Supplementary material

Table S1 displays the photolytic reactions included in RACM and their associated parameterization factors.

Table S2 summarizes all the chemical reactions that were selected and grouped together to calculate the rates of radical fluxes. Note that peroxyacyl radicals (RCO₃) are differentiated from peroxy radicals (RO₂) since RCO₃ exhibit different sources (photolysis of methyl glyoxal and unsaturated dicarbonyl species) than RO₂ and can react with NO₂ to form peroxy acetyl nitrate (PAN) species. Radical initiation steps displayed in Table S2 are characterized by photolytic reactions (Photol) and ozonolysis reactions of unsaturated compounds (Unsat + O₃). The latter reactions are displayed with their associated radical yields in RACM (Stockwell et al., 1997). Termination mainly occurs through radical-NO_x reactions. Cross-reactions between radicals are negligible under the high NO_x conditions of MCMA but are included in the calculations for completeness. Through reactions with VOCs, OH directly propagates to RO₂ (alkanes, alkenes, ketones, esters, alcohols, acids, aromatics, peroxides), HO₂ (CO, HCHO, alcohols, aromatics, peroxides, unsaturated species) and RCO₃ (alcohols, acids, aldehydes, peroxides). RO₂ is propagated to HO₂ through its reaction with NO.

Table captions

Table S1: Photolytic reactions included in RACM. Reaction products are displayed as indicated in the RACM mechanism. J-values were calculated using the parameterization employed in MCM (Jenkin et al., 1997; Saunders et al., 2003). Calculated J-values are

scaled using measured $J(NO_2)$ or measured $J(O^1D)$ as indicated in the third column. Corresponding photolysis rates for MCM v3.1 are indicated in the forth column. SZA: Solar Zenith Angle.

Table S2: Initiation, termination and propagation pathways of OH, HO₂, RO₂ and RCO₃ selected in RACM to investigate the radical budget.

Table S3: Contribution of OH, HO_2 , RO_2 and RCO_3 sources to the total initiation of RO_x radicals. Reported values are for the large set of VOCs and GLY/MGLY/DCB constrained.

Table S4: Contribution of OH, HO_2 , RO_2 and RCO_3 sinks to the total termination of RO_x . Reported values are for the large set of VOCs and GLY/MGLY/DCB constrained.

Table S5: Lifetime comparison between radicals and long-lived chemical species that directly impact the radical chemistry.

Table S6: Model sensitivity to initial constraints.

