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Abstract.

Stratospheric aerosol particles under non-volcanic conditions are typically smaller than 0.1 µm.

Due to fundamental limitations of the scattering theory in the Rayleigh limit, these tiny particles are

hard to measure by satellite instruments. As a consequence,current estimates of global aerosol prop-

erties retrieved from spectral aerosol extinction measurements tend to be strongly biased. Aerosol5

surface area densities, for instance, are observed to be about 40% smaller than those derived from

correlative in situ measurements (Deshler et al., 2003). Anaccurate knowledge of the global dis-

tribution of aerosol properties is, however, essential to better understand and quantify the role they

play in atmospheric chemistry, dynamics, radiation and climate.

To address this need a new retrieval algorithm was developed, which employs a nonlinear Optimal10

Estimation (OE) method to iteratively solve for the monomodal size distribution parameters which

are statistically most consistent with both the satellite-measured multi-wavelength aerosol extinction

data and a priori information. By thus combining spectral extinction measurements (at visible to

near infrared wavelengths) with prior knowledge of aerosolproperties at background level, even the

smallest particles are taken into account which are practically invisible to optical remote sensing15

instruments.

The performance of the OE retrieval algorithm was assessed based on synthetic spectral extinc-

tion data generated from both monomodal and small-mode-dominant bimodal sulphuric acid aerosol

size distributions. For monomodal background aerosol, thenew algorithm was shown to fairly ac-

curately retrieve the particle sizes and associated integrated properties (surface area and volume20

densities), even in the presence of large extinction uncertainty. The associated retrieved uncertain-

ties are a good estimate of the true errors. In the case of bimodal background aerosol, where the
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retrieved (monomodal) size distributions naturally differ from the correct bimodal values, the as-

sociated surface area (A) and volume densities (V ) are, nevertheless, fairly accurately retrieved,

except at values larger than 1.0 µm2cm−3 (A) and 0.05 µm3cm−3 (V ), where they tend to under-25

estimate the true bimodal values. Due to the limited information content in the SAGE II spectral

extinction measurements this kind of forward model error cannot be avoided here. Nevertheless, the

retrieved uncertainties are a good estimate of the true errors in the retrieved integrated properties,

except where the surface area density exceeds the 1.0 µm2cm−3 threshold.

When applied to near-global SAGE II satellite extinction measured in 1999 the retrieved OE sur-30

face area and volume densities are observed to be larger by, respectively, 20–50% and 10–40%

compared to those estimates obtained by the SAGE II operational retrieval algorithm. An examina-

tion of the OE algorithm biases with in situ data indicates that the new OE aerosol property estimates

tend to be more realistic than previous estimates obtained from remotely sensed data through other

retrieval techniques.35

Based on the results of this study we therefore suggest that the new Optimal Estimation retrieval

algorithm is able to contribute to an advancement in aerosolresearch by considerably improving cur-

rent estimates of aerosol properties in the lower stratosphere under low aerosol loading conditions.

1 Introduction

Stratospheric aerosols are known to play an important role in the climate system because they can40

influence the global chemical and radiation balance in the atmosphere in a number of ways (Mc-

Cormick et al., 1995; Solomon, 1999). In the aftermath of large volcanic eruptions stratospheric

aerosols have a significant impact on the Earth’s radiation balance for several years after the erup-

tion. The observation that stratospheric sulphuric acid aerosol can exert a cooling effect on tropo-

spheric temperatures (e.g. Pueschel, 1996) has even stimulated the idea of deliberately introducing45

aerosols to counteract climate warming caused by anthropogenic emissions of greenhouse gases.

This area of research, called geoengineering by sulphate aerosols, is receiving increasing attention

(e.g. Rasch et al., 2008a,b; Tilmes et al., 2008). During volcanically quiescent periods, when strato-

spheric aerosol can be characterized as in a background state unperturbed by volcanism, the direct

radiative impact of stratospheric aerosols tends to be rather small. However, these particles may also50

play a role in the nucleation of near tropopause cirrus, and thus indirectly affect radiation (Kärcher

and Ström, 2003; Penner et al., 2009). Stratospheric background aerosols also play an important

role in the chemical balance of the stratosphere. At mid-latitudes they affect the ozone balance in-

directly by interacting with both nitrous oxides (Fahey et al., 1993) and chlorine reservoir species.

For instance, NOx increases under low aerosol loading conditions and inducesozone loss from the55

nitrogen catalytic cycle (Crutzen, 1970). In the polar stratosphere the small aerosol particles provide

condensation sites for polar stratospheric clouds which then provide the surfaces necessary to con-
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vert inactive to active chlorine leading to polar ozone loss. These examples provide an insight into

the intricate interactions between stratospheric aerosols and the climate system.

The impact of an aerosol on the different processes is determined by the chemical composition60

and, more importantly, by the microphysical properties: particle size distribution, surface area den-

sity, and the volume density. These properties are determined by the production mechanisms of the

particles, by the source of precursor gases and subsequent chemical reactions, by temperature and

the abundance of gas phase sulphuric acid, and by the growth and removal processes.

Much knowledge about these aspects was gained from in situ measurements. The stratospheric65

aerosol layer was first measured in the late 1950s using balloon-borne impactors (Junge et al., 1961)

and is often called the Junge layer, although its existence was suggested 50 years earlier from twilight

observations (Gruner and Kleinert, 1927). From a number of complementary measurements the

knowledge was established that stratospheric aerosol is composed primarily of sulphuric acid and

water during both volcanically active and quiescent periods (e.g. Junge et al., 1961; Rosen, 1971;70

Hofmann and Rosen, 1961; Deshler et al., 1992; Sheridan et al., 1992; Grainger at al., 1993; Arnold

et al., 1998; Murphy et al., 1998). Under background conditions, these originate mainly from the

tropospheric source gases carbonyl sulphide (OCS), (an inert sulphur bearing molecule), and SO2,

and from direct injections of sulphate particles (Crutzen,1976; Turco et al., 1980; Weisenstein and

Bekki , 2006). During strong volcanic eruptions, sulphur isdirectly injected into the stratosphere75

and then oxidized and transformed into sulphuric acid. Other minor constituents of stratospheric

aerosol include upper tropospheric material such as nitrate, ammonia, organics, minerals and metals

(e.g. Talbot et al., 1998; Murphy et al., 1998), or meteoric material (Murphy et al., 2007; Renard

et al., 2008), aircraft and rocket exaust (Kjellstrom et al., 1999; Danilin et al., 2001; Jackman et al.,

1996). A comprehensive review of the measurements, the importance, and the life cycle of local and80

global stratospheric aerosol can be found in Deshler (2008).

Direct measurements of size resolved particle concentrations in the lower stratosphere are pro-

vided by balloon-borne in situ measurements which are limited primarily to Laramie/Wyoming/USA

(41◦ N) with sporadic measurements from Lauder/NZ (45◦ S) and a few other locations (Hofmann

et al., 1975; Deshler et al., 2003). These measurements willbe used (in this study) as prior knowl-85

edge, with the help of which SAGE II spectral extinction measurements will be evaluated to obtain

new estimates of aerosol properties under non-volcanic conditions. The balloone-borne measure-

ments from Laramie (Deshler et al., 2003) along with ground based lidar measurements at two mid-

latitude sites (Osborn et al., 1995; Jäger, 2005) and two tropical sites (Barnes and Hofmann, 1997;

Simonich and Clemesha, 1997) provide the longest stratospheric aerosol records available (Deshler90

et al., 2006). They are particularly valuable, for instance, for having captured the complete cycle

of three major volcanic eruptions (Fuego, 1974, 14◦ N; El Chichón, 1982, 17◦ N; Pinatubo, 1991,

15◦ N) which have not been measured in as much detail or even not atall by satellite instruments.

Although ground-based or air-borne in situ measurements provide detailed and valuable infor-
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mation about stratospheric aerosol properties, their reach remains local. To be able to quantify the95

climatic impact of stratospheric aerosol on a global scale,they have to be complemented by large-

scale measurements from space based platforms.

Long-term measurements of the global stratospheric aerosol burden using satellite instruments

began in the late 1970s with the Stratospheric Aerosol Measurement (SAM) II (Pepin et al., 1977;

Poole and Pitts, 1994) and the Stratospheric Aerosol and GasExperiment (SAGE) I (McCormick100

et al., 1979). SAM II was a one channel instrument which took measurements at high-latitude

regions (between 64 and 86◦ N) for about 12 years between 1979 and 1991. SAGE I was a four

channel sun spectrometer taking measurements on a near-global extent (between 80◦ N and 80◦ S)

between 1979 and 1981. Its successor, SAGE II (McCormick, 1987), was upgraded to seven spectral

channels (four of which are suitable for aerosol measurements) and provides the longest continual105

record of aerosol spectral measurements to date: it operated between 1984 and 2005 for 21 years.

