 7 190 Naha (Japan) 26,2 127,683 27 74 Varanasi (India) 25,031 102,683 1917 245 Aswan (Egypt) 23,967 32,78 193 2 Tamanrasset (Algeria) 22,8 5,517 1377 31 Mauna					
252 Seoul (Korea) 37,567 126,95 84 213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,317 -119,633 73 106 Nashville (USA) 36,25 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 464 University of tehran (Iran) 35,73 51,38 1419 152 Cairo (Egypt) 30,08 31,283 37 10 New delhi (India) 28,49 77,16 247,5 409 Hurghada (Egypt) 27,28 33,75 7 190 Naha (Japan) 26,2 127,683 27 74 Varanasi (India) 25,03 102,683 1917 245 Aswan (Egypt) 23,967 32,78 193 2 Tamanrasset (Algeria) 22,8 5,517 1377 31 Mauna loa (USA) 19,533 -155,574 3405 218 Manila (
213 El arenosillo (Spain) 37,1 -6,733 41 341 Hanford (USA) 36,317 -119,633 73 106 Nashville (USA) 36,25 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 464 University of tehran (Iran) 35,73 51,38 1419 152 Cairo (Egypt) 30,08 31,283 37 10 New delhi (India) 28,49 77,16 247,5 409 Hurghada (Egypt) 27,28 33,75 7 190 Naha (Japan) 26,2 127,683 27 74 Varanasi (India) 25,031 102,683 1917 245 Aswan (Egypt) 23,967 32,78 193 2 Tamanrasset (Algeria) 22,8 5,517 1377 31 Maunia (Dhilipin) 14,633 121,433 61 216 Bangkok (Siam) 13,667 100,612 53 317 Lagos (Nigeria) 6,6 3,333 10 214 Singapore (Si					
341 Hanford (USA) 36,317 -119,633 73 106 Nashville (USA) 36,25 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 464 University of tehran (Iran) 35,73 51,38 1419 152 Cairo (Egypt) 30,08 31,283 37 10 New delhi (India) 28,49 77,16 247,5 409 Hurghada (Egypt) 27,28 33,75 7 190 Naha (Japan) 26,2 127,683 27 74 Varanasi (India) 25,03 102,683 1917 245 Aswan (Egypt) 23,967 32,78 193 2 Tamanrasset (Algeria) 22,8 5,517 1377 31 Maunia loa (USA) 19,533 -155,574 3405 218 Maniia (Phillipin) 14,633 100,612 53 317 Lagos (Nigeria) 6,6 3,333 10 214 Singapore					
106 Nashville (USÅ) 36,25 -86,567 182 14 Tateno / tsukuba (Japan) 36,06 140,1 31 464 University of tehran (Iran) 35,73 51,38 1419 152 Cairo (Egypt) 30,08 31,283 37 10 New delhi (India) 28,49 77,16 247,5 409 Hurghada (Egypt) 27,28 33,75 7 190 Naha (Japan) 26,2 127,683 27 74 Varanasi (India) 25,03 102,683 1917 245 Aswan (Egypt) 23,967 32,78 193 2 Tamanrasset (Algeria) 22,8 5,517 1377 31 Mauna loa (USA) 19,533 -155,574 3405 218 Manila (Phillipin) 14,633 121,433 61 216 Bangkok (Siam) 13,667 100,612 53 317 Lagos (Nigeria) -6,6 3,333 10 214 Singapore					
14 Tateno / tsukuba (Japan) 36,06 140,1 31 464 University of tehran (Iran) 35,73 51,38 1419 152 Cairo (Egypt) 30,08 31,283 37 10 New delhi (India) 28,49 77,16 247,5 409 Hurghada (Egypt) 27,28 33,75 7 190 Naha (Japan) 26,2 127,683 27 74 Varanasi (India) 25,03 102,683 1917 245 Aswan (Egypt) 23,967 32,78 193 2 Tamanrasset (Algeria) 22,8 5,517 1377 31 Mauna loa (USA) 19,533 -155,574 3405 218 Manila (Phillipin) 14,633 121,433 61 216 Bangkok (Siam) 13,667 100,612 53 317 Lagos (Nigeria) -6,6 3,333 10 214 Singapore (Singapore) 1,333 103,883 14 84 Darwi			,	,	
464 University of tehran (Iran) 35,73 51,38 1419 152 Cairo (Egypt) 30,08 31,283 37 10 New delhi (India) 28,49 77,16 247,55 409 Hurghada (Egypt) 27,28 33,75 7 190 Naha (Japan) 26,2 127,683 27 74 Varanasi (India) 25,317 83,03 76 209 Kumming (China) 26,03 102,683 1917 245 Aswan (Egypt) 23,967 32,78 193 2 Tamanrasset (Algeria) 22,8 5,517 1377 31 Mauna loa (USA) 19,533 -155,574 3405 218 Manila (Phillipin) 14,633 121,433 61 216 Bangkok (Siam) 13,667 100,612 53 317 Lagos (Nigeria) 6,6 3,333 10 214 Singapore (Singapore) 1,333 103,883 14 84 Darwin (Aust					
