8159

Atmos. Chem. Phys. Discuss., 9, 8159–8185, 2009 www.atmos-chem-phys-discuss.net/9/8159/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

# Surface ozone trend details and interpretations in Beijing, 2001–2006

G. Tang<sup>1</sup>, X. Li<sup>2</sup>, Y. Wang<sup>1</sup>, J. Xin<sup>1</sup>, and X. Ren<sup>1</sup>

<sup>1</sup>Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, PR China <sup>2</sup>Beijing Municipal Environmental Protection Bureau, Beijing 100044, PR China

Received: 12 March 2009 – Accepted: 19 March 2009 – Published: 27 March 2009

Correspondence to: Y. Wang (wys@dq.cern.ac.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.





# ACPD

9,8159-8185,2009

Surface ozone trend details and interpretations in

#### Abstract

Beijing is a megacity situated in the rapidly developing Beijing-Tianjin-Hebei region of northern China. In this study, we analyze data on ozone and nitrogen oxide levels obtained at six urban sites in Beijing between the months of July and September. Our goal is to investigate average trends and interpretations over the 2001–2006 period. Average concentrations of NO<sub>x</sub> (NO<sub>x</sub>=NO+NO<sub>2</sub>), O<sub>3</sub>, and O<sub>x</sub> (O<sub>x</sub>=O<sub>3</sub>+NO<sub>2</sub>) were 49.2±5.9 ppbv, 26.6±2.8 ppbv, and 60.3±1.9 ppbv, respectively. NO<sub>x</sub> concentrations decreased linearly at a rate of 3.9±0.5 ppbv/yr after 2002, while ozone concentrations increased at a rate of 1.1±0.5 ppbv/yr in a two-year cycle during 2001–2006, and O<sub>x</sub> concentrations remained nearly constant. The reduction of NO<sub>x</sub> emissions and elevated non-methane hydrocarbon (NMHCs) emissions may have contributed to

- the increased  $O_3$  concentrations in Beijing. When the contributions from Beijings urban and surrounding areas were disaggregated via trajectory cluster analysis, daily maximum and average  $O_x$  concentrations attributable to Beijing local emissions in-
- <sup>15</sup> creased linearly at rates of  $1.3\pm0.6$  ppbv/yr and  $0.8\pm0.6$  ppbv/yr, while the O<sub>x</sub> concentrations attributable to regional areas decreased linearly at rates of  $0.6\pm0.3$  ppbv/yr and  $0.5\pm0.3$  ppbv/yr, respectively. The decrease in O<sub>x</sub> concentrations of surrounding areas was found to counteract increasing Beijing urban O<sub>x</sub> production, leading to nearly constant O<sub>x</sub> concentrations in the Beijing region over the study period. Our results may <sup>20</sup> be helpful for redefining government strategies to control the photochemical formation
- of air pollutants in the Beijing region. Our conclusions have relevance for developing megacities worldwide.

#### 1 Introduction

Ozone is produced naturally both in the Earth's upper atmosphere and at ground level.

Tropospheric ozone is both a greenhouse gas (Houghton et al., 2001) and an important source of global  $O_3$  (Akimoto, 2003). Aside from these global effects, emissions 9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006





of anthropogenic ozone precursors from urban and industrialized areas can elevate ozone concentrations in downwind suburban and rural areas (NRC, 1991). In addition, photochemical ozone is a key determinant of atmospheric oxidation state and a major constituent of photochemical smog, which impacts local air quality (Finlayson-Pitts and

Pitts, 2000). The production of elevated levels of O<sub>3</sub> at ground level is of particular concern because ozone is known to have adverse effects on human health, vegetation, and a variety of materials (NRC, 1991; POPG, 1997). Along with accelerated urbanization, increases in surface ozone concentrations have been observed in areas throughout China (Xiaoyan, 1989, 1995; Zhang, 1998; Ma, 2000; Xu, 2008). Understanding the determinants of tropospheric O<sub>3</sub> formation in Beijing may help us better understand and forecast air quality in Chinese cities and around the globe.

Beijing has a population of 16 million within an area of 16 800 km<sup>2</sup>, making it one of the largest and most densely populated cities in Northern China. Coal emissions and photochemical smog pollution have become increasingly serious with the rapid

- <sup>15</sup> growth of Beijing's industrial sector since the 1980s. Zhang et al. (1998) began measuring  $O_3$  concentrations at a single site in Beijing in 1982. The resulting time series reveals a marked increase in photooxidant concentrations over the 1982–1998 time period. Since 1998, pollution from the burning of coal has been reduced substantially (Zhang, 2006). However, skyrocketing land prices in the downtown area, accompanied
- <sup>20</sup> by accelerated construction of commercial developments, have led to substantial urban sprawl and the migration of residential neighborhoods to peripheral districts. Changes in urban structure and in residents' lifestyles have increased the number of automobiles in the Beijing region (Beijing Municipal Bureau of Statistics, 2008). Photochemical air pollution from domestic sources has become increasingly problematic. Since Beijing's
- <sup>25</sup> successful bid in 2001 to host the Olympic Games, the local government has gradually tightened the regulations that govern emissions from automobiles and from non-vehicular sources in the city. These changing regulations have produced rapid shifts in the spatial and temporal distributions of NO<sub>x</sub> and NMHCs emissions in the city (Fig. 1). This situation offers us a meaningful context to investigate the relationships between

# **ACPD**

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006





O<sub>3</sub> and its precursors in an urban environment.