For a volcanic aerosol laden stratosphere, current estimates of aerosol surface area density re-

trieved from SAGE II measurements are observed to agree wellwith those inferred from size distri-

butions fit to in situ measurements (Thomason et al., 1997). In contrast, under background aerosol

conditions, the retrieved surface area estimates tend to be40% smaller than those derived from the110

corresponding in situ data (Deshler et al., 2003; Reeves et al., 2008). Discrepancies have also been

observed between SAGE II estimates and in situ measurementsof number densities and median par-

ticle radii (Bingen et al., 2004a,b). These and other observations gathered in a recent assessment of

stratospheric aerosol properties lead to the conclusion that “significant questions remain regarding

the ability to characterize stratospheric aerosol during volcanically quiescent periods, particularly in115

the lower stratosphere” (Thomason and Peter, 2006). A good knowledge of these aerosol properties

at the natural background level is, however, an important reference base on which trends can be

estimated and perturbations of the climate system can be quantified.

The difficulty associated with retrieving aerosol properties from SAGE II measurements in the

volcanically unperturbed stratosphere has to do with the small sizes of background aerosol particles.120

Median radii are typically between 0.01 and 0.2 µm. One problem is that their contribution to the

measured optical extinction is often of the same order of magnitude as the experimental uncertainty.

To illustrate this, Table 1 presents the fractional contributions by all particles smaller than 0.1 µm

to the total SAGE II spectral extinction, for three different size distributions. They are observed

to be similar in magnitude to the listed experimental spectral uncertainty levels. Table 2 lists the125

associated fractional particle number, surface area and volume. These numbers demonstrate that for

two of the three example size distributions the great majority of all particles are smaller than 0.1 µm.

Moreover, volume density depends less on the small particles than surface area density.

In addition to the low sensitivity problem, particles that are much smaller than the measurement

wavelength are hard or even impossible to discriminate because of fundamental limitations of the130

scattering theory in the Rayleigh limit (Heintzenberg et al., 1981). The accurate determination of the

4



particle size distribution parameters and associated integrated aerosol properties depends, however,

on all particles including the smallest. This means, that accurate aerosol property estimates can only

be obtained by combining the measurements with additional prior information about those particles

in the ”blind spot” of the experiment.135

In response to this need for improved estimates of aerosol properties under background condi-

tions, a new aerosol retrieval model was developed, that uses the Optimal Estimation approach to

combine space based measurements of aerosol extinction with prior knowledge about background

monomodal size distributions. This way, even the smallest and practically invisible particles are

considered in the retrieval process. Section 2 introduces the mathematical description of the aerosol140

microphysical properties, the basic radiative transfer equations, the SAGE II satellite experiment,

and the current SAGE II retrieval method. In Section 3 the newOE retrieval algorithm and the

Bayesian approach, which it is based upon, are described. InSection 4 the new OE estimation

retrieval algorithm is assessed based on synthetic aerosolextinction data. The a priori data set is

described, the retrieved results are presented, and the retrieved as well as additional uncertainties are145

assessed in a comprehensive error analysis. In Section 5 thenew algorithm is applied to near-global

SAGE II satellite measurements. The results are presented and discussed in the light of current es-

timates of aerosol properties retrieved (from the same extinction data but) using different retrieval

approaches. Section 6 closes with a summary of the main results and conclusions.

2 Aerosol properties and measurements150

The size spectrum of stratospheric aerosol is generally continuous and may range from only a few

nanometres up to about 10 micrometres. The most widely used size distribution model for strato-

spheric aerosols is the differential lognormal expression, given by

dN(r)

dr
=

∑

i

Ni√
2π Si

· 1

r
· exp

[

−1

2

(ln r − lnRi)
2

S2
i

]

(1)

whereNi is the total number of particles per unit volume of air,Ri is the median particle radius, and155

Si is the half width or standard deviation of modei. (S is the equivalent oflnσ, which is sometimes

used in the literature). Monomodal distributions have onlyone mode, whereas multimodal particle

size distributions can be described by a superposition of several modes.dN/d ln r is the number

of particles per unit volume of air in a radius interval betweenr andr + dr. The total number of

particles can be calculated by summation over all particle radii and is usually given per cm3.160

The non-volcanic stratospheric background aerosol is usually well described by a monomodal size

distribution, although balloon borne in situ measurementsindicate that a second mode of larger but

less abundant particles can coexist (Deshler, 2008).
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From the particle size distribution the associated surfacearea density and volume density can be

derived

A =

∫

∞

0

4πr2 · dN(r)

dr
dr = 4πNR2 · exp

[

2S2
]

(2)

V =

∫

∞

0

4

3
πr3 · dN(r)

dr
dr =

4

3
πNR3 · exp

[

9

2
S2

]

(3)

whereA is usually given in µm2 per cm3 andV in µm3 per cm3. The effective radius or area-

weighted mean radius is given by165

Reff =
3V

A
= R · exp

[

5

2
S2

]

. (4)

The presence of atmospheric aerosols can be detected based on their effect on other processes in

the atmosphere, for instance on the propagation of sunlight. The intensity,I, of electromagnetic

radiation transmitted through an inhomogeneous medium is observed to decrease exponentially with

increasing distance,s, as described by the Beer-Lambert law:170

I = I0 exp
[

−βext · s
]

, (5)

whereI0 is the initial intensity, andβext the volume extinction coefficient at a particular wavelength.

The extinction properties of a medium depend on the efficiency with which light is removed from the

beam by absorption and scattering. The volume extinction coefficient can be thought of as the cross-

sectional area per unit volume with which the ray interacts.It is the sum of all particle cross-sections

multiplied by the extinction efficiencyQext

βext(λ) = π

∫

∞

0

r2 · Qext · dN(r)

dr
dr. (6)

The extinction coefficient is conventionally given in µm2cm−3 or km−1 and hereafter just called

“extinction”. The extinction efficiencyQext is a function of particle size, of the wavelength of the

incident light, and of the refractive index of the substance. As tiny sulphuric acid particles can be

assumed to be spherical (Torres et al., 1998) and homogeneous, the extinction coefficient can be175

calculated using Mie’s theory of light extinction (Mie, 1908). The Mie scattering code used in this

study originates from the work of Grainger (1990) and can be downloaded from www.atm.ox.ac.uk/

code/mie.

The refractive index of sulphuric acid droplets at 1.06 µm ranges between 1.394 and 1.444 for

ambient conditions typically found in the lower stratosphere, that is temperatures between 195 K180

and 240 K, water vapour pressures of1 · 10−4 to 8 · 10−4 hPa, and associated acidities between

35 and 85% by weightH2SO4 (Steele et al., 1999). The imaginary part of the refractive index

(describing the absorption) is very close to zero and hence extinction is equivalent to scattering.

In this study refractive indices were calculated using a model by Semmler et al. (2003) which

is based on laboratory measurements of the densities and refractive indices of binary or ternary185
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H2SO4, and/or(NH4)2SO4 and water solutions. The model applies the Lorentz-Lorenz relation-

ship to determine the refractive index at a certain temperature from the refractive index at a reference

temperature. The aerosol acidity was determined with the help of temperature and pressure observa-

tions (from the National Meteorological Center, NMC) and observed humidity data (SAGE II) and

by linearly interpolating between tabulated values from Steele and Hamill (1981) with extensions190

from Russell and Hamill (1984).

The SAGE II instrument is a seven-channel sun photometer andmeasures changes in received

sunlight as the Sun rises or sets as seen from the spacecraft (solar occultation). A typical SAGE II

slant path length is200 km long for a 1-km thick shell at a tangent height of about20 km. The

optical data are recorded at a series of discrete altitudes (tangent heights) so that vertical distributions195

of ozone, nitrogen dioxide, water vapour concentration, and aerosol extinction (per km) can be

determined. Each day, SAGE II measures approximately 15 sunrise and 15 sunset events, equally

spaced in longitude along two latitude belts between80◦ N and 80◦ S. Extremes of latitudes are

covered every 4 to 5 weeks. The four wavelengths used for aerosol retrieval are 1.02, 0.525, 0.452,

and 0.386µm. The inversion algorithm is described by Chu et al. (1989). For a description of200

the optical assembly and operation of the SAGE II instrumentthe interested reader is referred to

McCormick (1987) and McMaster (1986). The SAGE II aerosol extinction data used in this study

are a subset of the version 6.1 data made available to the public by the NASA Langley Research

Center (LaRC, Hampton, VA, USA).

The operational algorithm used by the NASA LaRC to retrieve integrated aerosol properties from205

SAGE II aerosol extinction is based on the Principal Component Analysis (PCA) method described

by Thomason et al. (1997) and Steele et al. (1999). In the PCA approach, the kernel function in

the aerosol extinction equation (Eq. 6) is expanded in termsof a set of orthogonal basis functions.

Integral properties such as surface area density and volumedensity can then be evaluated from a

linear combination of the spectral extinction measurements β(λi) multiplied by a factor which is210

dependent on particle composition (through the aerosol refractive index), on the integration limits

employed in the calculation of the eigenvectors and eigenvalues of the covariance matrix, and on

the number of principal components retained. The propagation of experimental error can be reduced

by narrowing the integration interval and by limiting the number of principal components. This

introduces a systematic bias error (Steele et al., 1999).215

Operationally, the PCA approach has been modified to move thesurface area density derivation

dependence toward the 525 and 1020 nm channels, which are more reliable than the short wavelength

channels (Thomason et al., 2008). In addition, the relationship for surface area density (SAD) has

been simplified for implementation in the operational software using an empirical fit based on the

525 to 1020 nm extinction ratio,r, and the absolute 1020-nm aerosol extinction,k1020 (in units of220
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km−1), that captures approximately 90% of the variance of the original:

SAD = k1020

(

1854.97 + 90.137 r + 66, 97 r2

1. − 0.1745 r + 0.00858 r2

)

. (7)

Observations show that during low aerosol loading periods the operational SAGE II retrieval algo-

rithm tends to underestimate surface area densities derived from in situ data measured by optical

particle counters (e.g. Deshler et al., 2003; Thomason and Peter, 2006; Reeves et al., 2008). In a225

recent sensitivity study Thomason and Peter (2006) found that during background periods the sur-

face area density operational product has an uncertainty ofat least a factor of 2. They ascribe this

uncertainty to the lack of sensitivity to particles with radii less than 100 nm, the same conclusion

arrived at by Deshler et al. (2003).