152 Cairo (Egypt) 30,08 31,283 37 10 New delhi (India) 28,49 77,16 247,5 409 Hurghada (Egypt) 27,28 33,75 7 190 Naha (Japan) 26,2 127,683 27 74 Varanasi (India) 25,03 102,683 1917 245 Aswan (Egypt) 23,967 32,78 193 2 Tamanrasset (Algeria) 22,8 5,517 1377 31 Mauna loa (USA) 19,533 -155,574 3405 218 Manila (Phillipin) 14,633 121,433 61 216 Bangkok (Siam) 13,667 100,612 53 317 Lagos (Nigeria) 6,6 3,333 10 214 Singapore (Singapore) 1,333 103,883 31 191 Samoa (USA) -14,25 -170,56 82 27 Brisbane (Australia) -27,417 153,117 3 343 Salto (Uruguay)					
10 New delhi (India) 28,49 77,16 247,5 409 Hurghada (Egypt) 27,28 33,75 7 190 Naha (Japan) 26,2 127,683 27 74 Varanasi (India) 25,317 83,03 76 209 Kunming (China) 25,03 102,683 1917 245 Aswan (Egypt) 23,967 32,78 193 2 Tamanrasset (Algeria) 22,8 5,517 1377 31 Mauna loa (USA) 19,533 -155,574 3405 218 Manila (Phillipin) 14,633 121,433 61 216 Bangkok (Siam) 13,667 100,612 53 317 Lagos (Nigeria) 6,6 3,333 10 214 Singapore (Singapore) 1,333 103,883 31 191 Samoa (USA) -12,417 130,883 31 191 Samoa (USA) -27,417 153,117 3 343 Salto (Uruguay)					
409Hurghada (Egypt)27,2833,757190Naha (Japan)26,2127,6832774Varanasi (India)25,31783,0376209Kunming (China)25,03102,6831917245Aswan (Egypt)23,96732,781932Tamanrasset (Algeria)22,85,517137731Mauna loa (USA)19,533-155,5743405218Manila (Phillipin)14,633121,43361216Bangkok (Siam)13,667100,61253317Lagos (Nigeria)6,63,33310214Singapore (Singapore)1,333103,88331191Samoa (USA)-14,25-170,568227Brisbane (Australia)-27,417153,1173343Salto (Uruguay)-31,395-57,9731159Perth (Australia)-37,7375144,9045128,5253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,783-67,54329Macquarie Island (Australia)-54,5158,9676339Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215					
190Naha (Japan)26,2127,6832774Varanasi (India)25,31783,0376209Kunming (China)25,03102,6831917245Aswan (Egypt)23,96732,781932Tamanrasset (Algeria)22,85,517137731Mauna loa (USA)19,533-155,5743405218Manila (Phillipin)14,633121,43361216Bangkok (Siam)13,667100,61253317Lagos (Nigeria)6,63,33310214Singapore (Singapore)1,333103,88331191Samoa (USA)-12,417130,88331191Samoa (USA)-14,25-170,568227Brisbane (Australia)-27,417153,1173343Salto (Uruguay)-31,395-57,9731159Perth (Australia)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,03169,683370342Comodoro rivadavia (Argentina)-54,85-68,3081523Macquarie island (Australia)-54,85-68,3081523Marambio (Argentina)-64,23-56,62319639Ushuaia (Argentina)-64,23-56,62319630Ushuaia (Argentina)-64,85-68,3081523Marambio (Argentina)-64,23-56,623		. ,			
74Varanasi (India)25,31783,0376209Kunming (China)25,03102,6831917245Aswan (Egypt)23,96732,781932Tamanrasset (Algeria)22,85,517137731Mauna loa (USA)19,533-155,5743405218Manila (Phillipin)14,633121,43361216Bangkok (Siam)13,667100,61253317Lagos (Nigeria)6,63,33310214Singapore (Singapore)1,333103,8831484Darwin (Australia)-12,417130,88331191Samoa (USA)-14,25-170,568227Brisbane (Australia)-27,417153,1173343Salto (Uruguay)-31,395-57,9731159Perth (Australia)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,03169,683370342Comodoro rivadavia (Argentina)-54,5158,9676339Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215					
209Kunming (China)25,03102,6831917245Aswan (Egypt)23,96732,781932Tamanrasset (Algeria)22,85,517137731Mauna loa (USA)19,533-155,5743405218Manila (Phillipin)14,633121,43361216Bangkok (Siam)13,667100,61253317Lagos (Nigeria)6,63,33310214Singapore (Singapore)1,333103,8831484Darwin (Australia)-12,417130,88331191Samoa (USA)-14,25-170,568227Brisbane (Australia)-27,417153,1173343Salto (Uruguay)-31,395-57,9731159Perth (Australia)-31,917115,95291Buenos aires (Argentina)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,03169,683370342Comodoro rivadavia (Argentina)-54,5158,9676339Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196343Salto (Urguny)-64,233-56,623196344Salto (Uruguay)-77,83166,655215					
