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Abstract

Atmospheric concentrations of volatile organic compounds (VOCs) vary diurnally, sea-
sonally and annually. Therefore continuous long-term measurements are needed to
properly describe the atmospheric levels of these chemically reactive compounds. We
conducted on-line measurements of atmospheric volume mixing ratios of several VOCs5

in the European boreal region with a proton transfer reaction – mass spectrometer
(PTR-MS) over a 15 month period. The measurements lasted from spring 2006 to fall
2007 and were conducted at SMEAR II station in south-western Finland. The mea-
sured compounds included for example methanol, acetone, sum of isoprene and 2-
methyl-3-buten-2-ol (MBO), monoterpenes and benzene. The VOC mixing ratios were10

measured inside and above canopy, during every second or third hour. The PTR-MS
was calibrated regularly and background signals of VOCs were measured every sec-
ond or third hour from the zero air and subtracted from the measured volume mixing ra-
tio. In the continuous measurements at moderate VOC mixing ratios we observed that
the PTR-MS has to be calibrated and SEM operation voltage checked regularly, at least15

twice a month to ensure reliable measurements. Of the measured VOCs, methanol
and acetone were the most abundant ones, their volume mixing ratio medians were
in the order of 1 ppbv. Volume mixing ratios of methanol, acetone, isoprene-MBO and
monoterpenes were high during summer and low in winter indicating mostly biogenic
or photochemical local or regional origin. Benzene behaved in the opposite way, while20

seasonal variation of acetaldehyde and methacrolein-methylvinylketone (MACR-MVK)
was less profound. Methanol, acetone, isoprene and monoterpene volume mixing ra-
tios had clear diurnal patterns during summers, while the mixing ratios of other VOCs
did not exhibit this behavior. During winter we did not observe systematic diurnal cycles
in the VOC volume mixing ratios.25
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1 Introduction

Volatile organic compounds (VOCs) are a large group of compounds with atmospheric
lifetimes from seconds to months (Atkinson and Arey, 2003). On a global scale VOC
emissions are dominated by biogenic sources (e.g. Guenther et al., 1995; Simpson
et al., 1999; Lindfors et al., 2000). However, in urban areas primary and secondary5

anthropogenic sources dominate (e.g. Piccot et al., 1992; Hellén et al., 2006). Once
VOCs have entered the atmosphere they play an important role in atmospheric chem-
istry as they are oxidized by hydroxyl radicals (OH), ozone (O3) and nitrate radicals
(NO3) (e.g. Atkinson and Arey, 2003). VOCs can also deposit on wet or dry surfaces
and thus be removed from the atmosphere. If the oxygenated VOCs remain in the10

atmosphere they are oxidized further until ultimately carbon dioxide (CO2) is formed.
Ozone formation and destruction (Atkinson and Arey, 2003) and aerosol particle for-
mation and growth (Kulmala et al., 2004; Kourtchev et al., 2005; Tunved et al., 2006;
Kroll and Seinfeld, 2008) can take place during VOC oxidation thus affecting air quality
and climate.15

Traditional VOC measurement methods with sample collection on adsorbents and
subsequent chromatographic analysis are time and labour consuming. The sampling
requires ozone removal that can also remove the compounds of interest and the analyt-
ical methods are often unsuitable for determining oxygenated VOCs. These problems
are overcome in proton transfer reaction – mass spectrometry (PTR-MS) which is an20

online method suitable for continuous measurements of VOCs at ambient concentra-
tion levels (Lindinger et al., 1998; de Gouw et al., 2003; Warneke et al., 2003). With
PTR-MS ambient air is continuously pumped into the instrument where VOCs with pro-
ton affinity higher than that of water are ionized in proton transfer reactions. Several
VOCs can be measured consecutively with time resolution of 0.1–10 s. Most VOCs are25

considered not to fragment and can be measured at their molecular mass plus one.
The disadvantage of PTR-MS analysis is that compounds with the same mass can-
not be separated and identification of the compounds has to be confirmed using other
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techniques.
PTR-MS technique is used in an expanding number of VOC measurements (for

a review, see de Gouw and Warneke, 2007). PTR-MS has been used for ambient
VOC mixing ratio measurements in numerous campaigns lasting from days or weeks
to several months (e.g. Ammann et al., 2004; Crutzen et al., 2000; Holzinger et al.,5

2001; Warneke et al., 2002; de Gouw et al., 2003, 2004, 2006; Salisbury et al., 2003;
Karl et al., 2001, 2002, 2003). However, only a few continuous measurements lasting
a year or longer have been reported (Holzinger et al., 2006; Schnitzhofer et al., 2008).
Taipale et al. (2008) presented our procedures for long-term stand-alone field mea-
surements. These automated VOC measurements, systematic calibration and explicit10

volume mixing ratio calculation procedures enable consistent quantitative long-term
measurements. In this paper we will present over a year of continuous VOC volume
mixing ratio measurements. Continuous measurements over all seasons with temporal
resolution that can catch diurnal variation are needed when VOC concentrations need
to be described correctly. Especially biogenic emissions go through seasonal changes15

from low, if any, emissions during dormant winter to high activity, and emissions, during
growing season. Seasonality of removal processes is connected to e.g. solar radiation.
Solar radiation is low during short winter days on the contrary to light midsummer days,
this as well as other meteorological conditions affect ozone and OH radical concentra-
tions as well as photodissociation processes. These seasonal and diurnal patterns20

of sources, sinks and transportation affect the ambient mixing ratios of VOCs: ter-
penoids with short lifetimes are dominated by local biogenic emissions, methanol and
acetone with intermediate lifetimes are affected by various local and regional sources,
while anthropogenic benzene is a long lived VOC that can be dominated by long range
transport. Identifying and verifying the key processes and their impact on the ambient25

concentrations of the different VOCs require measurements that are continuous around
the clock and throughout the year.
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2 Experimental

Taipale et al. (2008) present the measurement set-up, calibration procedure and mixing
ratio calculations in detail and we will present here only differences to the procedures.
All data is presented in local winter time, UTC+2 h.