In this study, we illustrate the annual trends in atmospheric concentrations of  $O_3$  and related components Beijing's urban areas during the period July 2001 until September 2006. A combined approach incorporating emissions inventories, meteorological data,

<sup>5</sup> and trajectory cluster analysis is used to evaluate factors influencing O<sub>3</sub> and O<sub>x</sub> concentrations in Beijing and to identify strategies for controlling photochemical pollution in that city.

#### 2 Methods

20

#### 2.1 Data sources

Data were collected at six sites in downtown Beijing (Fig. 2). These sites are part of the Air Quality Monitoring Network established by the Institute of Atmospheric Physics (IAP). In order to focus on those months of relevance to the Olympic Games, ambient concentrations were recorded hourly throughout July, August, and September. In some cases, data were discarded due to equipment malfunctions, system failures, and power interruptions.

Surface ozone concentrations were measured using a Model 49 or 49C ozone analyzer from Thermo Environmental Instruments (TEI), Inc.  $NO_x$  levels were measured using TEI Model 42C and 42CTL NO and  $NO_2$  analyzers. The TEI Model 49 detector was found to exhibit a detection limit of 2 ppbv and a precision of 2 ppbv, while Model 49C had a detection limit of 1 ppbv and a precision of 1 ppbv. Both  $NO_x$  ana-

lyzers had a precision of 0.4 ppbv, with detection limits for Model 42C and 42CTL of 0.4 ppbv and 0.05 ppbv, respectively.

Data quality was evaluated and certified by the China National Accreditation Board of Laboratories (CNAL), consistent with international requirements. IAP personnel strictly

<sup>25</sup> adhered to national environmental monitoring standards. Quality control checks including automatic zero-calibration and span checks of gas analyzers were performed daily,

# **ACPD**

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006





and manual calibrations with standard gases were conducted weekly. Sampling methods and instrument protocols, as well as quality assurance/quality control (QA/QC) procedures for air quality monitoring are described in detail in the Chinese National Environmental Protection Standard, Automated Methods for Ambient Air Quality Monitoring (HJ/T193-2005; State Environmental Protection Administration of China, 2006).

#### 2.2 Total oxidant concentrations

5

We present a simplified scheme that describes photochemical reactions for  $O_3$  and its precursors in Fig. 3. Atmospheric ozone at ground level is formed in the presence of UV light ( $\lambda$ <424 nm) through the direct photolysis of nitrogen dioxide. Nitrogen dioxide, in turn, is formed by the oxidation of nitric oxide, a species typically emitted from fossil fuel combustion (Seinfeld and Pandis, 1998). Two major pathways are known for NO<sub>2</sub> formation in urban atmospheres: NO oxidation either by O<sub>3</sub> or by peroxyl radicals produced by the photooxidation of non-methane hydrocarbons (Atkinson, 2000). In terms of the ozone pathway, it is clear that the O<sub>3</sub> production cycle (Fig. 3b) generates

- $O_3$ , whereas the photo-stationary reactions (Fig. 3a) comprise a "do nothing cycle". In urban areas where  $O_3$  precursors are present at sufficiently high concentrations, the radical pathway has been assumed to dominate, especially during summer months. However, the  $O_3$  pathway remains important in areas that are associated with high  $NO_x$  emissions, even when the radical pathway dominates. Because  $NO_x$  emissions vary across time and space, the contribution of the  $O_3$  pathway has prevented the ac-
- <sup>20</sup> vary across time and space, the contribution of the  $O_3$  pathway has prevented the accurate evaluation of  $O_3$  levels and variability at certain sites. This phenomenon has also presented a barrier to comparisons of  $O_3$  levels between sites with different  $NO_x$ concentrations (Kley et al., 1999).

In order to accurately measure the photochemical production of ozone, we followed the approach of Liu (1997) and defined " $O_3 + NO_2 + NO_2 + O$ " as "total oxidant concentrations" ( $NO_z = NO_y - NO_x$ ). In this study, we use " $O_3 + NO_2$ " as an estimate of total oxidant concentrations, because atomic oxygen is an ultra trace species in the troposphere, while  $NO_z$  species interfere with  $NO_2$  measurements. The major advantage of

ACPD 9,8159-8185,2009 Surface ozone trend details and interpretations in Beijing, 2001–2006 G. Tang et al. **Title Page** Introduction Abstract Conclusions References Tables **Figures** Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion



analyzing  $O_3 + NO_2$  in addition to  $O_3$  is that  $O_3 + NO_2$  closely approximates total oxidant concentrations, and is therefore not affected by reactions between NO and ozone via the  $O_3$  pathway. In other words, " $O_3 + NO_2$ " is a better measure of the true photochemical production rate of ozone.

#### 5 2.3 Trajectory cluster analysis

To disaggregate the influence of local and regional contributions on air quality measurements in Beijing, we used a model to compute 2-day backward trajectories every 1h for the years 2001–2006 (Draxler and Hess, 1997) and cluster analysis was applied to all of our trajectories. Figure 4 displays the trajectory clusters for these six years.