	J = I × (COS(sza)) ^m			Scaling	Corresponding	Median value	
Photolytic reaction	× EXP [-	n × SEC(sza)]	Factor	J-Values in MCM	1:00 pm CST	
	I	m	n		v3.1	(s⁻¹)	
$NO_2 \rightarrow NO + O(^{3}P)$	N	leasured		_	J<4>	8.6×10 ⁻³	
$O_3 \rightarrow O(^1D) + O_2$	N	leasured			J<1>	3.9×10 ⁻⁵	
$O_3 \rightarrow O(^3P) + O_2$	4.775E-04	0.298	0.08	J(NO ₂)	J<2>	4.3×10 ⁻⁴	
HONO \rightarrow HO+NO	N	leasured			J<7>	1.9×10 ⁻³	
$HNO_3 \rightarrow OH + NO_2$	9.312E-07	1.23	0.307	$J(O^1D)$	J<8>	7.5×10 ⁻⁷	
$HO_2NO_2 \rightarrow$ 0.65 $HO_2 + 0.65NO_2 + 0.35OH + 0.35NO_3$	Calcula	ated from TU	JV	J(O ¹ D)	NA	5.7×10 ⁻⁶	
$NO_3 \rightarrow NO+O_2$	2.485E-02	0.168	0.108	J(NO ₂)	J<5>	2.2×10 ⁻²	
$NO_3 \rightarrow NO_2 + O(^3P)$	1.747E-01	0.155	0.125	J(NO ₂)	J<6>	1.5×10^{-1}	
H ₂ O ₂ →OH+OH	1.041E-05	0.723	0.279	J(NO ₂)	J<3>	7.4×10 ⁻⁶	
HCHO→HO ₂ +HO ₂ +CO	N	leasured			J<11>	3.7×10 ⁻⁵	
HCHO→CO+H ₂	N	leasured			J<12>	8.3×10 ⁻⁵	
ALD→CH ₃ O ₂ +HO ₂ +CO	7.344E-06	1.202	0.417	J(O ¹ D)	J<13>	5.2×10 ⁻⁶	
CH ₃ OOH→HO ₂ +OH+HCHO	7.649E-06	0.682	0.279	J(O ¹ D)	J<41>	6.6×10 ⁻⁶	
OP2→HO ₂ +OH+ALD	7.649E-06	0.682	0.279	J(O ¹ D)	J<41>	6.6×10 ⁻⁶	
PAA→CH ₃ O ₂ +OH	7.649E-06	0.682	0.279	J(O ¹ D)	J<41>	6.6×10 ⁻⁶	
KET \rightarrow ETHP+ACO ₃	7.992E-07	1.578	0.271	J(O ¹ D)	J<21>	6.5×10 ⁻⁷	
GLY → HCHO+CO	1.032E-05	0.13	0.201	J(NO ₂)	J<32>	8.3×10 ⁻⁶	
$GLY \rightarrow CO+H_2$	6.845E-05	0.13	0.201	J(NO ₂)	J<31>	5.5×10 ⁻⁵	
$GLY \rightarrow HO_2 + HO_2$	3.802E-05	0.644	0.312	J(NO ₂)	J<33>	2.6×10 ⁻⁵	
MGLY→HO ₂ +ACO ₃ +CO	1.537E-04	0.17	0.208	J(NO ₂)	J<34>	1.2×10 ⁻⁴	
$DCB \rightarrow TCO_3 + HO_2$	5.710E-04	0.256	0.159	J(NO ₂)	J<4> x 0.2 x 0.6	4.7×10 ⁻⁴	
ONIT → HO ₂ +NO ₂ +0.2ALD+0.8KET	2.772E-06	1.183	0.348	$J(O^1D)$	J<51, 52, 53>	2.1×10 ⁻⁶	
MACR \rightarrow CO+HO ₂ +ACO ₃ +HCHO	1.140E-05	0.396	0.298	J(O ¹ D)	J<18>	2.0×10 ⁻⁵	
НКЕТ→НО₂+АСО₂+НСНО	7.992E-07	1.578	0.271	J(O ¹ D)	J<21>	6.5×10 ⁻⁷	

Table S1

		ОН	HO ₂	RO ₂	RCO ₃
tion	Photol	2 O ₃ (O ¹ D+H ₂ O), HONO, 2 H ₂ O ₂ , HNO ₃ CH ₃ OOH , OP2, PAA, 0.35 HO ₂ NO ₂	2 HCHO ^a , ALD, CH ₃ OOH, OP2, 2 GLY ^a , MGLY, DCB, ONIT, MACR, HKET 0.65 HO ₂ NO ₂	ALD, PAA, KET	KET, MGLY, DCB, MACR, HKET
Initia	Unsat + O ₃	0.12 ETE, 0.40 OLT, 0.63 OLI, 0.28 DIEN, 0.28 ISO, 0.85 API, 0.85 LIM, 0.07 MACR 0.21 DCB, 0.04 TPAN	0.26 ETE, 0.25 OLT, 0.22 OLI, 0.30 DIEN, 0.30 ISO, 0.10 API, 0.10 LIM, 0.29 MACR 0.29 DCB, 0.08 TPAN	0.32 OLT, 0.53 OLI, 0.05 DIEN0.05 ISO, 0.62 API, 0.58 LIM	0.15 DIEN 0.15 ISO, 0.13 MACR 0.28 DCB, 0.70 TPAN
Term	ination	NO ₂ , NO, PAN, 0.60 TPAN	HO ₂ , RO ₂ , RCO ₃	HO ₂ , RO ₂ , RCO ₃ NO: 0.06 HC3P, 0.12 HC5P, 0.26 HC8P, 0.15 ISOP 0.20 APIP, 0.35 LIMP, 0.05 TOLP 0.05 XYLP	HO ₂ , RO ₂ , RCO ₃ , NO ₂
	OH		NO, O ₃ , 0.70 NO ₃		
jation to	HO ₂	O ₃ , NO ₃ , H ₂ , CO, H ₂ O ₂ , SO ₂ , HCHO HKET, GLY, UDD 0.38 HC3, 0.25 HC5, 0.05 HC8 0.10 TOL, O.10 XYL, 0.05 CSL 0.49 MACR, 0.50 DCB, 0.35 PAA 0.40 TPAN		NO: CH ₃ O ₂ , ETHP, 0.74 HC3P, 0.60 HC5P 0.61 HC8P, ETEP, OLTP, OLIP 0.85 ISOP, 0.80 APIP, 0.65 LIMP 0.95 TOLP, 0.95 XYLP, CSLP 0.77 KETP	
Propag	RO ₂	CH4, ETH, ETE, OLT, OLI, DIEN, ISO, API, LIM, KET, ONIT 0.58 HC3, 0.75 HC5, 0.95 HC8 0.90 TOL, 0.90 XYL, 0.95 CSL 0.65 CH ₃ OOH , 0.44 OP2		NO: 0.20 HC3P, 0.28 HC5P, 0.13 HC8P	NO: CH ₃ O ₂
	RCO ₃	ALD, MGLY 0.51 MACR, 0.50 DCB, 0.65 PAA		NO: 0.23 KETP	