2.1 Measurement site5

The measurements were carried out at the SMEAR II measurement station (Station
for Measuring Forest Ecosystem-Atmosphere Relations (Hari and Kulmala, 2005)) in
Hyytiälä, southern Finland (61◦51′N, 24◦17′E, 180 m a.s.l.) in 2006 and 2007. The
forest around the station is dominated by Scots pine (Pinus sylvestris) sawn in 1962
with some Norway spruce (Picea abies), aspen (Populus tremula) and birch (Betula).10

The canopy height at the measurement tower was about 16 m. The 40×40 km2 area
surrounding SMEAR II station is mostly covered by forest (71%), the rest being lakes
and rivers (13%) and agriculture (10%) and other minor land use types (Table 1). This
nearby land cover represents the average of land use in southern Finland (Tulokas,
2005).15

2.2 Measurement set-up

VOCs were measured from a scaffolding tower between 12 June 2006 and 24 Septem-
ber 2007 with a proton transfer reaction – mass spectrometer (PTR-MS, Ionicon An-
alytik GmbH). Measurements were conducted from 4, 14 and 22 m heights during
the whole time. In addition the volume mixing ratios from 7 and 10 m heights were20

measured until October 2006. In this paper we concentrate on measurements from
14 meter height inside the canopy. The Teflon sampling tubes with 8 mm i.d. were
30 m each and maintained with a constant sample flow of 15 l min−1 before October
2006 and of 17.5 l min−1 from then in each tube. The tubes were heated since Novem-
ber 2006. Initially ambient air volume mixing ratios from each measurement height25
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were measured consecutively during every second hour, with disjunct eddy covariance
flux measurements every other hour (Rinne et al., 2007). Timing of measurements
changed in March 2007 when a chamber with a Scots pine shoot was added into the
measurement cycle. Thereafter ambient volume mixing ratios were measured every
third hour.5

2.3 Calibration of VOC volume mixing ratios

The PTR-MS was calibrated weekly or every second week as presented by Taipale et
al. (2008) using a VOC calibration gas standard (Apel-Riemer Environmental Inc.) that
contained compounds associated with measured masses (Table 2). The calibration
gas standard was diluted using VOC free air that was obtained from ambient air with10

a zero air generator. Zero air generator (Parker ChromGas) model 1001 with a flow of
1 l min−1 was used until November 2006 and model 3501 with 3.5 l min−1 flow or less
after that. The background signals of VOCs was measured every second or third hour
from the zero air, in the same way as in the volume mixing ratio measurement. The
efficiencies of used zero air generators were measured in laboratory (data not shown15

here), and they removed effectively compounds used in calibrations, except for the
model 1001 generator which was unable to produce zero air for toluene (not presented
here). Prior the calibration the Secondary Electron Multiplier (SEM) detector voltage
was checked and adjusted if raising the detector voltage by 100 V resulted in more than
a 20% change in M21 signal.20

2.4 Calculation of VOC volume mixing ratio

The volume mixing ratios were calculated, as presented by Taipale et al. (2008), using
sensitivities determined from calibrations. Measured primary ion and water cluster
ion signals were used to normalize the VOC signals, except for benzene, which was
normalized with the primary ion signal only, since benzene has been reported not to25

protonate by the water clusters (e.g. Warneke et al, 2001a; de Gouw et al., 2003). The
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closest measured hourly background signal was subtracted from each measurement.
The raw data was inspected for peaks in burning markers (acetonitrile and benzene),
however, no indications for local anthropogenic contamination were found. Outliers
were removed from raw VOC volume mixing ratio data. For the lower removal limit we
used minus half of average of the atmospheric volume mixing ratio during the whole5

measurement period separately for each compound in question. An upper removal
limit of 20 times average was used for monoterpenes and 8 times average for all other
VOCs. Filtering the VOC volume mixing ratio data with these limits lead to discarding
of 0–0.8% of data depending on the compound in question. The filtered volume mixing
ratio data was used to calculate one hour averages that were used in all presented10

analysis.

3 Stability of PTR-MS

The stability of a PTR-MS was studied in two ways during the long measurement pe-
riod, first by comparing normalized sensitivities from the weekly direct gas calibrations
and second by looking for sudden changes in the measurement signal.15

3.1 Stability of normalized sensitivity

Changes in sensitivity of the PTR-MS instrument may be sudden, e.g. related to
change of the applied SEM voltage, or slow trends, e.g. from the use of too low volt-
age of an aging SEM. On the whole, the normalized sensitivities of various calibration
compounds increased and decreased simultaneously. However, it is important to cali-20

brate using various compounds, as some opposite tendencies in normalized sensitivity
are seen for light and heavier compounds (i.e. methanol and monoterpenes) in Fig. 1.
The normalized sensitivity varied between 13.07–19.81 ncps ppbv−1 for methanol and
between 3.68–8.23 ncps ppbv−1 for monoterpenes during the measurement period.