- Our chosen sites in Beijing are predominately influenced by air masses from the south, consistent with the powerful effects of the Asian summer monsoon. Nearly 45% of the air masses reaching Beijing originate from the South, approximately 30% from Northern China, and 25% from the local area. These seven catalogs with different marks in Fig. 4 were generated and merged into two catalogs. The first catalog named Class I
- is marked with crosses (+) in Fig. 4b, denoting local pollutant concentrations and ignoring the influence of air masses from other regions. The second catalog named Class II takes into account the influence of air masses from other regions, including the rest six catalogs except Class I in Fig. 4, which represents net total pollutant concentrations due to both regional contributions and local emission sources. Using this
  method, local circulation and regional transportation are disaggregated and average
- <sup>20</sup> method, local circulation and regional transportation are disaggregated and average concentrations of Class I and Class II are calculated (Table 2), standing for local and regional concentrations, respectively.



#### 3 Results and discussion

# 3.1 Comparison of pollutant concentrations at sites with different pollution characteristics

Table 1 summarizes pollutant data recorded from sites A1–A6 in July–September 2001–2006. NO<sub>x</sub> concentrations at A1 exceeded those at A6 by more than 30 ppby, while O<sub>3</sub> concentrations were lower at A1 than at A6. The potential for surface ozone production in the troposphere and at the boundary layer was found to be roughly equivalent across all of the 6 sites in downtown Beijing. However, differences in annual average ozone concentrations among the various sites were determined by taking into account differences in the rates of surface ozone elimination mechanisms at the respective locations. The A1 site, located in the center of Beijing, is generally exposed to greater concentrations of vehicular NO<sub>x</sub> emissions. The reaction of more ozone with vehicular NO results in lower ozone levels at A1 than at the other sites, while lower combined NO<sub>x</sub> emissions cause higher ozone levels at the A6 site. This inverse spatial relationship between ozone and NO<sub>x</sub> levels is consistent with the findings of other many and the space (Bauver et al., 1004). Helper, 2000, Charles, 2000, heir elser

groups (Bower et al., 1994; Mckendry, 1993; Helen, 2000; Charles, 2006). It is clear that site-to-site variability is closely related to site characteristics.

Figure 5a–b depicts the daily mixing ratios of  $O_3$  and  $O_x$  for sites A1 and A6 in 2002. The differences between the  $O_x$  concentrations at these two sites were much smaller than the differences between the  $O_3$  concentrations. Figure 5c shows scatter plots of

- <sup>20</sup> than the differences between the O<sub>3</sub> concentrations. Figure 5c shows scatter plots of O<sub>x</sub> concentrations at A1 and A6. A first-order linear regression of O<sub>x</sub> concentrations at these two points identified a strong correlation with a slope of 0.83. Possible explanations for variations in pollutant concentrations between different sites have been discussed by Clapp and Jenkin (2001). Explanations include variability in the fractional
- <sup>25</sup> contributions of NO<sub>2</sub> to emitted NO<sub>x</sub>, differences that might be linked to different vehicle fleet compositions, and different driving conditions around each site. Although both concentrations exhibit small site-to-site variations, O<sub>x</sub> concentrations are thought to represent regional total oxidant levels better than O<sub>3</sub> concentrations.

### **ACPD**

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006





#### 3.2 Annual trends

Figure 6a, b illustrates the trends in average annual concentrations of NO, NO<sub>2</sub>, NO<sub>x</sub>, O<sub>3</sub>, O<sub>3</sub>-max (daily maximum 1 h ozone), and O<sub>x</sub> for the Beijing urban area during the

period 2001–2006. The average concentrations of NO<sub>x</sub>, O<sub>3</sub> and O<sub>x</sub> are 49.2±5.9 ppbv,
 26.6±2.8 ppbv, and 60.3±1.9 ppbv, respectively. Linear regressions show that concentrations of NO, NO<sub>2</sub>, and NO<sub>x</sub> decreased at a rate of 2.0 ppbv/yr, 1.9 ppbv/yr, and 3.9 ppbv/yr since 2002, respectively. Meanwhile, concentrations of O<sub>3</sub>, O<sub>3</sub>\_max and O<sub>x</sub> increased by 13%, 15% and 0%, respectively, over a two-year cycle period (with odd-year concentrations exceeding those for even years).

#### **3.3** Annual trends of diurnal variability in O<sub>3</sub> concentration and in related precursors

Figure 7a-d illustrates the average diurnal variation in the hourly averages of NO<sub>2</sub>, NO, O<sub>x</sub> and O<sub>3</sub>, respectively, in Beijing during 2001–2006. Maximum mean NO concentrations are observed between 07:00 h-08:00 h and at midnight (Fig. 7b). From 07:00 on, NO is converted to NO<sub>2</sub> via reaction with O<sub>3</sub>, while NO<sub>2</sub> is converted back to NO dur-15 ing daylight hours as a result of photolysis, which also leads to the regeneration of  $O_3$ (Jenkin and Clemitshaw, 2000). During the early hours of daylight, NO concentrations rise, mainly due to the increase in traffic. Figure 7a shows that the NO<sub>2</sub> production rates are greatest near 08:00 h (after dawn), a result that can be explained by reactions that involve NO and hydrocarbons (Finlayson-Pitts and Pitts, 1986; Seinfeld and 20 Pandis, 1998). After 08:00 h, [NO] diminishes until it reaches its lowest levels between 14:00 h–15:00 h (Fig. 7b). This NO decrease matches the increase in O<sub>3</sub> levels. The highest O<sub>3</sub> and O<sub>x</sub> values are evident between 14:00 h and 15:00 h, after which O<sub>3</sub> and  $O_x$  levels decrease gradually (Fig. 7c–d). NO<sub>2</sub> decreases as  $O_3$  increases, with rising concentrations after 15:00 h. NO increases with the onset of evening traffic, reaching 25 its highest value between 01:00 h and 03:00 h. As NO reacts with O<sub>3</sub>, ozone concentrations fall. Another factor that influences pollutant concentrations is the height of the