3 Optimal Estimation retrieval algorithm230

In atmospheric remote sensing, the common problem of inverting a set of measured radiances to

determine aspects of the atmospheric state (e.g. temperature profile, trace gas mixing ratio profiles,

aerosol properties) is often ill-conditioned, meaning that no unique solution exists. Thus additional

information of some type is usually required to constrain the retrieval to fall within physically rea-

sonable limits. The new aerosol retrieval algorithm presented here seeks the maximum a posteriori235

(MAP) solution, which is a specific type of Optimal Estimation (OE) technique (Rodgers, 2000).

The general strategy of the OE approach is to seek the solution which is most statistically consis-

tent with both the measured radiances (aerosol extinction)and the typical background aerosol size

distributions as represented by the a priori.

Because of the ill-posed problem of retrieving three variables (monomodal size distribution pa-240

rameters) from Equations (1) and (6), and because of experimental error, a point in state space

(particle size distribution) will map into a region of measurement space (spectral aerosol extinction).

Conversely, a measurement could be the results of a mapping from anywhere in a region of state

space, described by some probability density function, rather than from a single point. The OE re-

trieval approach is based on Bayesian statistics, which provide a formalism (Bayes’ theorem) that245

translates uncertainty in measurement space into uncertainty in state space. Bayes’ Theorem relates

a set of measurements,y, to the a priori knowledge about the required state, described by a vectorx.

If the a priori, consisting of a mean state and covariance matrix, describes the statistical behaviour

of the state vector, Bayes’ Theorem allows us to obtain the posterior probability density function

(pdf) of a retrieved solution state by updating the prior pdfof the state with the conditional pdf of a250

measurement:

P (x|y) =
P (x)

P (y)
P (y|x), where (8)

P (x|y) is the posterior conditional pdf ofx which describes the probability that the state lies in the

interval (x, x + dx) wheny has a given value; it is the MAP solution.
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P (x) is the prior pdf of the statex expressing quantitatively our knowledge ofx before a mea-255

surement is taken.

P (y|x) is the conditional pdf of a measurementy, which describes the probability that the mea-

surement vector lies in the interval (y, y + dy) given a certain statex.

P (y) describes the knowledge about the measurement before it istaken which is in practice only

a normalizing factor (Rodgers, 2000).260

This means that all possible states that are consistent withthe measured information can be identi-

fied and characterized by probability density functions if the following information is given: (a) any

prior information about the unknown state, (b) a measurement together with a description of its error

statistics, and (c) a forward model. The most likely value ofeach solution pdf (one for each size

distribution parameter) is taken to be “the” Optimal Estimation solution and the width of each solu-265

tion pdf is the associated (one-sigma) uncertainty. The particular advantage of this approach to the

aerosol retrieval problem is that by considering all possible monomodal lognormal size distribution

parameters and by weighting them according to their naturalprobability of occurrence (in the form

of pdfs), the Bayesian solution includes also the smallest and effectively invisible aerosol particles.

The size discrimination problem of small particles in the Rayleigh limit of scattering is alleviated by270

prescribing a lognormal size distribution shape.

With the help of Bayes’ Theorem and the general expression ofthe probability function of a

vectory, the following expression for the general form of the Bayesian solution can be derived (see

Rodgers, 2000):

−2 lnP (x|y) = [y − F (x)]TSǫ
−1[y − F (x)] +

[x − xa]TSa
−1[x − xa] + c, (9)

whereF (x) is the forward model expressing spectral aerosol extinction in terms of the size distri-

bution parameters,Sǫ is the measurement error covariance matrix,xa andSa are the a priori mean

state and covariance matrix, andc is a constant. In this form it can be seen that the MAP retrieval

solution combines to independent estimates of the same vector quantity (i.e. the state vector deter-275

mined solely from the measurement vectory and a virtual measurement represented by the a priori

state vectorxa) inversely weighted by their respective covariances. However, if the a priori pdf is

appropriate, the solutions will be biased only within experimental uncertainty (Rodgers, 2000). The

quadratic form inx implies that it must be possible to expresslnP (x|y) as a function of a new state

x̂ (retrieval solution) and an associated error covarianceŜ:280

−2 lnP (x|y) = [x − x̂]TŜ−1[x − x̂]. (10)

An explicit expression forŜ can be derived when assuming that within a small particle

size range the forward model can be approximated by a linearised forward model of the form

F (x) =∇xF (x0)(x − x0) =y0 +K0 (x − x0), wherex0 is an arbitrary linearisation point and
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K0 is the Jacobian matrix of derivatives atx0. This approach is appropriate as the problem is no285

more than moderately non-linear, meaning that the difference between the forward model and a lin-

earised version of the forward model remains within the solution error covariance. Equating terms

that are quadratic inx then leads to an expression for the inverse covariance matrix

Ŝ−1 = KTS−1
ǫ K + S−1

a , (11)

whereK is the Jacobian or weighting function matrix containing thepartial derivative ofF (x) with290

respect to the state vector elements.

The expected MAP retrieval state is situated where the posterior pdf takes a maximum. This is

equivalent to finding the minimum on a multidimensional surface which is given by the right hand

side of Eq. (9). This leads to the following implicit expression for x̂

−K̂
T
S
−1
ǫ [y − F̂ ] + S

−1
a [x̂ − xa] = 0, (12)295

whereK̂ is the Jacobian matrix of derivatives at the solution state.Application of the Levenberg-

Marquardt root-finding method (Press et al., 1992) and dropping the second derivative of the forward

model leads to the following iterative equation for the solution state

xi+1 = xi + (S−1
a + KT

i S−1
ǫ Ki + γS−1

a )−1 ·

(KT
i S−1

ǫ [y − F (xi)] − S−1
a [xi − xa]), (13)

whereγ is chosen at each step to minimise the right hand side of Eq. (9) and such that the new value

of x remains within the linear range of the previous estimate.

In our aerosol retrieval model the measurement vector,y, consists of a set of four volume ex-

tinction coefficients, one for each of the four SAGE II aerosol spectral channels. The state vector

is a three element vector containing the natural logarithmsof the three monomodal size distribution300

parameters,x = ln[N, R, S]. This form is particularly suitable because in log-space (a) the size dis-

tribution parameters are approximately normally distributed, (b) the different orders of magnitude of

N (1–100 particles per cm3), R (0.001–1.0 µm) andS (0.1–1 in log radius) are merged to a similar

scale, and (c) the solution space is positive definite and hence naturally constrained to physically

sensible solutions.305

The forward modelFλ(x) expresses the aerosol extinction at a particular wavelength λ in terms

of the monomodal log-normal size distribution parameters

Fλ(x) =

ln rb
∑

ln ra

πr2 · Qext(r, λ, RI) · dN(r)

d ln r
∆ ln r, (14)

wherer is the particle radius at which the function is evaluated,ra andrb are finite integration limits

between which the integrand is non-negligible,∆ln r is the width of the particle size interval, and310

RI is the aerosol refractive index at wavelengthλ.
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Each retrieval process is initialised with a first guess of the aerosol state. The first retrieval process

starts with the a priori mean state as first guess. As usually subsequent measurements were taken

at adjacent heights, aerosol properties retrieved at height k are used as a first guess state at height

k +1. In case a retrieval process does not converge, the adjacentmeasurements are initialised with315

the a priori mean state.

Whether or not a retrieval process has converged to sufficient precision is decided based on the

size and rate of change of the retrieval cost (right hand sideof Eq. 9), on the differences (between

two consecutive iterations) in the retrieved signal and in the retrieved state vector elements, and

on the number of iterations performed. The computational efficiency and accuracy of the forward320

model are optimized by adapting the number of grid points to the smoothness of the integrand and by

individually estimating suitable integration limits for each measurement vector. As a result solutions

are found quickly and mostly obtained in less than five iterations.

4 Model validation

4.1 A priori data325

In principle, the a priori represents the expected statistical behaviour (both in terms of the mean state

and variability) of the state vector. Prior information about aerosol particle size distributions can be

gained from in situ balloon borne size resolved concentration measurements (Deshler et al., 2003).

The size distributions used in this study were measured between May 1991 and October 1997 by the

University of Wyoming at Laramie (41◦ N, 105◦ W) at altitudes between 20 and35 km. Although330

the majority of measurements taken during this period indicate bimodal size distributions that were

at least partly influenced by the eruption of Mt. Pinatubo (June 1991, 15◦ N), only monomodal back-

ground data were selected. These 264 monomodal aerosols size distributions have median particle

radii between 0.02 and 0.2 µm and are clearly non-volcanic. Given the fact that comparable in situ

measurements at other latitudes are rather scarce to date, the Laramie record currently represents our335

best knowledge of aerosol properties under background conditions.