The VOCs are detected as hits of protonated VOCs on the first stage of a SEM and25
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in principle every hit is measured. However, every molecule that hits the SEM covers
the surface and reduces its sensitivity. Sensitivity of the measurements for volume
mixing ratios is weakened as the SEM detector ages. First only the signal of heavier
compounds is weakened while light compounds are still measured accurately. Raising
the SEM operation voltage restores the sensitivity, up to the maximum working voltage.5

We replaced our SEM about 3 times per year. However, depending on measuring time
and measured volume mixing ratios, i.e. on the rate of matter covering a SEM, as well
as the used voltage, a SEM can last from few months up to a year. We observed that
in our moderate ambient air concentrations the SEM operation voltage needs to be
checked twice a month.10

The fluctuation of normalized sensitivity was in the same order of magnitude dur-
ing periods of constant SEM operation voltages as well as when the SEM operation
voltage was raised in between calibrations. We did not observe systematic changes
in normalized sensitivity. The aging of a SEM was not observed to result in poorer
normalized sensitivity as long as the operation voltage was raised often enough.15

3.2 Stability of measurement signal

To observe stability of the instrument we studied consecutive calibrations when neither
the SEM operation voltage nor other parameters in instrument set-up were changed.
The sensitivities of the calibrations altered (Fig. 1), but did not produce systematic
changes in the measurement signal of ambient volume mixing ratios (Fig. 2). For20

example in March–April 2007 the methanol volume mixing ratio level rose before a cal-
ibration on 27 March and dropped before the next calibration on 3 April. During the
periods of constant SEM operation voltage we did not observe lowering of the mea-
surement signal as the SEM aged. Random changes, however, were observed in the
sensitivity. Biggest difference between the lowest and the highest normalized sensitivity25

during one period was 27% for methanol. However, most of the changes in sensitivities
were relatively small during these periods.
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4 Volume mixing ratios of VOC

Medians were calculated from hourly average volume mixing ratios to represent typi-
cal volume mixing ratios of VOCs contributing to measured masses or more precisely
contributing to mass/charge ratios (Table 2). Monoterpene volume mixing ratios were
determined from M137 measurements. We associate M69 mass/charge ratio with iso-5

prene and fragmented 2-methyl-3-buten-2-ol (MBO) (de Gouw and Warneke, 2007)
during growing season when both compounds have local and regional biogenic emis-
sions (Hakola et al., 1998, 2006; Haapanala et al., 2006; Janson and de Serves,
2001). However, during winter the M69 volume mixing ratios may be dominated
by multiple anthropogenic VOCs that have been observed, but not identified, in ur-10

ban air (de Gouw and Warneke, 2007). For simplicity we will refer to the measured
M69 as isoprene-MBO. The seasons were divided into periods of equal length: win-
ter is December–February, spring is March–May, summer is June–August, and fall is
September–November. Unfortunately, we could not determine typical volume mixing
ratios for fall, due to instrument breakdowns from October to the beginning of Decem-15

ber in 2006.

4.1 Seasonal variations

Seasonality of solar radiation governs the meteorology of the site. The summers are
flooded with light and nights are short, average global radiation at midday 11:00–14:00,
was around 700 W m−2 on a cloudless day (Fig. 3). In summer the solar radiation20

affects the air temperature which typically rose to 20–25◦C during day, and was around
10◦C at night. This was also reflected on relative humidity that varied between maxima
near 100% before sunrise when dew was formed and low day-time values around 30%.
The winters were the opposite, days were dark and the sun shone only for few hours
at a low solar angle, the midday solar radiation was below 60 W m−2. The temperature25

in winter 2006 was below 5◦C, and the coldest period was February with temperatures
ranging between 0 and −30◦C.
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The measured hourly averages of VOC volume mixing ratios and their daily medians
are presented in Figs. 4–8. The typical seasonal values of the VOC volume mixing
ratios are summarized in Table 3 for the summers 2006 and 2007 as well as for the
winter and spring 2006. More details of the VOC volume mixing ratios as monthly
averages, medians, and 5 and 95 percentiles are listed in Appendix A.5

The methanol volume mixing ratio median over the whole period was 1 ppbv (Table 3,
Fig. 4), which is similar to the values measured with gas chromatography in remote ar-
eas (de Gouw et al., 2003). The seasonal variation of the methanol volume mixing
ratio was large. The lowest methanol volume mixing ratios were measured in Decem-
ber, when the median was 0.24 ppbv. This is in the same order of magnitude as Arctic10

winter methanol mixing ratios: Heikes et al. (2002) reported in a review article median
value of 0.250 ppbv for the Arctic; Boudries et al. (2002) reported even lower values of
0.20 ppbv in the remote Arctic. In the spring the methanol volume mixing ratios started
rising, and the median was 0.35 ppbv. Similar values have been measured previously
at the same site (Sellegri et al., 2005), however, mixing ratios in the remote Arctic15

are lower (Boudries et al., 2002). The highest values were observed in June, median
4.05 ppbv in 2006 and median 3.62 ppbv in 2007. In summer 2004 Rinne et al. (2005)
measured similar methanol mixing ratios at the same site. Heikes et al. (2002) give
much lower values between 0.4 and 1.2 ppbv for typical Arctic summer time in a re-
view paper, suggesting that the summer mixing ratios at our boreal measurement site20

are not mere background but dominated by local and regional sources. One source
is the surrounding vegetation that emits methanol (Rinne et al., 2007). In the winter,
the methanol volume mixing ratio was as low as in the remote Arctic areas and most
likely originated from long range transport. From the beginning of spring to the end of
summer the methanol mixing ratio was dominated by local and regional emissions.25