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006





mixing layer over the city. From 08:00 h to 14:00–15:00 h, increasing global radiation and an increase in the height of the mixing layer (Ulke and Mazzeo, 1998) lead to a decrease in hourly NO<sub>x</sub> concentrations and a trend toward increasing O<sub>3</sub>. At night, low mixing layer heights may allow hourly NO<sub>x</sub> concentrations to increase.

- Figure 8b shows the annual changes in the daily morning average maximum of the relative diurnal variations of NO and NO<sub>2</sub>. Daily morning average maximum values for NO and NO<sub>2</sub> decrease linearly at rates of 3.4 ppbv/yr and 2.5 ppbv/yr, respectively, after 2002, suggesting that mobile emissions of NO<sub>x</sub> in Beijing may have decreased significantly over the period 2002–2006. Figure 8a shows the annual changes in the daily average maximum and minimum of the relative diurnal variations of O<sub>x</sub> in Beijing.
- Maximum and minimum  $O_x$  concentrations changed linearly at rates of 1.0 ppbv/yr and -0.1 ppbv/yr, respectively. The increase in daily maximum  $[O_x]$  relative to constant daily minimum concentrations suggests increasing diurnal variations in ozone concentrations throughout Beijing.
- From the above analysis, we arrive at two major conclusions. First, given that the morning maxima of NO and NO<sub>2</sub> concentrations reflect the mobile emission of NO<sub>x</sub>, we conclude that the increasing daily minimum  $[O_3]$  is likely due to reactions with the decreasing daily morning [NO], accounting for the constant daily minimum  $[O_x]$  observed. Second, the changes of increase of the daily maximum  $[O_x]$ , relative constant of the daily minimum  $[O_x]$  and increase of the daily amplitude of  $[O_x]$  reflect the enhanced local photochemical production.
  - 3.4 Interpretation of concentration changes

# 3.4.1 Interpretation of ozone concentration changes

Concentrations of NO<sub>x</sub> species, which are known O<sub>3</sub> precursors, decreased signifi cantly after 2002 (Fig. 6a). However, over the same period, we also observed increased O<sub>3</sub> concentrations (Fig. 6b). Wakamatsu et al. (1996) reported worsening photochemical air pollution under conditions of decreasing concentrations of NO<sub>x</sub> precursors in

| AC                                                                             | PD           |  |  |  |  |
|--------------------------------------------------------------------------------|--------------|--|--|--|--|
| 9, 8159–8185, 2009                                                             |              |  |  |  |  |
| Surface ozone trend<br>details and<br>interpretations in<br>Beijing, 2001–2006 |              |  |  |  |  |
| G. Tang et al.                                                                 |              |  |  |  |  |
| Title                                                                          | Page         |  |  |  |  |
| Abstract                                                                       | Introduction |  |  |  |  |
| Conclusions                                                                    | References   |  |  |  |  |
| Tables                                                                         | Figures      |  |  |  |  |
| I                                                                              | ١            |  |  |  |  |
| •                                                                              | •            |  |  |  |  |
| Back                                                                           | Close        |  |  |  |  |
| Full Screen / Esc                                                              |              |  |  |  |  |
| Printer-friendly Version                                                       |              |  |  |  |  |
| Interactive Discussion                                                         |              |  |  |  |  |
|                                                                                |              |  |  |  |  |

metropolitan areas in Japan, and pointed to changes in the NMHCs/NO<sub>x</sub> ratio as a possible explanation. In the absence of direct measurements of NMHCs concentrations, we use the emission ratio of NMHCs to NO<sub>x</sub> in Beijing to explore this hypothesis. Figure 1 illustrates the increasing emission of NMHCs and the decreasing emission of

<sup>5</sup> NO<sub>x</sub> in Beijing. Given the increasing emission ratio of NMHCs to NO<sub>x</sub>, the observed trends of average and maximum [O<sub>3</sub>] seem consistent with a system in which Wakamatsu's NMHCs/NO<sub>x</sub> hypothesis describes the relationship between pollution controls and ozone formation rates.