245Aswan (Egypt)23,96732,781932Tamanrasset (Algeria)22,85,517137731Mauna loa (USA)19,533-155,5743405218Manila (Phillipin)14,633121,43361216Bangkok (Siam)13,667100,61253317Lagos (Nigeria)6,63,33310214Singapore (Singapore)1,333103,8831484Darwin (Australia)-12,417130,88331191Samoa (USA)-14,25-170,568227Brisbane (Australia)-27,417153,1173343Salto (Uruguay)-31,395-57,9731159Perth (Australia)-31,917115,95291Buenos aires (Argentina)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,03169,683370342Comodoro rivadavia (Argentina)-54,55158,967639Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215					
2Tamanrasset (Algeria)22,85,517137731Mauna loa (USA)19,533-155,5743405218Manila (Phillipin)14,633121,43361216Bangkok (Siam)13,667100,61253317Lagos (Nigeria)6,63,33310214Singapore (Singapore)1,333103,8831484Darwin (Australia)-12,417130,88331191Samoa (USA)-14,25-170,568227Brisbane (Australia)-27,417153,1173343Salto (Uruguay)-31,395-57,9731159Perth (Australia)-31,917115,95291Buenos aires (Argentina)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,783-67,54329Macquarie island (Australia)-54,5158,967639Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215					
31 Mauna loa (USA) 19,533 -155,574 3405 218 Manila (Phillipin) 14,633 121,433 61 216 Bangkok (Siam) 13,667 100,612 53 317 Lagos (Nigeria) 6,6 3,333 10 214 Singapore (Singapore) 1,333 103,883 14 84 Darwin (Australia) -12,417 130,883 31 191 Samoa (USA) -14,25 -170,56 82 27 Brisbane (Australia) -27,417 153,117 3 343 Salto (Uruguay) -31,995 -57,97 31 159 Perth (Australia) -31,917 115,95 2 91 Buenos aires (Argentina) -34,583 -58,483 25 253 Melbourne (Australia) -37,7375 144,9045 128,5 256 Lauder (New Zealand) -45,783 -67,5 43 29 Macquarie island (Australia) -54,85 -58,308 15					
218Manila (Phillipin)14,633121,43361216Bangkok (Siam)13,667100,61253317Lagos (Nigeria)6,63,33310214Singapore (Singapore)1,333103,8831484Darwin (Australia)-12,417130,88331191Samoa (USA)-14,25-170,568227Brisbane (Australia)-27,417153,1173343Salto (Uruguay)-31,395-57,9731159Perth (Australia)-31,917115,95291Buenos aires (Argentina)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,03169,683370342Comodoro rivadavia (Argentina)-54,5158,9676339Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215					
216Bangkok (Siam)13,667100,61253317Lagos (Nigeria)6,63,33310214Singapore (Singapore)1,333103,8831484Darwin (Australia)-12,417130,88331191Samoa (USA)-14,25-170,568227Brisbane (Australia)-27,417153,1173343Salto (Uruguay)-31,395-57,9731159Perth (Australia)-31,917115,95291Buenos aires (Argentina)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,783-67,54329Macquarie island (Australia)-54,5158,9676339Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215					
317Lagos (Nigeria)6,63,33310214Singapore (Singapore)1,333103,8831484Darwin (Australia)-12,417130,88331191Samoa (USA)-14,25-170,568227Brisbane (Australia)-27,417153,1173343Salto (Uruguay)-31,395-57,9731159Perth (Australia)-31,917115,95291Buenos aires (Argentina)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,03169,683370342Comodoro rivadavia (Argentina)-45,783-67,54329Macquarie island (Australia)-54,55158,9676339Ushuaia (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215					