The acetone volume mixing ratio median for the whole period was 0.9 ppbv (Ta-
ble 3, Fig. 5) similar to previous gas chromatograph measurements in remote locations
(Singh et al., 1994). The acetone volume mixing ratio was lowest in January, when
the median was 0.31 ppbv. This is slightly higher than in the remote Arctic, where the
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typical winter mixing ratio is 0.20 ppbv (Boudries et al., 2002). The spring was well
represented by the median acetone mixing ratio of 0.62 ppbv in March. Previously in
March 2003 at the same site Sellegri et al. (2005) measured about three times higher
acetone mixing ratios with a chemical ion mass spectrometer (CIMS). However, si-
multaneous measurements with DNPH-cartridges and LC-MS analysis by Hellén et5

al. (2004) showed mixing ratios close to the results in this study. The acetone vol-
ume mixing ratios were highest in early and late summer: in August 2006 the acetone
median was 2.44 ppbv, and 1.66 ppbv in June 2007. Globally the largest source of
acetone is oxidation of VOCs, however, local concentrations can be dominated by pri-
mary biogenic emissions (Singh et al., 1994, 2000). Boudries et al. (2002) observed10

1.2 ppbv mixing ratios of acetone in May in a remote Arctic site and they suggested that
the most important source was photochemistry, not biogenic emissions. However, our
site is surrounded by Scots pine and Norwegian spruce that emit acetone in a temper-
ature dependent way similar to monoterpenes (Janson and de Serves, 2001; Rinne et
al., 2007). Therefore, it is likely that a significant contribution is from primary biogenic15

emissions. The behavior of acetone and methanol volume mixing ratios were similar
during all seasons (Fig. 6), indicating that they are controlled by similar source and sink
processes.

The isoprene-MBO volume mixing ratio had a clear seasonality with high values
during the summers and low during November–April (Table 3, Fig. 7). In the summers,20

the isoprene-MBO volume mixing ratio median was 0.17 ppbv in 2006 and 0.14 ppbv
in 2007. During the growing season, the MBO is emitted by Scots pine (Hakola et.
al., 2006) and thus it has local biogenic emissions. At the same time of the year,
isoprene has several sources for regional emissions: from Norway spruce (Janson and
de Serves, 2001), willow and aspen (Hakola et al., 1998) in surrounding forests and25

from some of the ground vegetation (Hakola et al., 1998) as well as from vegetation in
nearby open wetlands (Haapanala et al., 2006). The winter and spring volume mixing
ratio median of compounds corresponding mass M69 was 0.05 ppbv. This is much
higher than the winter and spring isoprene concentrations measured at the same site
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from adsorbent samples with GC-MS technique by Hakola et al. (2003). The isoprene
mixing ratio has a clear maximum during the growing season from mid-June to mid-
September (Hakola et al., 2000; Hakola et al., 2003), since isoprene is mainly emitted
from mature leaves. The isoprene emissions cease when the leaves are shed and also
the MBO emissions from Scots pine end in the fall (Tarvainen et al., 2005). Thus it5

is probable that during winter and spring M69 is dominated by some other, perhaps
anthropogenically emitted, compounds (de Gouw and Warneke, 2007). Sellegri et
al. (2005) also measured the mixing ratio of the sum of isoprene and an unknown
compound to be 0.09–0.19 ppb in springtime using a water-based CIMS, giving similar
results to this study.10

The monoterpene mixing ratios were in the order of 0.05 ppbv in the winter and
almost an order of magnitude higher, in the order of 0.3 ppbv, in the summers (Table 3,
Fig. 8). High momentary peaks were characteristic for the monoterpene mixing ratio.
The peaks values elevated the winter mixing ratio average to 0.09 ppbv, which is close
to values determined with one hour adsorbent samples and GC-MS analysis at midday15

during winter (Hakola et al., 2003). The spring time levels of monoterpenes were similar
to those observed continuously with a similar method (Sellegri et al., 2005) and with
midday adsorbent samples and GC-MS analysis (Spanke et al., 2001). The summer
monoterpene mixing ratios were also in the same order of magnitude as determined
previously (Hakola et al., 2003; Spanke et al., 2001; Rinne et al., 2005). Monoterpenes20

are emitted by the surrounding Scots pine and Norway spruce forests. The emissions
are much higher during summer and very small during winter, however, monoterpene
lifetime is longer in winter (Hakola et al., 2003).

The monoterpene volume mixing ratio peaks, that were an order of magnitude higher
than the median volume mixing ratios, occurred throughout the year but more fre-25

quently during the summers (Fig. 7). The seasonal and general behaviors of monoter-
pene and benzene mixing ratios were different, as expected for compounds that are
dominated by different sources and sinks (Fig. 9). However, sometimes we observed
simultaneously elevated monoterpene and benzene volume mixing ratios (Figs. 8–10).
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Since benzene originates from anthropogenic processes and biomass burning, the
simultaneous high monoterpene mixing ratios were likely to be of similar origin. How-
ever, these periods when the monoterpene and benzene, and in fact all VOC, mixing
ratios peaked simultaneously were short, and the only summer time event that lasted
for days was in August 2006 (Figs. 4–8). Similar situation occurred in August 2007, but5

at that time the highest monoterpene mixing ratios were measured before elevation of
the benzene volume mixing ratio.