#### 3.4.2 Interpretation of total oxidant concentration changes

- NO, NO<sub>2</sub>, O<sub>3</sub>, O<sub>x</sub> and O<sub>x</sub>-max were calculated for each year by local area and by region based on trajectory cluster analysis. While NO concentrations from all sources were nearly identical, NO<sub>2</sub>, O<sub>3</sub>, O<sub>x</sub> and O<sub>x</sub>-max concentrations in local air masses exceeded those of air masses from regional sources by more than 3 ppbv, 6 ppbv, 9 ppbv and 21 ppbv, respectively (Table 2). Figure 9a shows trends in the daily maximum
  and average concentrations of total oxidants in local air masses and 75th percentile concentrations of daily maximum aggregate total oxidants over the 2001–2006 period. In contrast to the nearly constant annual average concentrations of total oxidants (Fig. 6b), the maxima and average exhibit a significant upward trend with a slope of 1.3±0.6 ppbv/yr and 0.8±0.6 ppbv/yr, respectively (Fig. 9a). Because the highest 25% of concentrations were measured primerily of the primerily of th
- of concentrations were measured primarily at times when air masses originated from the Beijing urban area (Table 2), the 75th percentile concentration measurements also show an increasing trend at a rate of  $1.2\pm0.5$  ppbv/yr. Given the increasing emission of NMHCs and the decreasing emission of NO<sub>x</sub>, an increasing photochemical production rate of O<sub>x</sub> is to be expected. Therefore, the fact that total oxidant concentrations remained largely constant during the 2001–2006 period is of great interest.

The concentration of  $O_x$  at a given location is made up of two contributions: a regional contribution, equivalent to the background  $O_x$  concentration, and a local contribution that depends on the level of primary pollution in the area (Nicolas et al., 2005).





Considering the consistency between the trends of peak concentrations for oxidants and their precursors, we can infer that oxidant production from photochemical reactions in Beijing's local air masses likely increased during the 2001–2006 period. Hence, the contradictory observations of constant average oxidant levels over this period must be

- <sup>5</sup> due to unknown factors that exactly offset this increased  $O_x$  production. The decrease in regional oxidant levels was identified as the most likely source of this phenomenon. The data in Fig. 9b suggest a decreasing trend in the daily maximum and average total oxidant concentrations from regional area sources. In terms of annual averages, the concentrations of daily maximum and average  $O_x$  decreased by  $0.6\pm0.3$  ppbv/yr
- and 0.5±0.3 ppbv/yr, respectively, during the 2001–2006 period. We speculate that decreasing regional background oxidant concentrations may have offset the increased oxidant local average oxidant production over this time period, accounting for the constant average oxidant levels observed.

#### 3.4.3 Interpretation of the observed two-year cycle

- <sup>15</sup> In addition to precursor emissions,  $O_3$  concentrations in urban areas are directly tied to meteorological conditions, such as maximum temperatures, solar intensity, precipitation, and stagnation. NRC (1991), Davidson (1993), and Wakamatsu et al. (1996) identified a positive relationship between ambient maximum temperature and daily maximum  $O_3$  concentrations. Chun-ming (1994) also indicated that the absence of precipitation is a crucial parameter accompanying elevated noontime ozone levels. The relationship between the daily average maximum temperatures, total precipitation, and  $O_3$  concentrations during 2001–2006 is shown in Fig. 10. A positive correlation is evident between the daily average maximum temperature and  $O_3$  concentration, while increased precipitation is found to negatively impact  $O_3$  production. These two fac-
- tors appear to account for the observed two-year cycle of O<sub>3</sub> and O<sub>x</sub> concentrations in Beijing.

# **ACPD**

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006





#### 4 Conclusions

This work aimed to identify the reasons for increased  $O_3$  concentrations by analyzing the relationship between  $O_3$  and its precursors. We tracked  $O_3 + NO_2$  in addition to  $O_3$  because the former is approximately equal to the total oxidant concentration, and it can reveal regional atmospheric oxidation capacity better than  $O_3$  alone.

We present annual trends in the concentrations of surface ozone and related components in Beijing. Our results suggest a decrease in average  $[NO_x]$  and an increase in average  $[O_3]$ , with significant site-to-site variability. Our data also show a relatively constant average  $[O_x]$ , with minimal site-to-site variability. Furthermore, we identified an increase in the daily amplitude of diurnal concentration variations, in the context of a two-year cycle for  $O_3$  and  $O_x$ . All of these trends lead us to three major conclusions:

- 1. Beijing's surface ozone variability is accentuated primarily by a decrease in NO<sub>x</sub> emissions and an increase in NMHCs emissions.
- 2. A decrease in regional O<sub>x</sub> concentrations seems to counteract increasing local O<sub>x</sub>
- production levels, and it leads to near-constant O<sub>x</sub> levels in Beijing.
- 3. The influence of meteorological factors is the main explanation for the observed two-year cycle.

Increasing daily maximum ozone concentrations may exert negative impacts on human health and vegetation. Therefore, control measures should be taken to avoid further exacerbation of ozone pollution. Measures should include efforts to reduce NMHCs emissions.

Acknowledgements. This work was supported by a grant from the National Basic Research Program (No. 2007CB407303), the Knowledge Innovation Program of the Chinese Academy of Sciences (approved # KZCX1-YW-06-01), and the National Natural Science Fund (No. 40675073).

# **ACPD**

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006

G. Tang et al.



15

5

#### References

Akimoto H.: Global air quality and pollution, Science, 302, 1716–1719, 2003.