Probability density functions (characterized by a mean andcovariance matrix) of number density,

median radius and distribution width were generated based on these measurements, which were

collected at different altitudes and times of the year and are therefore representative of a range of

temperatures and acidities. It will be shown that good retrieval results are achieved using the a priori340

knowledge in this form. The limitations of this choice are discussed in Section 4.3.

4.2 Retrieval from synthetic extinction

To assess the performance of the new retrieval algorithm synthetic extinction coefficients (at 0.385,

0.452, 0.525 and 1.020 µm) were calculated for a 75% (by weight) sulphuric acid solution at 300 K

(refractive indices by Palmer and Williams, 1975) and basedon the monomodal a priori size dis-345
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tributions described in Sect. 4.1. By adding two different noise components, two test beds were

generated: (a) the Minimum Noise Scenario (minNS) is characterised by a 1% Gaussian distributed

random noise component added onto each of the four spectral extinction data; (b) the Maximum

Noise Scenario (maxNS) is characterised by [60, 45, 30, 25]%Gaussian distributed random noise

on the respective spectral channels [0.385, 0.452, 0.525, 1.020]µm. These noise levels describe the350

range of typical SAGE II extinction uncertainties, with themajority of all experimental uncertainties

lying between the two extremes.

As these test data cover the entire range of monomodal size distributions as measured in situ

(41◦ N) at different altitudes and times of the year, the two test beds can be considered comprehensive

and suitable to test the performance of the OE retrieval algorithm for monomodal background aerosol355

particles. The a priori pdfs are perfect in the sense that they describe exactly the same ensemble of

size distributions that we expect to retrieve in the case of aperfectly successful retrieval model. A

bias due to the a priori and the ensemble of test aerosols sizedistribution being identical is not given

because only one set of extinction measurements describingone of the entire ensemble of a priori

distributions is analysed at a time.360

The OE retrieval was applied to all test bed data. To discard spurious retrieval solutions an ad hoc

quality filter was developed based on several retrieval diagnostics. This filter achieves a good balance

between maximizing the correlation between the retrieved and the correct solutions and minimizing

data loss through rejection. In both noise scenarios approximately 88% of all retrieved solutions

pass the screening.365

Figure 1 presents all retrieved size distribution parameters in the form of histograms. In can be

observed that all three variables are symmetrically distributed about the a priori mean and in fact

with a frequency distribution very similar to the a priori data ensemble (not shown). The same is

true for for the derived integrated propertiesA, V , Reff presented in Figure 2.

Figure 3 (minNS) and Figure 4 (maxNS) display the retrieved aerosol properties versus the true370

values. The associated linear correlation coefficients arelisted in Table 3. Presented in this form it

becomes obvious that the retrieved and the true values are well correlated and that the best agreement

between the true and the retrieved solutions is found in surface area density, volume density and

effective radius. This observation can be explained by the fact thatA, V , andReff are integrated

quantities, whereas number density, median radius and distribution width are functions in the integral375

(Eq. 2 and Eq. 3 withN(r) given by Eq. 1). Fluctuations and uncertainties on the size distribution

parameters are smoothed out during integration such thatA, V , andReff have a higher stability

thanN , R, andS from which they were derived. Conversely, small fluctuations and uncertainties

of the extinction (Eq. 6), which is an integrated quantity, give rise to a highly amplified fluctuation

of the functions in the integral, i.e. onN , R andS. In addition, the integrated aerosol properties380

are less sensitive to the small and hard to retrieve particles than the size distribution parameters

which directly depend on all particles (Tab. 1 and Tab. 2). Nevertheless, the median radius (Fig. 3.b
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and Fig. 4.b) can be observed to be fairly accurately retrieved at values greater than approximately

0.02 µm (log10(−1.7)), even in the case of large extinction uncertainty. As mightbe expected, less

experimental noise allows for more accurate retrieval solutions which results in higher correlation385

coefficients. Table 4 lists the ensemble mean errors of all six variables in both noise scenarios. A

comparison with the initial uncertainties (σN = 93%, σR = 61% andσS = 31% from the a priori

variances) shows that, as might be expected, the latter wereclearly reduced by updating the a priori

pdf with the measurements (using Bayes’ Theorem). The retrieved uncertainties are generally and

naturally larger in the case of large noise (Fig. 4) than in the case of little extinction error (Fig. 3).390

The observation that the uncertainty inN is highest confirms that number density is harder to retrieve

than the other five aerosol properties.

4.3 Error Analysis

The retrieved uncertainties result from the propagation ofmeasurement error and from the influence

of the a priori constraint (Eq. 11). In the case of synthetic data the retrieved errors can be directly395

compared with the true error, i.e. the difference between the retrieved and the correct value. This

comparison indicates that the retrieved errors are generally a good representation of the true errors

although slightly overestimating the true errors in the maximum noise scenario (Wurl, 2008).

In the case of measured data additional uncertainties have to be considered. There could be

contributions from forward model error and from forward model parameter errors, an a priori bias400

due to a potentially inappropriate a priori constraint, anda bias due to analysing bimodal aerosol

data with a monomodal retrieval model.

The forward model error is the difference between the exact physics and the mathematical model.

There are basically three sources of uncertainty: (a) deviations from Mie theory, (b) deviations from

the lognormal particle size distribution model, and (c) numerical errors. Since the tiny sulphuric405

acid and water droplets of background aerosols found at temperatures above the frost point (Rosen,

1971; Steele and Hamill, 1981) are expected to be spherical and homogeneous, deviations from Mie

theory are assumed to be small. Numerical forward model errors arising from discretisation of the

model equations and from truncation of the integration integral are estimated to be smaller than

1% in aerosol extinction (Wurl, 2008). This is clearly smaller than the 10–60% measurement noise410

typically observed at 0.368 µm, but not necessarily negligible compared to the 1–10% measurement

noise typically observed at 1.020 µm. As size resolved concentration measurements appear to be

well approximated by lognormal distributions (Deshler et al., 2003), uncertainties arising from any

discrepancies to the true size distributions are expected to be small compared to the experimental

uncertainty.415

The forward model parameter error arises from uncertainties in parameters that are not part of

the state vector but nevertheless influence the measurements. In this retrieval model these are the

atmospheric temperature and water vapour partial pressure, sulphuric acid concentration and refrac-
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tive index. A common approach to estimate the forward model parameter error is to use best-guess

values and a random deviation of the “true” atmosphere aboutthis guess. When size distribution420

parameters were retrieved from spectral extinction data simulated for a typical background aerosol

(N=4.7 cm−3, R=0.04 µm andS = 0.48) at two reference states (220 K / 70%; 200 K / 65%) and two

fluctuation scenarios (±1 K / ±1%;±5 K / ±5%), the forward model error was found to be always

less than 3% inN , R, andS. This is generally over an order of magnitude smaller than the retrieved

uncertainties (Table 4) which indicates that the forward model parameter error tends to be negligible425

compared to the measurement uncertainties mapped into solution space.

The purpose of the a priori pdf is to add to the information contained in the measurements by

describing the solution space as comprehensively as possible.

As the loading of aerosol varies with height and latitude as the tropopause height changes, as

well as with time (e.g. with season of the year or with the phase of the quasi-biannial oscillation,430

Trepte and Hitchman (1992)) the ideal a priori information would be a function of latitude, altitude,

and time. However, given the paucity of aerosol measurements (other than SAGE) it seems more

reasonable to use a broad a priori pdf that captures the variation with height and latitude. Firstly,

as the a priori becomes more specific (either spatially or temporally), the a priori variances and

covariances would be expected to decrease. In the maximum a posteriori technique, this will tend to435

decrease the relative weight of the measured extinction in the aerosol retrieval and thereby increase

he relative weight of the a priori mean state. And secondly, our experience of satellite retrievals

suggests that using spatially-varying a priori may producespurious features in the retrieved fields

(Deeter et al., 2003). Neither of these effects is desirableat present, as they both would complicate

interpretation of the retrieval results.440

The Wyoming in situ record (Sect. 4.1) comprises aerosols measured at different altitudes and

different times of the year. It is therefore representativeof a range of different temperatures and

acidities. As these were, however, all measured at mid-latitudes (41◦ N), they may not be entirely

representative of all aerosols that may occur at other latitudes. A comparison with a series of in situ

measurements taken at Lauder, New Zealand (45◦ S, 1991–2001) shows that these southern mid-445

latitude aerosols are very similar to the Laramie (41◦ N) time series (Deshler et al., 2003). A bias

due to the a priori data being potentially unrepresentativeof some aerosols that may occur at other

latitudes can only be estimated when new measurements become available in the future.

The results obtained with the height- and time-independentcomprehensive a priori (Sect. 4.1)

were shown to be fairly accurate even in the case of large measurement uncertainty (Sect. 4.2).450

4.4 Bimodal aerosols

Another aspect that introduces uncertainty is whether the use of a monomodal retrieval model is

appropriate given that size resolved particle concentrations measured in the volcanically unperturbed

stratosphere are often better described by bimodal than by monomodal particle size distributions
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(Deshler et al., 2003). A comparison (not shown) between monomodal and bimodal data measured455

in situ between 1997 and 2001 indicates that monomodal aerosols are very similar to those described

by the smaller mode of the bimodal distributions, with typical median radii between 0.01 and 0.2 µm.