The acetonitrile volume mixing ratio was measured since March 2007 (Table 3,
Fig. 4). The highest acetonitrile mixing ratios were between 0.1 and 0.2 ppbv. The
median volume mixing ratio was 0.04 ppbv, similar values were measured in spring10

2003 (Sellegri et al., 2005). Acetonitrile is mainly emitted from anthropogenic sources
for example in industrial processes, car exhaust and biomass burning. In addition, ace-
tonitrile is used to associate air mass with wild fires since it is also produced in biomass
burning (de Gouw et al., 2003b). At the time of the measurements (summer and spring
2007) the acetonitrile volume mixing ratio did not show large variations, except August15

2007 when all measured VOC mixing ratios peaked. Acetonitrile remained in the order
of magnitude of atmospheric background concentration and we could not identify fresh
biomass burning plumes.

The sum of hexanal and cis-3-hexenol volume mixing ratios over the whole measure-
ment period were in the order of 1 ppbv (Table 3, Fig. 7), similar values for hexanal have20

been measured with other methods at the same site (Hellén et al., 2004). The hexanal
and cis-3-hexenol median was lowest in September 0.45 ppbv in 2006 and 0.22 ppbv in
2007 and highest in April when the median was 1.88 ppbv. These C6 compounds are
emitted from wounded plants, but hexanal is also emitted from anthropogenic sources
such as vehicular exhaust (Schauer et al., 2002) and it is produced in the air as a result25

of oxidation of n-alkanes (Ciccioli and Mannozzi, 2007).
The acetaldehyde and MACR–MVK (Figs. 5 and 7) volume mixing ratios had only

slight seasonality and MEK (Fig. 8) did not have any at all. The medians were 0.24,
0.09 and 0.09 ppbv, respectively (Table 3, Figs. 7 and 8). The acetaldehyde volume
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mixing ratio was highest during summer months, the median was 0.39 ppbv in 2006 and
0.25 ppbv in 2007, and lowest in December–January, when the median was 0.16 ppbv.
During a measurement campaign in March 2003 Sellegri et al. (2005) measured order
of magnitude lower volume mixing ratios of acetaldehyde. However, simultaneously
Hellén et al. (2004) determined values similar to ours. The MACR–MVK volume mixing5

ratio median was highest during the summers, 0.19 ppbv in June 2006, and 0.15 ppbv
in August 2007, and lowest 0.06 ppbv in winter months. Similar spring MACR–MVK
values were measured by Sellegri et al. (2005). Hakola et al. (2003) measured simi-
lar and constant MACR–MEK mixing ratios throughout the year, indicating a summer
source from isoprene oxidation and an anthropogenic source in winter. The MEK vol-10

ume mixing ratio median was 0.09 ppbv over the whole period and lowest 0.07 ppbv
during November–February. Hellén et al. (2004) measured 0.2 ppbv for MEK in March
2003 at the same site, which is at the upper level of the spring mixing ratios in this
study.

Most of the biogenic emissions come from the trees of surrounding forests. However,15

coniferous needle litter can be an important VOC source. In addition to monoterpene
and sesquiterpene emissions from the evaporating storage pools, several carbonyls
and alcohols, including acetone, have been measured from the decomposing nee-
dles (Isidorov et al., 2003). Highest acetone and methanol emission rates by litter are
observed in late spring and at the beginning of fall (Warneke et al., 1999). Winter20

and spring emissions may be influenced by emissions from cutting down of trees and
logging waste (branches and tree stumps) remaining in the surroundings of the mea-
surement site. In February–April 2006 timber logging was done within 1.5 to 2.5 km
distance in total area of some 13 ha and in spring 2007 some 8 ha within 0.8–3.5 km
distance. Tree stumps have been observed to emit VOCs, but when compared to the25

emissions from the living foliage the emissions from stumps are of the order of few
percent or less (Hakola et al., 2008).

The benzene volume mixing ratios were below 0.5 ppbv, highest in the winter, in
February the median was 0.19 ppbv, and lowest during the summers, in June–July the
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median was 0.06 ppbv in 2006 and 0.04 ppbv in 2007 (Table 3, Fig. 8). Benzene is
emitted all year round from anthropogenic sources, such as incomplete combustion in
vehicles and heating. Benzene has a long lifetime enabling long range transport. The
main removal process is oxidization by OH which is suppressed during the dark winter.
The benzene volume mixing ratio begun decreasing in the spring when increasing5

solar radiation, further enhanced by reflection from snow covered surfaces, started
photochemistry. Hakola et al. (2003) measured at the same site similar seasonality
and benzene ratios as in this study.

We associated the summer increase in methanol, acetone, isoprene-MBO, monoter-
penes and C6-compounds to biogenic emissions, since the anthropogenic and biomass10

burning markers, benzene and acetonitrile, were low during the summers (Figs. 4, 5, 7,
8 and 10). However, we could not exclude anthropogenic influence on the momentary
peaks in the monoterpene mixing ratios. Differences in the behaviors of compounds
with important biogenic emissions can be explained by differences in their lifetimes,
sources and emissions. During summer the lifetimes of isoprene and monoterpenes15

are in the order of an hour or a few hours due to daytime reaction with OH, night-
time reaction with NO3 and diurnal oxidation by ozone (Rinne et al., 2007). Methanol
and acetone, on the other hand, react slower and are not oxidized by ozone (Rinne
et al., 2007). Methanol has a lifetime of a few days during daytime reaction with OH
and it is not oxidized at night. Acetone is slowly removed by OH and photolysis dur-20

ing days resulting in an estimated lifetime of 8 days. Due to very low concentration of
NO3 (Hakola et al., 2003), acetone has a night lifetime of 17 years. The long lifetimes of
methanol and acetone (Rinne et al., 2007) results in a higher background concentration
where as terpenoids are removed within several hours after emissions. Monoterpenes,
methanol, acetone and MBO have local direct biogenic emissions, however, isoprene25

is not emitted at the measurement spot but from a regional source and chemical re-
actions occur before it reaches the measurement point. The emissions are governed
by different environmental parameters. The emissions of monoterpenes are described
by a temperature algorithm, while the other BVOC emissions are expected to be also
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affected by solar radiation.