- Atkinson, R.: Atmospheric chemistry of VOCs and NO<sub>x</sub>, Atmos. Environ., 34, 2063–2101, 2000.
- <sup>5</sup> Beijing Municipal Bureau of Statistics Beijing Statistical Yearbook, 2008 (in Chinese).
  Beijing Municipal Environmental Protection Bureau: Regional coal-burning pollution control study during the 11th Five-Year Plan in Beijing, 174 pp., 2007 (in Chinese).
  - Beijing Municipal Environmental Protection Bureau: Air quality standards for Strategic Studies of Beijing, 227 pp., 2006 (in Chinese).
- Bower, J. S., Stecenson, K. J., Broughton, G. F. J., Lampert, J. E., Sweeney, B. P., and Wilken, J.: Assessing recent surface ozone concentrations in the UK, Atmos. Environ., 28, 115–28, 1994.

Chou, C. C.-K., Liu, S. C., Lin, C.-Y., Shiu, C.-J., and Chang, K.-H.: The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies, Atmos. Environ.,

<sup>15</sup> **40, 3898–3908, 2006**.

25

- Liu, C. M., Huang, C.-Y., Shieh, S.-L., et al.: Important meteorological parameters for ozone episodes experienced in the Taipei basin, Atmos. Environ., 38(1), 159–173, 1994.
- Clapp, L. J. and Jenkin, M. E.: Analysis of the relationship between ambient lecels of  $O_3$ ,  $NO_2$  and NO as a function of  $NO_x$  in the UK, Atmos. Environ., 35, 6391–6405, 2001.
- Davidson, A.: Update on ozone trend in California's south coast air basin, J. Air Waste Manage.,
  43, 226–227, 1993.
  - Draxler, R. R. and Hess, G. D.: Description of the HYSPLIT 4, modeling system, NOAA Tech. Memo. ERL ARL-224, NOAA, Sliver Spring, Md, 24 pp., 1997.

Finlayson-pitts, B. J. and Pitts, J. N.: Atmospheric Chemistry: Fundamentals and experimental Techniques, Wiley, New York, 1097 pp., 1986.

- Finlayson-pitts, B. J. and Pitts, J. N.: Chemistry of the upper and lower troposphere, theory, experiment, and applications, San Diego: Academic Press, 969 pp., 2000.
  - Wu, Helen, W. Y., and Chan, L. Y: Surface ozone trends in Hong Kong in 1985–1995, Environ. Int., 26, 213–222, 2000.
- <sup>30</sup> Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.): Intergovernmental panel on Climate Change(IPCC), Climate Change 2001: The science of Climate Change, Cambridge Univ. Press, New York, USA,

# **ACPD**

9, 8159–8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006

| Title Page             |                          |  |  |  |  |  |
|------------------------|--------------------------|--|--|--|--|--|
| Abstract               | Introduction             |  |  |  |  |  |
| Conclusions            | References               |  |  |  |  |  |
| Tables                 | Figures                  |  |  |  |  |  |
| 14                     | ۶I                       |  |  |  |  |  |
| •                      | •                        |  |  |  |  |  |
| Back                   | Close                    |  |  |  |  |  |
| Full Scre              | Full Screen / Esc        |  |  |  |  |  |
| Printer-frier          | Printer-friendly Version |  |  |  |  |  |
| Interactive Discussion |                          |  |  |  |  |  |



881 pp., 2001.

- Jenkin, M. E. and Clemitshaw, K. C.: Ozone and other secondary photochemical pollutants chemical processes governing the formation in the planetary boundary layer, Atmos. Environ., 34, 2499–2577, 2000.
- 5 Kley, D., Kleinmann, M., Sanderman, H., and Krupa, S.: Photochemical oxidants: state of the science, Environ. Pollut., 100, 19–42, 1999.
  - Liu, S. C.: Possible effects on tropospheric O<sub>3</sub> and OH due to NO emissions, Geophys. Res. Lett., 4, 325–328, 1977.
  - Ma, Y. L. and Zhang, Y. H.: The Study on Pollution of Atmospheric Photochemical Oxidants in Beijing, Res. Environ. Sci., 13(1), 14–17, 2000 (in Chinese).
  - McKendry, I. G.: Ground-level ozone in Montreal, Canada, Atmos. Environ., 27B, 93–103, 1993.

National Research Council (NRC): Committee on tropospheric ozone formation and measurement, Rethinking the ozone problem in urban and regional air pollution, National Academy Press, 1991.

15 P

10

20

National Science and Technology Department of Rural and Social Development Division: Air Pollution Control Strategies of Beijing, 82 pp., 2002 (in Chinese).

Nicolas A. M., Laura E. V., and Hipolito C.: Analysis of NO, NO<sub>2</sub>, O<sub>3</sub> and NO<sub>x</sub> concentrations measured at a green area of Buenos Aires City during wintertime, Atmos. Environ., 39, 3005–3068, 2005.