214Singapore (Singapore)1,333103,8831484Darwin (Australia)-12,417130,88331191Samoa (USA)-14,25-170,568227Brisbane (Australia)-27,417153,1173343Salto (Uruguay)-31,395-57,9731159Perth (Australia)-31,917115,95291Buenos aires (Argentina)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,783-67,54329Macquarie island (Australia)-54,5158,9676339Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215		3 ()			
84Darwin (Australia)-12,417130,88331191Samoa (USA)-14,25-170,568227Brisbane (Australia)-27,417153,1173343Salto (Uruguay)-31,395-57,9731159Perth (Australia)-31,917115,95291Buenos aires (Argentina)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,03169,683370342Comodoro rivadavia (Argentina)-45,783-67,54329Macquarie island (Australia)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215					
191Samoa (USA)-14,25-170,568227Brisbane (Australia)-27,417153,1173343Salto (Uruguay)-31,395-57,9731159Perth (Australia)-31,917115,95291Buenos aires (Argentina)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,03169,683370342Comodoro rivadavia (Argentina)-45,783-67,54329Macquarie island (Australia)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215			,		
27Brisbane (Australia)-27,417153,1173343Salto (Uruguay)-31,395-57,9731159Perth (Australia)-31,917115,95291Buenos aires (Argentina)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,03169,683370342Comodoro rivadavia (Argentina)-45,783-67,54329Macquarie island (Australia)-54,55158,9676339Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215		· /			
343 Salto (Uruguay) -31,395 -57,97 31 159 Perth (Australia) -31,917 115,95 2 91 Buenos aires (Argentina) -34,583 -58,483 25 253 Melbourne (Australia) -37,7375 144,9045 128,5 256 Lauder (New Zealand) -45,03 169,683 370 342 Comodoro rivadavia (Argentina) -45,783 -67,5 43 29 Macquarie island (Australia) -54,85 158,967 6 339 Ushuaia (Argentina) -54,85 -68,308 15 233 Marambio (Argentina) -64,233 -56,623 196 101 Syowa (Japan) -69 39,58 21 268 Mcmurdo (Argentina) -77,83 166,655 215					
159Perth (Australia)-31,917115,95291Buenos aires (Argentina)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,03169,683370342Comodoro rivadavia (Argentina)-45,783-67,54329Macquarie island (Australia)-54,55158,9676339Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215					
91Buenos aires (Argentina)-34,583-58,48325253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,03169,683370342Comodoro rivadavia (Argentina)-45,783-67,54329Macquarie island (Australia)-54,5158,9676339Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215				,	
253Melbourne (Australia)-37,7375144,9045128,5256Lauder (New Zealand)-45,03169,683370342Comodoro rivadavia (Argentina)-45,783-67,54329Macquarie island (Australia)-54,5158,9676339Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215					
256Lauder (New Zealand)-45,03169,683370342Comodoro rivadavia (Argentina)-45,783-67,54329Macquarie island (Australia)-54,5158,9676339Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215					
342 Comodoro rivadavia (Årgentina) -45,783 -67,5 43 29 Macquarie island (Australia) -54,5 158,967 6 339 Ushuaia (Argentina) -54,85 -68,308 15 233 Marambio (Argentina) -64,233 -56,623 196 101 Syowa (Japan) -69 39,58 21 268 Mcmurdo (Argentina) -77,83 166,655 215					
29Macquarie island (Australia)-54,5158,9676339Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215					
339Ushuaia (Argentina)-54,85-68,30815233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215				,	
233Marambio (Argentina)-64,233-56,623196101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215		• • • •			
101Syowa (Japan)-6939,5821268Mcmurdo (Argentina)-77,83166,655215			,		
268 Mcmurdo (Argentina) -77,83 166,655 215					
111 Amundsen-scott (Argentina) -89,983 0 2820				166,655	
	111	Amundsen-scott (Argentina)	-89,983	0	2820