4.2 Diurnal variation

The diurnal variation of solar radiation, temperature and mixing time scale (Fig. 11)
affect volume mixing ratios of VOCs (Fig. 12). Local BVOC emissions depend on tem-
perature and light. The sinks of the VOCs, as well, depend on the available solar5

radiation: oxidation by OH and ozone occurs during light hours, while ozone and NO3
reactions take place in dark. Turbulence is expressed with above canopy mixing time
scale z/u∗, where z is the measurement height of 14 m above ground level and u∗ the
friction velocity. The day to night variation of VOC mixing ratios reflect meteorologi-
cal changes as well as fast changes in photosynthetic activity. The seasonal changes10

reflect seasonality of the meteorology as well as slower seasonal changes in plant ac-
tivity such as spring recovery, various growth periods during summer, hardening and
litter decomposition in fall, and dormancy in winter.

Summer and spring days are flooded with light (Fig. 11), summer days are long, the
sun rises around 4 am and sets around 10 pm LT. The maximum summer photosynthet-15

ical photon flux density (PPFD) median was 1250 µmol m−2 s−1 during 2006. However,
summer 2007 was cloudier, corresponding median was only 950 µmol m−2 s−1. This
difference in the summers was also seen in precipitation. Accumulated precipitation
was only 80 mm during the summer 2006, on the other hand during the cloudier and
rainier summer 2007 accumulated precipitation was 210 mm. During the spring the20

PPFD was in the same order of magnitude as in the summers, since in the spring the
solar radiation was enhanced by reflecting snow cover. By contrast to spring and sum-
mer, winter days were dark and the sun shone at a low solar angle between 10 am and
4 pm LT, the winter maximum PPFD median was only 100 µmol m−2 s−1. This season-
ality was reflected in temperature and mixing time scale that did not have a systematic25

diurnal course during winter days. During summer days, on the contrary, temperature
and turbulence, expressed as shorter mixing time scale, clearly followed the solar ra-
diation. Mixing was fastest in the afternoon and slowest during night, before sunrise.
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The spring and summer 2006 day median temperature variation was 10◦C, but only
7◦C during the cloudier summer 2007. The diurnal variation of mixing time scale was
also larger during 2006 than 2007.

The seasonality was also seen in the diurnal variation of the VOC volume mixing
ratios, especially for locally emitted biogenic compounds. The diurnal variation was5

largest in the summers, while in the winter the volume mixing ratios remained quite
constant. During the summers the volume mixing ratios of isoprene-MBO and monoter-
penes were an order of magnitude lower than those of methanol and acetone (Fig. 12).
The diurnal variations of isoprene-MBO and monoterpene volume mixing ratios were
almost the same for both summers. However, the terpenoid mixing ratio levels were10

slightly higher in the sunnier summer 2006. In contrast, the volume mixing ratios of
methanol, acetaldehyde and acetone were higher during the summer 2006 and their
diurnal patterns varied annually. The benzene volume mixing ratios did not show clear
diurnal variation in any season.

Isoprene concentration measurements show usually diurnal pattern with maximum15

at 18:00 UT (Goldan et al., 1995; Biesenthal et al., 1998; Warneke et al., 2001b) due
to isoprenes temperature and light dependent emissions and removal at night time.
Like for isoprene, MBO emissions are temperature and light dependent and similar
diurnal patterns are expected. The isoprene-MBO volume mixing ratio in the present
study peaked approximately at the same time as in earlier studies, a few hours before20

sunset (Figs. 11 and 12). The diurnal pattern of monoterpene volume mixing ratios
in the summers had a minimum in day and a maximum at night (Fig. 12). Similar
variability was also measured by Hakola et al. (2000) and Rinne et al. (2005) during
the whole growing season and by Spanke et al. (2001) during late summer. In spring
measurements Sellegri et al. (2005) observed a nighttime maximum and two additional25

secondary daily maxima.
The monoterpene volume mixing ratios were highest during summer nights when

temperature dependent emissions of monoterpenes are low and mixing is lowest. How-
ever, other BVOC, methanol, acetaldehyde, acetone and isoprene, mixing ratios were
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highest during summer in the late evening before sunset and end of light dependent
emissions.

The shape of the biogenic VOC diurnal pattern is determined by: 1) emission and
formation processes, 2) removal processes and 3) mixing. In addition to biogenic emis-
sions monoterpenes, isoprene, methanol, acetone, and acetaldehyde are emitted from5

anthropogenic sources. The hemiterpenoid (isoprene-MBO) and monoterpene lifetime
is in the order of half an hour to a few hours (Rinne et al., 2007) and thus the terpenoid
emissions were local or regional. Methanol and acetone, on the other hand, have
longer lifetimes in the order of days (Rinne et al., 2007) and thus they can travel long
distances. In addition to the biogenic and anthropogenic emissions methanol, acetone10

and acetaldehyde are produced locally by photo-oxidation of other compounds, e.g.
isoprene is oxidized to acetone (Singh et al., 2000).