The second mode tends to be small containing only very few, but larger particles with median radii

between 0.2 and 0.8 µm.

In order to assess the capability of the monomodal OE retrieval model to accurately determine460

the properties of small-mode-dominant bimodal aerosols, synthetic extinction data were generated

in the same way as for the two monomodal test beds (Sect. 4.2),but based on 244 bimodal back-

ground aerosol size distributions measured in situ near 41◦ N between January 1997 and May 2002

at altitudes between 20 and35 km (Deshler et al., 2003). A comparison between these spectral ex-

tinction data with those generated from monomodal background aerosol (Sect. 4.2) shows that both465

cover basically the same range and are therefore not distinguishable prior to the retrieval analysis.

This agrees with results by Steele and Turco (1997) who foundthat it is possible for bimodal size

distributions to account for extinctions generated from monomodal distributions and vice versa. The

OE retrieval algorithm was then applied to the synthetic extinction data to retrieve monomodal size

distribution parameters. About 91% of all data analysed (223 out of 244) passed the ad hoc quality470

filter and are presented below. Figure 5 displays frequency distributions of the size distribution pa-

rameters retrieved in the presence of large extinction uncertainty (maxNS). It can be observed that

the peak values of theN , R andS retrieved from bimodal distributions are larger than the a priori

mean. Compared to the those values retrieved from monomodalaerosol data (Fig. 1), only a fewN

andR are smaller than the a priori mean. Nevertheless, all solutions are within the range described475

by the a priori pdfs. Figure 6 shows that a similar shift to larger values can be observed in the derived

integrated properties (compared with Fig. 2). A comparisonwith histograms of the correct aerosol

properties, separated into mode 1 and mode 2 (not presented), shows that the retrieved monomodal

R, A andV are very similar to the first mode of small-mode-dominant bimodal distributions. This

indicates that the minority of large particles play a minor role in determining median radius, sur-480

face area and volume density, which can hence be expected to be well retrieved even assuming a

monomodal model.

Figure 7 shows a comparison between the retrieved (monomodal) integrated aerosol properties

A, V , andReff and the correct bimodal solutions. The retrieved surface area densities (Fig. 7.a)

are observed to match the true (bimodal) solutions well except at values greater than approximately485

1.0 µm2cm−3, where retrieved (monomodal)A tend to underestimate the correct (bimodal) solu-

tions. This bias probably explains why the linear correlation coefficient, 0.87, is noticeably smaller

than 0.94 in the case of monomodal aerosol (Tab. 3). The retrieved and the correct bimodal volume

densities (Fig. 7.b) have a high linear correlation coefficient, 0.96, which is only slightly (but signif-

icantly at p=0.0001%) smaller than that in the case of monomodal aerosol (0.98, Tab. 3). A slight490

tendency to underestimate the true volume densities is observed at values larger than 0.05 µm3cm−3
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(log10(−1.3)). The comparatively low correlation coefficient observed in Reff , 0.38 (Fig. 7.c), can

be explained by the effective radius (Eq. 4) being sensitiveto errors inA andV . The monomodal

retrieval model tends to overestimate the correctReff . Nevertheless, the retrieved solutions generally

agree with the correct values within the retrieved uncertainties. The retrieved uncertainties inA and495

V are equally realistic (Wurl, 2008), except at surface area densities exceeding the 1.0 µm2cm−3

threshold where the true error is underestimated.

Bauman et al. (2003a), who use a multi-wavelength look-up table (LUT) algorithm as a basis

for aerosol retrievals, have done a similar analysis to study the effect of assuming a monomodal

size distribution, when the actual distribution is bimodal. They tested the bias with synthetic input500

spectra (with no uncertainty from measurement error or spatiotemporal variability) and found that

the retrieved surface area and volume densities tend to underestimate the correct bimodal values,

whereas the retrieved effective radii are larger than the correct values in the case of small-mode-

dominant bimodal distributions. In principle, the OE results agree with the LUT findings. However,

a noticeable bias is only observed at surface area and volumedensities greater than 1.0 µm2cm−3505

and 0.05 µm3cm−3, respectively.

In summary, the above assessment of the retrieved and potential additional uncertainties has

shown: The retrieved errors are generally a realistic estimate of the true errors, except at surface

area densities larger than 1.0 µm2cm−3 where the retrieved uncertainty estimates tend to underes-

timate the true errors. A bias due the mid-latitude a priori data being potentially unrepresentative510

of typical aerosols at other latitudes can only be quantifiedwhen new in situ measurements become

available in the future.

5 Application to measured data

5.1 Retrieval from SAGE II measurements

The new Optimal Estimation aerosol retrieval algorithm wasthen applied to SAGE II satellite mea-515

surements recorded in December 1999. This data consists of approximately 19 700 sets of spectral

aerosol extinction data measured between 70◦ S and 40◦ N in the lower stratosphere at altitudes be-

tween 12 and 35 km. As the year 1999 is part of the longest volcanically quiescent period in the

SAGE II record which began around 1997 (Deshler et al., 2006), the aerosols are assumed to consist

of tiny spherical sulphuric acid particles. Measured temperature, pressure and humidity data (as-520

sociated with the extinction measurements) are used to calculate the aerosol acidity, which is then

used to determine the aerosol refractive index using a modelby Semmler et al. (2003). The a priori

data is used as described in Sect. 4.1. The OE retrieval algorithm was applied to all measurements

with experimental uncertainties smaller than 99%. Nearly all retrieval processes converged to a solu-

tion, and those results which passed the ad hoc quality screening (approximately 90%) are presented525

below.

16



Figure 8 presents the retrieved size distribution parameters in the form of histograms. It becomes

immediately apparent that the number densities, median radii and distribution widths retrieved from

SAGE II measurements of aerosol extinction are very similarto those retrieved from synthetic ex-

tinction by bimodal background aerosol (Fig. 5). Both data sets have peak frequencies at similar530

values larger than the a priori mean, and the great majority of all results are observed to be within

one standard deviation of the a priori mean. The ensemble mean retrieved linear size distribution

parameters and a priori ensemble means are listed in Table 5.

Figure 9 displays frequency distributions of the integrated aerosol properties derived from the

retrieved size distribution parameters shown above (Fig. 8). A similar resemblance (as observed in535

N , R, andS) to those results retrieved from bimodal aerosol data can bedetected in surface area

density, volume density, and effective radius. The peak frequencies of the SAGE II data are, however,

slightly larger than those observed in Figure 5. The ensemble mean retrieved and a priori values are

listed in Table 6. The similarity with those aerosol properties retrieved from synthetic extinction by

bimodal background aerosols (Sect. 4.3) suggests that the aerosols measured by SAGE II could have540

been predominantly bimodal. This means that the retrieved number densities, distribution widths and

effective particle radii may be less accurate, and surface areas greater than 1.0 µm2cm−3 and volume

densities greater than 0.05 µm3cm−3 could be underestimated due to the monomodal forward model.

Figure 10 presents the retrieved uncertaintiesσN , σR andσS . A comparison with the model

validation results (see Table 4) shows that, as might expected, the OE uncertainties retrieved from545

SAGE II measurements are larger than those in the minimunm noise scenario and smaller than those

achieved in the maximum noise scenario. The associated uncertainties in the integrated properties,

σA, σV , σReff , are presented in Figure 11. The ensemble mean uncertainties of all retrieved aerosol

properties are listed in Table 5 and Table 6.

5.2 Discussion550

In order to assess how the new Optimal Estimation algorithm can add to the current knowledge of

aerosol microphysical properties in the volcanically unperturbed lower stratosphere, the retrieved

results are compared to aerosol properties estimated through different retrieval techniques as well as

to correlative in situ data.

The NASA Langley Research Center retrieves surface area density and effective radius from555

SAGE II aerosol extinction data using the Principal Component Analysis (PCA) technique (Sect. 2).

The associated volume densities can be derived using Eq. (4). Figure 12 shows the PCA solutions

versus the Optimal Estimation results, all retrieved from the same SAGE II extinction measurements.

The correlation coefficients, 0.94 inA, 0.98 inV , and 0.76 inReff , indicate a good (and highly sig-

nificant) linear correlation between the two data sets, however, there is a systematic bias. The great560

majority of all OE surface areas and volumes are larger than the associated PCA values, whereas OE

effective radii are smaller than the PCA solutions. Figure 13 presents the relative differences (in %)
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between the respective method results,

∆x =
(xPCA − xOE)

xOE

· 100. (15)

The PCA surface area and volume densities are observed to be smaller by respective 20 to 50%565

and 10 to 40%, whereas the PCA effective radii tend to be 10 to 40% larger than the respective OE

values.

Similar biases have previously been observed between PCA retrieval results and in situ data. In

particular, Steele et al. (1999) found that retrieved surface areas for background aerosol can be under-

estimated by up to 50% and volume densities by up to 30% through Principal Component Analysis.570

Deshler et al. (2003) observed that for background aerosol conditions the SAGE II estimates of sur-

face area density retrieved through Principal Component Analysis are about 40% lower than those

calculated from correlative in situ measurements. Reeves et al. (2008) come to similar conclusions

based on comparisons of SAGE II estimates with near coincident in situ aircraft measurements of

aerosol size distributions. This suggests that the new OE estimates tend to be more realistic and575

hence improved compared to current estimates of aerosol properties in the volcanically unperturbed

lower stratosphere.