- POPG: Ozone in the United Kingdom. Fourth Report of the UK photochemical oxidants review group. Department of the Environment, Transport and the Regions, London, UK, 1997.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and physics. From Air Pollution to Climate Changes, Wiley, New York, USA, 1326 pp., 1998.
- 25 State Environmental Protection Administration of China: China National Environmental Protection Standard: Automated Methods for Ambient Air Quality Monitoring, China Environmental Science Press, Beijing, 2006 (in Chinese).
  - Tsinghua University: Air quality safeguards Research of Beijing during the 29th Olympic games, 156 pp., 2007 (in Chinese).
- <sup>30</sup> Ulke, A. G. and Mazzeo, N. A.: Climatological aspects of the daytime mixing height in Buenos Aires City, Aegentina, Atmos. Environ., 32(9), 1615–1622, 1998.
  - US Environmental Protection Agency: Air quality criteria for ozone and related photochemical oxidants. Vol. I of III, p. 446, US EPA, National Center for Environmental Assessment,

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006

| Title Page             |                          |  |  |  |  |  |
|------------------------|--------------------------|--|--|--|--|--|
| Abstract               | Introduction             |  |  |  |  |  |
| Conclusions            | References               |  |  |  |  |  |
| Tables                 | Figures                  |  |  |  |  |  |
|                        | ۶I                       |  |  |  |  |  |
|                        |                          |  |  |  |  |  |
| •                      | •                        |  |  |  |  |  |
| Back                   | Close                    |  |  |  |  |  |
| Full Scr               | Full Screen / Esc        |  |  |  |  |  |
|                        |                          |  |  |  |  |  |
| Printer-frie           | Printer-friendly Version |  |  |  |  |  |
| Interactive Discussion |                          |  |  |  |  |  |
| Interactive            | Discussion               |  |  |  |  |  |



Research Triangle Park, NC, EPA/600/P-93/004F, 1996.

- Xu, X., Lin, W., Wang, T., Yan, P., Tang, J., Meng, Z., and Wang, Y.: Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability, Atmos. Chem. Phys., 8, 2595–2607, 2008,
- 5 http://www.atmos-chem-phys.net/8/2595/2008/.
  - Xiaoyan, T., Jinlong, L., and Zhenxing, D.: Photochemical Pollution in Lanzhou, China A Case Study, J. Environ. Sci. (China), 1, 31–38, 1989.
  - Xiaoyan, T., Jinlong, L., and Danhua, C.: Summertime Photochemical Pollution in Beijing, Pure Appl. Chem., 67, 1465–1468, 1995.
- <sup>10</sup> Wakamatsu, S., Ohara, T., and Uno, I.: Recent trends in precursor concentrations and oxidant distributions in the Tokyo and Osaka areas, Atmos. Environ., 30, 715–721, 1996.
  - Zhang, J., Miao, H., Ouyang, Z. Y., et al.: Ambient air quality trends and driving factor analysis since 1980's in Beijing, J. Environ. Sci., 26(11), 1886–1892, 2006 (in Chinese).

Zhang, Y. H., Shao, K. S. Tang. X. Y., and Li, J. L: The Study of Urban Photochemical Smog

Pollution in China, Journal of Natural Science of Peking University, 34, 392–400, 1998 (in Chinese).

**ACPD** 

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006



| Table 1. | Summary of | concentrations | between 2001 | and 2006 | at six sites <sup>a</sup> . |
|----------|------------|----------------|--------------|----------|-----------------------------|
|----------|------------|----------------|--------------|----------|-----------------------------|

|                  | A1  | A2  | A3  | A4  | A5  | A6  |
|------------------|-----|-----|-----|-----|-----|-----|
| Ave <sup>b</sup> |     |     |     |     |     |     |
| NOx              | 67  | 47  | 43  | 50  | 50  | 36  |
| NO <sub>2</sub>  | 42  | 33  | 31  | 34  | 33  | 28  |
| O <sub>3</sub>   | 22  | 30  | 30  | 22  | 25  | 32  |
| O <sub>x</sub>   | 64  | 63  | 61  | 57  | 58  | 60  |
| Max <sup>c</sup> |     |     |     |     |     |     |
| NOx              | 151 | 115 | 100 | 119 | 119 | 81  |
| NO <sub>2</sub>  | 76  | 64  | 58  | 64  | 62  | 54  |
| O <sub>3</sub>   | 65  | 78  | 91  | 77  | 75  | 90  |
| O <sub>x</sub>   | 141 | 143 | 150 | 141 | 137 | 145 |

<sup>a</sup> Site descriptions correspond to those shown in Fig. 1;

<sup>b</sup> average concentrations in ppbv; <sup>c</sup> 95th percentile concentrations in ppbv.