Table S2: ^a from the photolytic channel leading to the production of radicals

			P	hotolytic prod	cesses			Non-pho	tolytic processes
Contribution	HONO ^a	DCB	GLY / MGLY	HCHO / ALD	O(¹ D) + H ₂ O	c	Others	C	0₃ + alkene
	RO _x	RO _x	RO _x	RO _x	RO _x		RO _x		RO _x
	ОН	HO ₂ RCO ₃	HO ₂ RCO ₃	HO ₂ RO ₂	ОН	OH ^b HO ₂ ^c	RCO3 ^d RO2	² ^e OH HC	D ₂ RCO ₃ RO ₂
Morning	45.0	4.5	1.0 / 3.9	24.2 / 2.2	3.9		4.7		10.7
(8:40-11:50)	80.3	6.7 45.9	2.9 / 5.7 0 / 39.2	71.5 / 3.2 0 / 20.9	6.9	4.1 4.7	13.2 4.2	8.6 5.	3 1.7 74.9
Early afternoon	23.6	3.4	1.0 / 3.4	26.4 / 2.0	8.9		6.9		24.4
(12:00-15:50)	50.2	4.5 38.5	2.6 / 4.4 0 / 38.0	69.0 / 2.6 0 / 9.8	18.9	7.3 6.1	17.5 2.8	23.6 10	8 5.9 87.3
Late afternoon	21.2	2.1	0.4 / 1.9	13.3 / 0.7	2.4		2.5		55.5
(16:00-18:40)	42.6	4.0 37.8	1.4 / 3.5 0 / 33.1	50.3 / 1.3 0 / 1.7	4.9	1.8 3.9	17.9 0.5	50.8 35	.6 11.2 97.8
Averaged day	34.5	3.9	1.0 / 3.5	24.4 / 2.0	5.9		5.4		19.3
(8:40-18:40)	66.6	5.6 42.6	2.7 / 5.0 0 / 38.5	69.3 / 2.9 0 / 12.1	11.4	5.3 5.3	15.1 2.9	16.9 9.	3 3.8 85.0

Table S3: ^a These calculations are based on a gross initiation rate of OH from HONO photolysis. The contribution of HONO photolysis to the total rate of RO_x initiation would be smaller on a net basis. ^b HNO₃, H₂O₂, organic peroxides, PAA, ^c organic peroxides, organic nitrates, methacrolein, hydroxyl ketones, ^d ketones, hydroxyl ketones, methacrolein, ^e PAA, ketones