To directly compare correlative OE, the PCA and the in situ (Optical Particle Counter, OPC)

surface area densities, the SAGE II and the in situ data sets were searched for correlative measure-

ments. In 1999, the University of Wyoming (41◦ N, 105◦ W) performed in situ measurements on six580

dates: March 22, April 20, June 23, July 21, September 16, andDecember 10. As, however, only two

SAGE II measurement events coincide with these dates and location, the time constraint was slightly

relaxed to allow for measurements recorded within a few daysof the Laramie balloon flights. The

four SAGE II measurement events identified this way differ from the two correlative in situ mea-

surement by up to 6 days, 2◦ in latitudinal and 5◦ in longitudinal direction. Bearing in mind that the585

observed differences will result from a combination of differences in the measurement characteris-

tics (different measurement techniques, recording times,location) as well as systematic differences

between the OE and PCA retrieval results, the PCA and OE retrieval results are now compared to

the correlative in situ data in the form of vertical profiles.The relative difference between any two

values at a particular altitude is given in % of the in situ value590

∆xi =
(x̂i − xi,OPC)

xi,OPC

· 100, (16)

and the profile mean difference is the arithmetic mean of all differences (absolute numbers) in

the profile. Figure 14 shows a comparison between vertical profiles of surface area density as re-

trieved from SAGE II using the PCA approach versus the correlative in situ surface area densities

of monomodal background aerosol. In June (Fig. 14.a and Fig.14.c), distinct deviations can be ob-595

served below 19 km, where the in situ surface area densities take values of 1.9 µm2cm−3. At these

lower altitudes, the PCA retrieval solutions are 30 to 70% smaller than the in situ values (Fig. 14.b
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and Fig. 14.d). A comparison with the associated in situ number densities and median radii (not

shown) helps to understand the observed differences: the particle radii decrease from 0.06 µm at

19 km to about 0.02 µm at 13 km; simultaneously the number density increases strongly from about600

10 to over 100 particles per cm3 at 13 km (near the tropopause), which explains the observed in-

crease inA toward lower altitudes. In December (Fig. 14.e and Fig. 14.g), the PCA surface area

densities are observed to be almost consistently smaller byabout 30 to 40% compared to the in situ

values (Fig. 14.f and Fig. 14.h).

Figure 15 displays the same comparison for the OE retrieval results. As the OE surface area605

densities are generally higher than the PCA values shown above, the difference to the a priori values

below 19 km (Fig. 15.a and Fig. 15.c) has decreased. In Fig. 15.a the two profiles even agree within

the OE uncertainties. Between 20 and 23 km theAOE are observed to be larger than the in situ

values. In December (Fig. 15.e and Fig. 15.g), the OE surfacearea densities are observed to widely

agree with the in situ values within the respective uncertainties.610

Cross-comparisons between the different retrieval methodresults shows that the OE profiles

(Fig. 15) and the PCA profiles (Fig. 14) of surface area densities are similar in their vertical struc-

ture, although the PCA surface area densities are generallysmaller than the OE values. The OE

and PCA results are observed to converge near 24 km, where theparticle sizes are largest (0.08 µm).

Above as well as below the monomodal aerosols observed in situ tend to decrease in size. Overall,615

the profile comparisons suggest that the Optimal Estimationsurface area densities tend to match the

in situ values better than the Principal Component Analysissolutions.

Bingen et al. (2004a,b) retrieved particle number density and median particle size from SAGE II

aerosol extinction measured between 1984 and 2000 using a regularized inversion retrieval tech-

nique. Compared to the OE results the particle radii retrieved by Bingen et al. (2004a) are about620

three times as large. For instance, at an altitude of 17.5 km at mid-latitude (40 to 70◦ N/S) in 1999,

the retrieved radii range between 0.25 and 0.33 µm (NH) or 0.27 and 0.37 µm (SH), whereas the

OE results are on the order of 0.08 µm. Simultaneously, the number densities retrieved by Bingen

et al. (2004b), which they found to be low compared to coincident in situ Optical Particle Counter

measurements (Bingen et al., 2004b), are smaller than the OEnumber densities. Bingen et al. as-625

cribe their low number densities and overestimated particle sizes to the inability of SAGE II optical

measurements to discriminate very thin particles in the Rayleigh limit of scattering. This suggests

that the larger OE number densities and smaller OE median radii tend to be more realistic than those

presented by Bingen et al. (2004b).

Error estimates associated with the retrieved solutions are ideally a good representation of the630

difference between the retrieved and the correct solutions. Achieving realistic uncertainty estimates,

however, is in practice often difficult, because not all biases can be reliably estimated under certain

circumstances. Consequently, some error estimates presented in the literature may represent partial

uncertainties only and can therefore not give conclusive evidence of the accuracy of the achieved
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results. Nonetheless, uncertainty estimates do give an indication of the quality of the retrieved635

results provided that the scope of their application (all included aspects and expected additional

uncertainties) is taken into account.

Table 7 provides a list of uncertainty estimates associatedwith aerosol properties all retrieved

under non-volcanic conditions but using different retrieval techniques. The “+” indicates that a

given value is an estimate of partial errors only and that thetotal error is expected to be higher due640

to other disregarded uncertainty components. Generally, it can be observed that in surface area,

volume density and effective radius the OE retrieved uncertainty estimates are of a similar size to

those values reported in the literature. For the number sizedistribution parameters there are less

values to compare and larger differences between the data sets. In number density, the uncertainties

reported by Bingen et al. (2004b) are larger than the OE errorestimates, whereas those estimated645

by Wang et al. (1989) are considerably smaller. The 11% reported by Wang et al. (1989), however,

account only for particles greater than 0.15 µm although thegreat majority of the retrieved OE sizes

are smaller than that (Fig. 8). Similarly, uncertainties inmedian particle radius estimated by Wang

et al. (1989) are smaller than those reported by Bingen et al.(2004b) and smaller than those achieved

through Optimal Estimation, but their error estimates apply only to radii between 0.1 and 0.7 µm.650

However, although particles smaller than 0.1 µm may contribute little to the total aerosol extinction,

their contribution is important to get accurate estimates of the retrieved aerosol properties (Sect. 1).

The uncertainties in surface area density, volume density,and effective radius reported by Bau-

man et al. (2003a) describe the retrieval uncertainties after a correction for a bias error due to the

assumption of a monomodal size distribution. These values do not take into account contributions655

resulting from the propagation of measurement uncertainty, which will have to be added on top.

In contrast, the uncertainties retrieved through Optimal Estimation (assessed in Sect. 4.3) were

found to be a good description of the true errors (a) in all retrieved size distribution parameters

and integrated properties, where the true aerosols are monomodal, and (b) at least for all integrated

aerosol properties (except whereA is greater than 1.0 µm2cm−3) in the case of bimodal background660

aerosols. The only uncertainty aspect which cannot be estimated at present is a potential bias due

to the Wyoming in situ data being potentially unrepresentative of some aerosols that may occur at

other latitudes.

Figure 16 illustrates the locations of SAGE II measurement events in four different seasons in

1999. Figure 17 presents the resulting number of measurements counted into 10◦ latitude by 1 km665

altitude grid box boxes. Due to the SAGE II measuring geometry, the great majority of all data

measured in December were recorded at northern mid-latitudes, namely near 40◦ N. This means that

the a priori data used in this study would be appropriate at least for the majority of all data presented

here. In contrast, most of the September measurements were recorded at higher latitudes, namely

near 60◦ N and S. If the retrieved aerosol properties in September were distinctly different from670

the December data, this could be an indication that the measured aerosols were not appropriately
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represented by the mid-latitude a priori size distributions. In Figure 18 (September data), no great

discrepancies to the results retrieved in December (Fig. 8)can, however, be observed. This means

that the applicability of the current mid-latitude a priorifor aerosols measured at other latitudes in

the SAGE record cannot be disproved until new in situ measurements become available.675

6 Summary and conclusions

We have introduced a new Optimal Estimation algorithm whichretrieves monomodal number size

distribution parameters and associated uncertainties from spectral aerosol extinction measured at

visible to near infrared wavelengths under non-volcanic conditions. The particular challenge of this

ill-posed aerosol retrieval problem arises from the low sensitivity of the available aerosol extinction680

measurements to particles smaller than 0.1 µm combined withthe difficulty of discriminating parti-

cle sizes in the Rayleigh limit of Mie scattering. The Optimal Estimation algorithm approaches this

problem with the help of Bayes’ Theorem, which translates uncertainty in measurement space into

uncertainty in state space and identifies the monomodal sizedistribution parameters which are sta-

tistically most consistent with both the satellite-measured multi-wavelength aerosol extinction data685

and the a priori information. By thus considering all particle sizes and by weighting them accord-

ing to their natural probability of occurrence, even the smallest and practically invisible particles

are considered in the solution process. The size discrimination problem at the small particle end is

alleviated by prescribing an analytical lognormal size distribution shape.

