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Response to Comments by Vinayak Sinha

Comment

The manuscript presents a valuable dataset of OH reactivity measurements from the
PRD campaign in China with a very good summary of published work on atmospheric
OH reactivity measurements. The work clearly demonstrates the unique value of direct
OH reactivity measurements for atmospheric chemistry and emission studies and I
enjoyed reading this paper. I also look forward to the detailed technical paper on the OH
reactivity instrument used by the authors, which unfortunately is still in press. Herein, I

C12500

would like to comment on what the authors have stated (please see below) regarding
the possibility of the NO + HO2 reaction (Reaction R9 in the discussion paper) recycling
OH and causing an interference during OH reactivity measurements.

Statement (Pages 17043-17044 of the Discussion Paper: Line 22 onwards on Page
17043): “Recycling of HO2 to OH (Reaction R9) can slow down the observed OH
decay in the reactor, if the reaction rate of HO2 and NO approaches the OH decay rate
(Kovacs et al., 2003). This is generally the case after most OH has initially reacted
with CO and VOCs, provided that sufficient NO is available. As a result, the observed
kOH becomes systematically smaller than the true kOH. The data correction for the NO
dependent effect can be large in measurement systems that inject not only OH into the
reactor, but also HO2. This is the case in instruments that generate OH and HO2 as co-
products by 185nm photolysis of water vapor (Kovacs et al., 2003; Shirley et al., 2006;
Sinha et al., 2008; Ingham et al., 2009). For example, a correction factor of 1.4 at 5 ppb
NO has been reported by Kovacs et al. (2003)." "The LP-LIF technique is much less
affected by NO since no significant HO2 is initially generated (Sadanaga et al., 2004b).
Thus, in the present work, the error caused by reaction R9 is mostly negligible, reaching
at most 5% at 5 ppb NO at PRD conditions. At higher NO, biexponential behaviour of
the OH decays became noticeable, which can be explained by radical recycling. In this
case, a biexponential fit was applied to the measured OH decay curves. The faster of
the two fitted decay rate coefficients was used as an estimator of the true kOH. The
validity of this approximation was confirmed by numerical simulations and laboratory
experiments, demonstrating that the error of this approach is less than 10% for PRD
conditions (Lou et al., 2009).”

Comment: The text in the above statement gives the impression that the CRM instru-
ment described in Sinha et al. 2008 also has a correction factor due to the recycled
OH by the NO + HO2 reaction channel of the order of 1.4 as reported for the other LIF
based OH reactivity instruments (works cited along with Sinha et al., 2008 in the state-
ment), during ambient air OH reactivity measurements. However, such a statement

C12501



is inaccurate with regard to the CRM OH reactivity instrument for two main reasons:
1) The first reason is the dilution effect in the CRM reactor. Ambient air is typically
diluted by a factor of 1.7- 2.2 in the CRM reactor and in fact one can even increase
this dilution ratio in high NO- high OH Reactivity regimes, which are typical of polluted
urban atmospheres. This means that NO is effectively present at less than half of its
ambient air value inside the reactor. Thus, for ambient air NO mixing ratios of 5 ppb,
the NO mixing ratio inside the CRM reactor is only circa 2 ppb. As can be clearly seen
in Figure 8 of Sinha et al., 2008, at such NO mixing ratios (5 ppb ambient air; 2 ppb in
CRM reactor) the measured OH reactivity tends to be under estimated by around 5%,
and not a factor that is on the order of 1.4. In fact the 5% effect is more on the order
of the correction factor also reported for the instrument used by the authors in their
current work. In theory LIF based instruments could also use the dilution approach but
their high sample flow rates (20 L/min for the instrument used in the present work as
against 180- 220 ml/min in the CRM instrument) probably preclude such a possibility
during extended measurement campaigns. 2) A second factor that mitigates the OH
recycling due to the NO+ HO2 reaction within the CRM reactor, is that pyrrole peroxy
radicals which are formed due to the reaction of pyrrole with OH in the presence of O2,
buffer some of the NO and thus de-optimize the NO + HO2 reaction channel, as the
NO is no longer available exclusively for reaction with HO2.

While the statement of Lou et al., 2009 that their instrument has less interference due
to NO does apply to other LIF based OH reactivity instruments, the same does not hold
true for the CRM OH reactivity instrument described in Sinha et al., 2008 . Therefore
the authors should revise the text appropriately to avoid giving an erroneous impres-
sion.

Response

We agree and have removed the reference to Sinha et al. (2008) in our statement.

Comment
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It would also be helpful for readers if the authors could provide details on how much OH
is typically produced in their reactor and what sort of HO2/ OH ratio prevails at higher
reactivity (say, at greater than 40s−1) within their flow reactor. Does the interference
due to recycled OH from the NO+HO2 reaction become higher under high NO and
high OH reactivity regimes (note also from Fig 1 that the decay is already quite fast
at 54s−1), as would seem to be the case in their system? What is the dynamic range
of their instrument? Also did the authors use some filtering to remove data collected
when NO was higher than a certain threshold in ambient air? From Table 2, I gather
that NO values were as high as 30 ppb during the study.

Response

The photolytically generated initial OH concentration was less than 5 × 109 molecules
per cm3 during the field campaign (see answer to question 5 by referee #1). There is
some lasergenerated HO2 concentration in our instrument, which is less than 4 × 106

molecules per cm3 (see answer to question 7 by referee #2). Given an initial HO2 to
OH ratio in the order of 10−3 in our instrument, the interference from conversion of
laser generated HO2 to OH by atmospheric NO is negligible. The interference from
HO2 recycling by NO has been explained in the paper. It contributes at most 5% at 5
ppb NO at PRD conditions. At higher NO (up to 30 ppb), biexponential behaviour of
the OH decays is taken into account by a biexponential fit, resulting in an error of less
than 10% (see experimental section 3.1). The lower end of the useful dynamic range is
given by the limit of detection, which is determined by the variability of the zero decay
measurements (∼ 0.3s−1). To the high end, we have tested the instrument up to about
190s−1, which is much higher than the maximum values (120s−1) observed in PRD.
No data filter was applied with respect to ambient NO.

Interactive comment on Atmos. Chem. Phys. Discuss., 9, 17035, 2009.

C12503