Contribution (%)	OH + NO₂	OH + NO	RO ₂ + NO	Others ^a
Morning (8:40-11:50)	55.5	29.6	11.2	3.7
Early afternoon (12:00-15:50)	63.7	9.9	17.0	9.5
Late afternoon (16:00-18:40)	69.3	5.6	18.0	7.1
Averaged day (8:40-18:40)	59.8	19.8	14.1	6.3

 Table S4: ^a OH + PAN, OH + TPAN, OH + HNO₃, OH + HONO, OH + HNO₄, radical + radical

Species	Lifetime (h)				
Species	Photolysis ^a	Reaction with OH $^{\text{b}}$	Total		
ОН			40 ms ^c		
HO ₂			0.9 s ^d		
HONO	0.15	15.4	0.14		
DCB	0.6	1.4	0.4		
MGLY	2.3	4.1	1.5		
GLY	3.1	6.0	2.1		
KET	427.3	106.8	85.5		

Table S5: ^a using the median J-values displayed in Table S1. ^b using the median OH concentration of 4 x 10^{6} cm⁻³ measured at 1pm and the rate constants at 298K from Sander et al. (Sander et al., 2006) for HONO+OH and GLY+OH. The rate constants for OH+MGLY, OH+DCB and OH+KET are from Stock-well et al. (Stockwell et al., 1997). OH and HO₂ lifetime were calculated using measured median concentrations of chemical species at 1 pm CST. ^c OH lifetime calculated from total OH reactivity. ^d HO₂ lifetime calculated for the rate of HO₂ + NO.

Model constraints	$[OH] (x \ 10^6 \ cm^{-3})$		$[\text{HO}_2] (\mathbf{x} \ 10^7 \text{ cm}^{-3})$			
	8:40 am - noon	noon – 6:40 pm	8:40 am - noon	noon – 6:40 pm		
Median base modeling Large VOC dataset Dicarbonyls constrained	3.61	3.90	3.3	11.9		
Dicarbonyls	6.48	6.00	6.9	21.4		
unconstrained	+79.5%	+53.9%	+109.1%	+79.8%		
HONO unconstrained	2.90	3.32	2.8	10.3		
	-19.7%	-14.9%	-15.2%	-13.5%		
NO ₂ unconstrained	3.19	3.96	3.0	12.2		
	-11.6%	+1.5%	-9.1%	+2.5%		
[KET] x 2	3.63	3.92	3.3	12.0		
	+0.6%	+0.5%	+0.0%	+0.8%		
$[OLI + OLT] \times 2$	4.00 + 10.8%	4.80 +23.1%	4.0 +21.2%	16.3 +37.0%		
[HC3 + HC5 + HC8] x 2	3.32	3.40	3.9	13.5		
	-8.0%	-12.8%	+18.2%	+13.5%		
[CO] x 2	3.60	3.89	3.4	12.4		
	-0.3%	-0.3%	+3.0%	+4.2%		
[ALD] x 3	3.76	3.99	4.0	13.8		
	+4.2%	+2.3%	+21.2%	+16.0%		
[HCHO] x 2	4.51	4.76	4.6	15.8		
	+24.9%	+22.1%	+39.4%	+32.8%		
[HCHO] / 2	3.15	3.44	2.7	10.0		
	-12.7%	-11.8%	-18.2%	-16.0%		
[NO _x] / 2	6.09	5.15	10.3	29.6		
	+68.7%	+32.1%	+212.1%	+148.7%		
[NO _x] x 2	1.96	2.28	1.0	3.8		
	-45.7%	-41.5%	-69.7%	-68.1%		
J(HONO) / 1.5	3.12	3.61	3.0	11.1		
	-13.6%	-7.4%	-9.1%	-6.7%		

Table S6: Dicarbonyls = GLY + MGLY + DCB

References

- Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development, Atmos. Env., 31, 81-104, 1997.
- Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., and Orkin, V. L.: Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation number 15, JPL Publication 06-2, NASA Jet Propulsion Laboratory, Pasadena, California, 2006.
- Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys, 3, 161-180, 2003.
- Stockwell, W. R., Kirchner, F., and Kuhn, M.: A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res., 102, 25,847-825,879, 1997.