The new OE retrieval algorithm was tested on synthetic monomodal and small-mode-dominant690

bimodal aerosol size distributions and then applied to a large set of spectral SAGE II aerosol ex-

tinction data recorded in 1999. The results were compared toother estimates of aerosol properties

retrieved from remotely sensed data (using different retrieval approaches) and also to correlative in

situ measurements. We found:

– Aerosol properties retrieved from synthetic extinction data are generally well correlated with695

the true solutions, even in the presence of large extinctionuncertainty. The best agreement

between the true and the retrieved solutions is found in the integrated properties, namely in

surface area density, volume density and effective radius.

– In the case of bimodal aerosols, the retrieved monomodal parameters can be expected to nat-

urally deviate from the correct bimodal values. Nevertheless, the integrated aerosol properties700

can be accurately retrieved except at surface area densities greater than 1.0 µm2cm−3 and at

volume densities greater than 0.05 µm3cm−3, where they tend to underestimate the correct

bimodal values.

– The comprehensive (as opposed to height- or time-resolved)a priori probability density func-

tions were found to be appropriate for retrieving aerosol properties from synthetic measure-705
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ments, even in the case of large extinction uncertainty and in the case of small-mode-dominant

bimodal aerosols (with the exceptions named above). A bias due to the Wyoming data being

potentially unrepresentative of aerosols at other latitudes cannot be detected in the retrieved

results. At present, the mid-latitude in situ measurementsprovide the best prior estimate we

have, and the retrieval results seem to confirm the validity of their use.710

– The retrieved uncertainty estimates are of the order of 69% for number concentration, 33% for

median radius, 14% for the lognormal distribution width, 23% for surface area density,

12% for volume density, and 13% for effective radius. Compared to retrieval errors reported

by other researchers the OE uncertainties are smaller (for number density, median radius and

distribution width) or of the same order of magnitude (for surface area density, volume den-715

sity, and effective radius). While some of the uncertainty estimates provided by other re-

searchers represent partial errors only, the uncertainties retrieved through Optimal Estimation

were found to be a good description of the true errors: (a) in all retrieved size distribution

parameters and integrated properties, where the true aerosols are monomodal, and (b) at least

for all integrated aerosol properties (except whereA is greater than 1.0 µm2cm−3) in the case720

of bimodal background aerosols. Additional error contributions from typical forward model

errors and from forward model parameter errors tend to be small compared to the experimental

uncertainty. The only uncertainty aspect which cannot be estimated at present (due to a lack

of in situ aerosol measurements at other latitudes) is a biasdue to the Wyoming in situ data

being potentially unrepresentative of some aerosols that may occur at other latitudes.725

– A comparison of the OE retrieval results with integrated aerosol properties retrieved from the

same SAGE II data set but using the Principal Component Analysis (PCA) approach indicates

that the OE surface areas tend to be larger by 20 to 50%, the OE volumes tend to be larger by

10 to 40%, and the OE effective radii tend to be 10 to 40% smaller than the respective PCA

values. As PCA surface area densities (retrieved from the same SAGE II measurements) are730

known to underestimate correlative in situ data by about 40%(Deshler et al., 2003; Reeves

et al., 2008) and that the PCA volume densities tend to be low by an estimated 30% (Steele

et al., 1999), these observations suggest that the new OE algorithm provides improved aerosol

property estimates.

– The OE number densities are larger and the median radii are smaller than the number densities735

and median radii retrieved by Bingen et al. (2004a) from SAGEII extinction data using a

regularized inversion technique. As the latter were observed to underestimate correlative in

situ data ofN and to overestimate correlative in situ values ofR (Bingen et al., 2004a), the

OE results can be considered the more realistic estimates.

– A comparison between vertical profiles of the OE and the PCA surface area densities (retrieved740

from the same SAGE II measurements) with correlative in situdata indicates that the Optimal
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Estimation estimates ofA tend to match the in situ values better than the Principal Component

Analysis solutions of the operational SAGE II retrieval algorithm.

All these findings lead us to conclude that the new Optimal Estimation algorithm is able to sig-

nificantly improve current estimates of aerosol microphysical properties retrieved from SAGE II745

satellite measurements in the volcanically unperturbed lower stratosphere.

A SAGE II climatology of monomodal aerosol properties generated by Steven Marsh using

the new OE aerosol retrieval algorithm can be downloaded from http://www.atm.ox.ac.uk/project/

PARTS/.

In the future, the algorithm can be adapted to other solar occultation instruments, like for instance750

SAGE III. As SAGE III has three additional aerosol channels the algorithm could be expanded to

retrieve aerosol properties from bimodal particle size distributions, and consequently from volcani-

cally enhanced aerosols.
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Tables

Table 1. Fractional contributions (in %) (to the total SAGE II spectral extinction atλ =[0.386, 0.452, 0.525,

1.020] µm) of particles smaller than 0.1 µm in the case of three normalized (N = 0) example background size

distributions ((a) R = 0.008 µm,S = 0.90; (b) R = 0.067 µm,S = 0.45; (c) R = 0.180 µm,S = 0.25) and

how they compare to typical SAGE II experimental uncertainties,σ(βλ).

R, S ∆β(0.386) ∆β(0.452) ∆β(0.525) ∆β(1.020)

0.008, 0.90 19 15 12 4

0.067, 0.45 15 13 11 6

0.180, 0.25 0.0 0.0 0.0 0.0

σ(βλ) 10–60 5–35 3–25 1–10

Table 2. Fractional particle number, surface area density, and volume density (in %) of particles smaller than

0.1 µm in the case of three normalized (N = 0) example background size distributions(a) R = 0.008 µm,

S = 0.90; (b) R = 0.067 µm,S = 0.45, and(c) R = 0.180 µm,S = 0.25.

R, S ∆N ∆A ∆V

0.008, 0.90 99.7 83.3 52.5

0.067, 0.45 81.7 50.2 32.9

0.180, 0.25 0.8 0.2 0.1

Table 3. Model validation: Correlation coefficients,cc, describing the linear correlation between all accepted

(“good”) and the associated correct aerosol properties. Given the large number of measurements (≈230) these

correlation coefficients are all significant atp < 0.05% (Taylor, 1939, Table C).

Retrieved vs True cc (minNS) cc (maxNS)

ln N 0.56 0.52

ln R 0.86 0.80

ln S 0.85 0.70

ln A 0.98 0.94

ln V 1.00 0.98

ln Reff 0.93 0.90
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Table 4. Ensemble mean retrieved uncertainties (in %) in number density, median radius, distribution width,

surface area density, volume density, and effective radiusfor both the minimum noise scenario (minNS) and the

maximum noise scenario (maxNS).

Ens. Mean (%) minNS maxNS

σN , σR, σS 62, 24, 14 75, 37, 26

σA, σV , σReff 22, 11, 11 45, 34, 15

Table 5. Ensemble mean retrieved size distribution parameters (SAGE II data, December 1999) with associated

uncertainties (in %). Number density is given in cm−3, median radius in µm, and lognormal distribution (half)

width in log of µm.

SAGE II, Dec 1999

N , R, S

Ensemble Mean : 9.0, 0.069, 0.57

A priori: 4.7, 0.046, 0.48

σN , σR, σS (%)

Ensemble Mean : 69, 33, 14

A priori: 93, 61, 31

Table 6. Ensemble mean retrieved surface area density, volume density, and effective radius (SAGE II data,

December 1999) with associated uncertainties (in %). Surface area density is given in µm2cm−3, volume

density in µm3cm−3, and effective radius in µm.

SAGE II, Dec 1999

A, V , Reff

Ensemble Mean : 1.00, 0.05, 0.16

A priori: 0.20, 0.005, 0.075

σA, σV , σReff (%)

Ensemble Mean : 23, 12, 13

A priori: 146, 179, 40
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Table 7. Overview of uncertainties (in %) on aerosol properties retrieved under similar conditions (background

aerosol, SAGE data) but using different retrieval techniques. The “+” indicates that the value is an estimate of

partial errors only and that the total error is expected to behigher due to other disregarded uncertainty com-

ponents. The uncertainties inA as reported by Steele et al. (1999) and Steele and Turco (1997), for instance,

account for propagated random errors only. The total errorsare expected to be higher by about 50% due to

disregarded systematic (method bias) errors and contributions from particles smaller than0.1 µm. The meth-

ods and the conditions under which these uncertainties wereachieved are described in: (1) Wurl (2008), (2)

Steele et al. (1999), (3) Thomason and Poole (1993), (4) Steele and Turco (1997), (5) Anderson et al. (2000),

(6) Bingen et al. (2004b), (7) Wang et al. (1989), and (8) Bauman et al. (2003a). The acronyms stand for

Principal Component Analysis (PCA), Constrained Linear Inversion (CLI), Randomized Minimization Search

Technique (RMST), Regularized Inversion Method (RIM), Nonlinear Iterative Method (NIM), and Look-Up-

Table approach (LUT).

Source/Method σN σR σS σA σV σReff

(1)/OE 60–75 30–40 10–20 20–30 5–20 10–15

(2)/PCA (15–20)+

(3)/PCA 30 12–25

(4)/CLI 25+ 15+ 15+

(5)/RMST 8–50 5–25 6–36

(6)/RIM 50–200 35–50 100–250

(7)/NIM <11 5–28

(8)/LUT 20+ 21+ 18+

31



Figure Captions

Fig. 1. Histograms of number density(a), median radius(b), distribution width(c) as retrieved from synthetic

aerosol extinction in the maximum noise scenario. The vertical lines indicate the a priori mean state (solid), and

the a priori mean plus or minus one standard deviation (dash-dot).