Table 4. List of Dobson stations used for the ozone validation.

Figure 10

Total ozone columns derived from collocated IASI and ground-based ozone measurements with associated standard deviations, zonally averaged for 2008.

Figure 11

Scatter plots of the IASI and ground-based total ozone columns for 2008. The correlation, bias, standard deviation and number of collocated observations are also indicated on the top of the figure. The shaded line represents the linear regressions between all data points and the black line, of unity slope, is shown for reference. The bias (in relative value) is calculated according to: 100*(IASI - SONDE)/SONDE.

References

Balis, D., Lambert, J.-C., Van Roozendael M., Loyola, D., Spurr, R., Livschitz, Y., Valks, P., Ruppert, T., Gerard, P., Granville, J., and Amiridis, V.: Reprocessing the 10-year GOME/ERS-2 total ozone record for trend analysis: the new GOME Data Processor Version 4.0, Validation, J. Geophys. Res., 112, D07307, doi:10.1029/2005JD006376, 2007.

Brewer, A.W.: A replacement for the Dobson spectrophotometer?, Pure. App. Geophys., v.106-108, 919-9272, 1973.

Dobson, G. M. B.: A photo-electric spectrometer for measuring the amount of atmospheric ozone, Proc. Phys. Soc., 324–339, 1931.

George, M., Clerbaux, C., Hurtmans, D., Turquety, S., Coheur, P.-F., Pommier, M., Hadji-Lazaro, J., Edwards, D., Worden, H., Luo, M., Rinsland, C. P., and McMillan, W.: Carbon monoxide distributions from the IASI/METOP mission : evaluation with other spaceborne remote sensors, submitted to Atmos. Chem. Phys. Discuss., IASI Special Issue, 2009.

Kerr, J. B., Asbridge, I. A., and Evans, W. F. J.: Intercomparison of total ozone measured by the Brewer and Dobson spectrophotometers at Toronto, J. Geophys. Res., 93, 11 129–11 140, 1988.

Turquety, S., Hurtmans, D., Hadji-Lazaro, J., Coheur, P.-F., Clerbaux, C., Josset, D., and Tsamalis, C.: Tracking the emission and transport of pollution from wildfires using the IASI CO retrievals: analysis of the summer 2007 Greek fires, submitted to Atmos. Chem. Phys. Discuss., IASI Special Issue, 2009.