# ACPD

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001-2006





| 2001 | 2002                                                             | 2003                                                                                                | 2004                                                                                                                                                                                                                                                                                          | 2005                                                                                              | 2006                                                                                                                                                                                                                                                                                                                                                                   | Avg <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12   | 20                                                               | 17                                                                                                  | 16                                                                                                                                                                                                                                                                                            | 14                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 32   | 41                                                               | 38                                                                                                  | 36                                                                                                                                                                                                                                                                                            | 35                                                                                                | 33                                                                                                                                                                                                                                                                                                                                                                     | 36                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 31   | 24                                                               | 32                                                                                                  | 28                                                                                                                                                                                                                                                                                            | 35                                                                                                | 33                                                                                                                                                                                                                                                                                                                                                                     | 31                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 63   | 65                                                               | 71                                                                                                  | 65                                                                                                                                                                                                                                                                                            | 70                                                                                                | 67                                                                                                                                                                                                                                                                                                                                                                     | 67                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 95   | 97                                                               | 102                                                                                                 | 95                                                                                                                                                                                                                                                                                            | 103                                                                                               | 102                                                                                                                                                                                                                                                                                                                                                                    | 99                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15   | 21                                                               | 18                                                                                                  | 17                                                                                                                                                                                                                                                                                            | 13                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                     | 16                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 34   | 38                                                               | 34                                                                                                  | 33                                                                                                                                                                                                                                                                                            | 30                                                                                                | 28                                                                                                                                                                                                                                                                                                                                                                     | 33                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25   | 21                                                               | 26                                                                                                  | 24                                                                                                                                                                                                                                                                                            | 30                                                                                                | 26                                                                                                                                                                                                                                                                                                                                                                     | 25                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 59   | 59                                                               | 60                                                                                                  | 57                                                                                                                                                                                                                                                                                            | 60                                                                                                | 55                                                                                                                                                                                                                                                                                                                                                                     | 58                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 80   | 78                                                               | 79                                                                                                  | 78                                                                                                                                                                                                                                                                                            | 79                                                                                                | 76                                                                                                                                                                                                                                                                                                                                                                     | 78                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 2001<br>12<br>32<br>31<br>63<br>95<br>15<br>34<br>25<br>59<br>80 | 2001 2002<br>12 20<br>32 41<br>31 24<br>63 65<br>95 97<br>15 21<br>34 38<br>25 21<br>59 59<br>80 78 | 2001      2002      2003        12      20      17        32      41      38        31      24      32        63      65      71        95      97      102        15      21      18        34      38      34        25      21      26        59      59      60        80      78      79 | 2001200220032004122017163241383631243228636571659597102951521181734383433252126245959605780787978 | 2001    2002    2003    2004    2005      12    20    17    16    14      32    41    38    36    35      31    24    32    28    35      63    65    71    65    70      95    97    102    95    103      15    21    18    17    13      34    38    34    33    30      25    21    26    24    30      59    59    60    57    60      80    78    79    78    79 | 2001    2002    2003    2004    2005    2006      12    20    17    16    14    11      32    41    38    36    35    33      31    24    32    28    35    33      63    65    71    65    70    67      95    97    102    95    103    102      15    21    18    17    13    11      34    38    34    33    30    28      25    21    26    24    30    26      59    59    60    57    60    55      80    78    79    78    79    76 |

Table 2. Disaggregated annual average results for each species<sup>a</sup>.

<sup>a</sup> The concentrations of each species represents an average of measurements from all six representive stations in Beijing;

<sup>b</sup> Air masses from local area (Class I);

<sup>c</sup> air masses from regional area (Class II);

<sup>d</sup> average values during 2001–2006;

<sup>e</sup> daily maximum concentrations of  $O_x$ .

# **ACPD**

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006







**Fig. 1.**  $NO_x$  and NMHCs emissions, and the ratio of NMHCs to  $NO_x$  in Beijing, 2001–2006. (National Science and Technology Department of Rural and Social Development Division, 2002; Beijing Municipal Environmental Protection Bureau, 2007; Beijing Municipal Environmental Protection Bureau, 2007; Beijing Municipal Environmental Protection Bureau, 2007).

# ACPD

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006





Fig. 2. Monitoring sites in Beijing, 2001–2006.

# ACPD

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006







**Fig. 3.** Schematics of the reactions involved in NO-to- $NO_2$  conversion and  $O_3$  formation in (a) NO- $NO_2$ - $O_3$  systems in the absence of NMHCs, and (b) NO- $NO_2$ - $O_3$  systems in the presence of NMHCs.







**Fig. 4.** Air mass backward trajectories for Beijing, **(a)** low resolution graph focused on the north of China, **(b)** high resolution graph focused on Beijing area. Trajectory clusters are calculated based on trajectories from 2001–2006. 48-h Trajectories are shown using 6-h steps.

# ACPD

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006















**Fig. 6.** Concentration trends for **(a)** NO, NO<sub>2</sub>, NO<sub>x</sub>, **(b)** O<sub>3</sub>, O<sub>x</sub>, 2001–2006. The concentration of each species represents an average of measurements from all six representative stations in Beijing.



**ACPD** 





**Fig. 7.** Diurnal trends of NO (b), NO<sub>2</sub> (a),  $O_x$  (c),  $O_3$  (d), 2001–2006. The concentration of each species represents an average of measurements taken from the six representative stations in Beijing.







**Fig. 8.** Annual trends in the daily average maximum and minimum concentrations of (a)  $O_3$  and (b) in the daily morning maximum concentrations of NO, NO<sub>2</sub>, in 2001–2006. The concentration of each species represents an average of measurements taken from the six representative stations in Beijing.

# **ACPD**

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006







**Fig. 9.** Annual trends of **(a)** daily maximum and average total oxidant concentrations from local area sources (Class I) and 75th percentile daily maximum total oxidant concentrations from all sources, and **(b)** daily maximum and average total oxidant concentrations from regional area sources (Class II) during the 2001–2006 period. The concentration of each species represents the average of measurements across all six representative stations in Beijing.

# **ACPD**

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006





# ACPD

9, 8159-8185, 2009

Surface ozone trend details and interpretations in Beijing, 2001–2006





**Fig. 10.** Annual trends of daily average maximum temperatures, total precipitation and  $O_3$  concentrations in July–September during 2001–2006.