Fig. 2. Histograms of surface area density(a), volume density(b), and effective radius(c) as derived from the

retrieved distribution parameters shown in Fig. 1. The vertical line indicates the a priori mean state.

Fig. 3. Minimum Noise Scenario: True versus retrieved values of(a) particle number densityN , (b) median

radiusR, (c) distribution widthS, and(d) associated surface area densityA, (e) volume densityV , and(f)

effective radiusReff , with their respective uncertainties. All values are givenin log10. The broken line marks

where the retrieved and true values are identical.

Fig. 4. As Fig. 3 but for the Maximum Noise Scenario.

Fig. 5. Histograms of 223 retrieved number densities(a), median radii(b) and distribution width(c) as retrieved

from synthetic aerosol extinction caused by background bimodal aerosols and large noise (maxNS). The vertical

lines indicate the a priori mean state (solid), and the a priori mean state plus or minus one standard deviation

(dash-dot).

Fig. 6. As Fig. 5 but for the resulting integrated aerosol properties, surface area density(a), volume density(b)

and effective radius(c). The vertical line indicates the a priori mean state (solid).

Fig. 7. Integrated monomodal aerosol properties as retrieved frombimodal background aerosol in comparison

with the correct bimodal surface area densities(a), volume density(b) and effective radius(c). The linear

correlation coefficients are 0.87 inA, 0.96 inV and 0.38 inReff (significant atp > 0.05% , Taylor (1939,

Table C).

Fig. 8. Histograms of number density(a), median radius(b), distribution width(c) as retrieved from SAGE II

measurements of aerosol extinction in December 1999. The vertical lines indicate the a priori mean state (solid),

and the a priori mean state plus or minus one standard deviation (dash-dot).

Fig. 9. Histograms of surface area density(a), volume density(b), effective radius(c) as derived from the

retrieved size distribution parameters shown in Fig. 8. Thevertical lines indicate the a priori mean.
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Fig. 10. SAGE II, 12/1999: Histograms of the retrieved uncertainties (in %) in number densityN , median

particle radiusR, and distribution widthS.

Fig. 11. SAGE II, 12/1999: Histograms of the uncertainties (in %) associated with surface area density(a),

volume density(b), and effective radius(c).

Fig. 12. SAGE II measurements (December 1999): Principal ComponentAnalysis (PCA) retrieval results of

surface area density in µm2 cm−3, effective radiusReff in µm (courtesy of NASA LaRC) and the associated

volume density in µm3 cm−3, compared to the Optimal Estimation retrieval results. Thediagonal line marks

x= y where both results would be identical.

Fig. 13.Difference (in %) between the retrieved Optimal Estimationsurface area densities (A), volume densities

(V ), and effective radii (Reff ) and the Principal Component Analysis (PCA) results: (PCA-OE)/OE. Frames

(a–c): Difference as a function ofA, V , Reff . Frames(d–f): Cumulative histograms of the differences.

Fig. 14. Vertical profiles of surface area density. Frames(a)/(c)/(e)/(g): Surface areas as retrieved (from SAGE

data) by the NASA LaRC using the PCA approach (diamonds with error bars, measured on 22 June (a), 23 June

(c), 14 December (e) and 16 December 1999 (g)) and correlative in situ (OPC) measurements (without error

bars, measured on 23 June and 10 December 1999); the verticaldashed line marks the a priori mean, and the

short horizontal dotted line marks the tropopause level (NMC data) at the time of the SAGE II measurements.

Frames(b)/(d)/(f)/(h): Associated relative differences. The long vertical linesmark the zero (solid) and the

profile mean difference (dotted). The a priori uncertainty of 40% (Deshler et al., 2003) is marked by the dash-

dotted line.

Fig. 15.As Fig. 14 but for surface area density as derived from the retrieved Optimal Estimation size distribution

parameters.

Fig. 16. Locations of SAGE II measurement events in March, June, September, and December 1999. The

square marks the approximate location of Laramie/Wyoming (41◦ N, 105◦ W)

Fig. 17. Number of measurements per 10◦ latitude and 1 km altitude grid box. Each grid box is represented by

a spot. Contours are marked for 10, 50, 100, 200, and 300 counts.

Fig. 18. Histograms of number density(a), median radius(b), distribution width(c) as retrieved from SAGE II

measurements of aerosol extinction in September 1999. The vertical lines indicate the a priori mean state

(solid), and the a priori mean state plus or minus one standard deviation (dash-dot).
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Figures

Fig. 1. Histograms of number density(a), median radius(b), distribution width(c) as retrieved from synthetic

aerosol extinction in the maximum noise scenario. The vertical lines indicate the a priori mean state (solid), and

the a priori mean plus or minus one standard deviation (dash-dot).

Fig. 2. Histograms of surface area density(a), volume density(b), and effective radius(c) as derived from the

retrieved distribution parameters shown in Fig. 1. The vertical line indicates the a priori mean state.
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Fig. 3. Minimum Noise Scenario: True versus retrieved values of(a) particle number densityN , (b) median

radiusR, (c) distribution widthS, and(d) associated surface area densityA, (e) volume densityV , and(f)

effective radiusReff , with their respective uncertainties. All values are givenin log10. The broken line marks

where the retrieved and true values are identical.

Fig. 4. As Fig. 3 but for the Maximum Noise Scenario.
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Fig. 5. Histograms of 223 retrieved number densities(a), median radii(b) and distribution width(c) as retrieved

from synthetic aerosol extinction caused by background bimodal aerosols and large noise (maxNS). The vertical

lines indicate the a priori mean state (solid), and the a priori mean state plus or minus one standard deviation

(dash-dot).

Fig. 6. As Fig. 5 but for the resulting integrated aerosol properties, surface area density(a), volume density(b)

and effective radius(c). The vertical line indicates the a priori mean state (solid).
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Fig. 7. Integrated monomodal aerosol properties as retrieved frombimodal background aerosol in comparison

with the correct bimodal surface area densities(a), volume density(b) and effective radius(c). The linear

correlation coefficients are 0.87 inA, 0.96 inV and 0.38 inReff (significant atp > 0.05% , Taylor (1939,

Table C).

Fig. 8. Histograms of number density(a), median radius(b), distribution width(c) as retrieved from SAGE II

measurements of aerosol extinction in December 1999. The vertical lines indicate the a priori mean state (solid),

and the a priori mean state plus or minus one standard deviation (dash-dot).
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Fig. 9. Histograms of surface area density(a), volume density(b), effective radius(c) as derived from the

retrieved size distribution parameters shown in Fig. 8. Thevertical lines indicate the a priori mean.

Fig. 10. SAGE II, 12/1999: Histograms of the retrieved uncertainties (in %) in number densityN , median

particle radiusR, and distribution widthS.

Fig. 11. SAGE II, 12/1999: Histograms of the uncertainties (in %) associated with surface area density(a),

volume density(b), and effective radius(c).
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Fig. 12. SAGE II measurements (December 1999): Principal ComponentAnalysis (PCA) retrieval results of

surface area density in µm2 cm−3, effective radiusReff in µm (courtesy of NASA LaRC) and the associated

volume density in µm3 cm−3, compared to the Optimal Estimation retrieval results. Thediagonal line marks

x= y where both results would be identical.

Fig. 13.Difference (in %) between the retrieved Optimal Estimationsurface area densities (A), volume densities

(V ), and effective radii (Reff ) and the Principal Component Analysis (PCA) results: (PCA-OE)/OE. Frames

(a–c): Difference as a function ofA, V , Reff . Frames(d–f): Cumulative histograms of the differences.
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Fig. 14. Vertical profiles of surface area density. Frames(a)/(c)/(e)/(g): Surface areas as retrieved (from SAGE

data) by the NASA LaRC using the PCA approach (diamonds with error bars, measured on 22 June (a), 23 June

(c), 14 December (e) and 16 December 1999 (g)) and correlative in situ (OPC) measurements (without error

bars, measured on 23 June and 10 December 1999); the verticaldashed line marks the a priori mean, and the

short horizontal dotted line marks the tropopause level (NMC data) at the time of the SAGE II measurements.

Frames(b)/(d)/(f)/(h): Associated relative differences. The long vertical linesmark the zero (solid) and the

profile mean difference (dotted). The a priori uncertainty of 40% (Deshler et al., 2003) is marked by the dash-

dotted line.
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Fig. 15.As Fig. 14 but for surface area density as derived from the retrieved Optimal Estimation size distribution

parameters.
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Fig. 16. Locations of SAGE II measurement events in March, June, September, and December 1999. The

square marks the approximate location of Laramie/Wyoming (41◦ N, 105◦ W)
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Fig. 17. Number of measurements per 10◦ latitude and 1 km altitude grid box. Each grid box is represented by

a spot. Contours are marked for 10, 50, 100, 200, and 300 counts.

Fig. 18. Histograms of number density(a), median radius(b), distribution width(c) as retrieved from SAGE II

measurements of aerosol extinction in September 1999. The vertical lines indicate the a priori mean state

(solid), and the a priori mean state plus or minus one standard deviation (dash-dot).
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