Biogenic emissions are driven by different environmental factors with different diurnal
cycles. The light and temperature dependent emissions (such as isoprene, Guenther
et al., 1995; and MBO, Hakola et al., 2006) are highest at midday and go to zero when15

the sun sets, while the temperature dependent emissions (such as monoterpenes,
Hakola et al., 2006) are highest at late afternoon and decline until sunrise but do not
totally cease. Isoprene is emitted directly after synthesis and thus the emissions follow
PPFD (Figs. 11 and 12). Water soluble methanol is mainly emitted through the stom-
ata (Nemecek-Marshall et al. 1995; Niinemets and Reichstein, 2003). Since opening20

of the stoma follows light also methanol emissions (Fig. 12) follow measured PPFD
(Fig. 11). However, there are differences in the light dependent emissions. Niinemets
and Reichstein (2003) link it to partitioning between water and gas phase. Emissions
of compounds with high water solubility, such as methanol, can be controlled by stom-
atal opening unlike less water soluble isoprene and monoterpenes. Harley et al. (2007)25

observed stomatal and temperature controlled methanol emission as well as methanol
emission burst after dark periods as predicted by Niinemets and Reichstein (2003).
Janson and de Serves (2001) determined acetone emissions to be temperature depen-
dent in a similar way to monoterpene emissions from Scots pine and Norway spruce.
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Removal processes such as, photochemical oxidation by OH-radical (such as reaction
of acetaldehyde, Hellén et al., 2004) or day and night time reactions (such as oxidation
of isoprene by OH and ozone, Atkinson and Arey, 2003) have diurnal patters. Rinne
et al. (2007) estimated lifetimes for summer at the same site taking into account OH,
O3, NO3 and photolysis during day and NO3 and O3 during night. The main BVOCs5

can be divided into two groups, terpenoids have lifetimes in the order of hours around
the clock while methanol and acetone react during daylight hours with slower lifetimes
of several days (Rinne et al., 2007). The MBO behaves similar to the terpenoids, iso-
prene and monoterpenes, and is oxidized with OH and ozone during day and ozone
and nitrate radical at night (Fantechi et al., 1998). Dilution and transportation of emitted10

compounds has a diurnal pattern since turbulence is driven by solar radiation. When
the sun rises, mixing is increased leading to lower concentration if the local emission
and deposition remain constant. Respectively, as the solar radiation is decreased,
nocturnal inversion can lead to accumulation.

The annual variation of the VOC mixing ratios was not only due to the observed15

annual differences in local meteorology (Fig. 11). The carbon monoxide (CO), nitrous
oxides (NOx) and benzene volume mixing ratios were higher during the summer 2006
indicating stronger anthropogenic influence. This would have also meant more long
range transport of long lived anthropogenic VOCs such as benzene, methanol and ace-
tone. Higher solar radiation was assumed to have led to more active photochemistry in20

2006, and more local secondary production of methanol, acetone and acetonitrile from
photo-oxidation of other VOCs. The ozone concentration was higher in the summer
2006, and it is likely that also daytime OH concentrations were higher. In the absence
of measurements we can not confirm inter-annual differences of OH radical concen-
trations. However, we did measure higher solar radiation and water vapor content in25

summer 2006, both are factors driving OH radical formation.
The annual differences effecting measured VOC mixing ratios (Fig. 13) were that the

summer 2006 1) was slightly warmer, 2) had more solar radiation, and 3) had more an-
thropogenic influence in air mass. The observed about 15% difference in monoterpene
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mixing ratio levels between the summers could be explained by small difference in the
temperature. The about 20% annual difference in the levels of isoprene-MBO could be
explained by an increase of biogenic emissions due to increase in both temperature
and solar radiation. Methanol, acetone and acetaldehyde volume mixing ratio levels
were increased by 30–100% as a sum increased biogenic emissions, anthropogenic5

long range transport and secondary production.

5 Conclusions

Ambient VOC concentrations vary diurnally, seasonally and inter-annually. In order
to represent VOC concentrations accurately, long-term measurements with sufficient
temporal resolution to observe diurnal patterns are needed. This requires automated10

VOC measurements, systematic calibration and explicit volume mixing ratio calculation
procedures. For over a 15 month measurement period a PTR-MS was successfully
used for online automated ambient VOC volume mixing ratio measurements. How-
ever, frequent background signal measurements and systematic calibrations as well as
maintenance are essential for reliable VOC volume mixing ratio measurements. Sen-15

sitivity of measurements for volume mixing ratios is weakened as the SEM detector
ages. At first only the signal of heavier compounds is weakened while light compounds
are still measured accurately. To obtain accurate volume mixing ratios and prevent
mass bias frequent checking and readjustment of SEM operation voltage is essential.
In our continuous measurements we observed that the PTR-MS has to be calibrated20

and SEM operation voltage checked regularly, at least twice a month.
Methanol and acetone were the most abundant VOCs observed. Their median vol-

ume mixing ratios were in the order of 1 ppbv during the 15 month measurement period
from June 2006 to September 2007. Methanol, acetone, isoprene-MBO and monoter-
penes volume mixing ratios were highest during summer and lowest in winter. Ben-25

zene, dominated by anthropogenic emissions and photochemical removal, behaved
the opposite way. The benzene volume mixing ratio median was 0.14 ppbv during win-
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ter and less than half during summers. Seasonality of acetaldehyde and MACR–MVK
volume mixing ratios were less profound. Biogenic VOC, methanol, acetone, isoprene-
MBO and monoterpene volume mixing ratios had clear diurnal patterns during sum-
mers while other VOCs did not have this behavior. During winter we did not observe
systematical diurnal cycle of the VOCs volume mixing ratios. In summer the diurnal5

monoterpene maximum was typically during nights between sunset and sunrise, while
methanol, acetone, acetaldehyde and isoprene-MBO volume mixing ratios were high-
est before sunset. The monoterpenes and hemiterpeneoids (isoprene-MBO) had an
order of magnitude lower volume mixing ratios than methanol and acetone. The ter-
penoids have shorter lifetimes and they were dominated by local emissions. Methanol10

and acetone have relatively long lifetimes and in addition to local sources have contribu-
tions from long range transport of anthropogenic emissions as well as from secondary
production from oxidation of other VOCs. The measured volume mixing ratios could be
qualitatively explained by considering sources, removal processes and turbulent mix-
ing. However, the detailed atmospheric chemistry is beyond the scope of this paper15

and will be in future studied using comprehensive chemistry models such as MALTE
(Boy et al., 2006).

Appendix A

Monthly averages, medians, 5 and 95 percentiles of methanol (M33), acetonitrile
(M42), acetaldehyde (M45), acetone (M59), isoprene-MBO (M69), MACR–MVK (M71),20

MEK (M73), benzene (M79), hexanal – cis-3-hexenol (M101) and monoterpene (M137)
volume mixing ratios and number of hours when measurements were done. Data was
calculated using hourly averages, from ambient air measurements at 14 m height at
SMEAR II station.
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Table 1. Proportions of different land use categories in 40×40 km2 area around SMEAR II
station according to Haapanala et al. (2007).

Land use type Proportion [%]

Built areas 0.3
Wetlands 0.7
Clear cut 1.7
Deciduous forest 2.0
Open land 2.9
Agriculture 10.2
Water bodies 13.0
Mixed forest 20.9
Pine dominated forest 22.7
Spruce dominated forest 25.5
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Table 2. Measured masses, compounds used in calibrations and info on compounds (PTR-MS
review by de Gouw and Warneke, 2007).

measured
mass

measured
calibrated
compound

or other possible
compounds

take notice

21 H18
3 O+ primary ion

32 O+
2 produced in ion source

33 methanol
(CH3OH)

O16O17 0.079% of M32, O+
2 signal,

reduced
39 H3O(H2O) water cluster
42 acetonitrile

(C2H3N)
measured since 23.3.2007

45 acetaldehyde
(C2H4O)

59 acetone
(C3H6O)

H3O(H2O18)2

69 isoprene (C5H8)
and
2-methyl-3-
buten-2-ol
(MBO)

other BVOCs, furan
in biomass burning
plume, anthopogenic
VOC

71 methyl vinyl
ketone (MVK),
methacrolein
(C4H6O)

73 2-butanone
(aka MEK)
(C4H8O)

79 benzene (C6H6)
101 hexenal

(C6H12O)
cis-3-hexenol

137 monoterpenes/
a-pinene
(C10H16)

other BVOCs ?
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Table 3. Median values of VOCs for total measurement period, summers (June–August), win-
ter (December–February), spring (March–May). Fall is not presented, due to instrument break-
downs from October to beginning of December 2006.

compound methanol acetonitrile acetaldehyde acetone isoprene-MBO MACR, MVK MEK benzene monoterpene hexanal, monoterpene
(mass) (33) (42) (45) (59) (69) (71) (73) (79) (81) cis-3-hexenol (101) (137)

[ppbv] [ppbv] [ppbv] [ppbv] [ppbv] [ppbv] [ppbv] [ppbv] [ppbv] [ppbv] [ppbv]

total 1.06 0.04 0.24 0.91 0.09 0.09 0.09 0.08 0.18 1.00 0.15

summer 06 3.00 na 0.39 2.05 0.17 0.16 0.17 0.07 0.37 0.75 0.34
winter 06 0.22 na 0.16 0.33 0.05 0.07 0.06 0.14 0.09 1.22 0.05
spring 07 0.74 0.04 0.22 0.65 0.05 0.07 0.04 0.09 0.11 1.44 0.08
summer 07 1.90 0.05 0.25 1.35 0.14 0.12 0.05 0.04 0.31 0.68 0.29
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Table A1. See Appendix A.

compound time average median 5% 95% N
mass ppbv ppbv ppbv ppbv hours

methanol total 1.59 1.06 0.17 4.90 3315
33 June 4.05 3.34 1.97 7.32 171

July 3.16 2.91 1.45 5.81 327
August 2.94 2.88 1.20 5.05 307
September 1.25 1.13 0.60 2.44 220
October na na na na 0
November 0.30 0.30 0.24 0.37 11
December 0.24 0.22 0.15 0.37 324
January 0.23 0.21 0.11 0.45 358
February 0.41 0.33 0.13 0.74 57
March 0.54 0.35 0.18 1.60 281
April 0.77 0.66 0.31 1.74 234
May 1.58 1.45 0.76 2.79 229
June 3.62 3.25 1.45 6.90 188
July 1.69 1.34 0.65 3.86 206
August 1.70 1.45 0.58 3.66 204
September 0.74 0.68 0.40 1.27 184
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Table A1. Continued.

compound time average median 5% 95% N
mass ppbv ppbv ppbv ppbv hours

acetonitrile total 0.05 0.04 0.02 0.09 3315
42 March 0.08 0.08 0.02 0.13 60

April 0.03 0.03 0.02 0.06 234
May 0.04 0.04 0.02 0.07 229
June 0.07 0.06 0.04 0.10 188
July 0.04 0.04 0.02 0.07 206
August 0.05 0.05 0.03 0.08 204
September 0.03 0.03 0.02 0.05 184

acetaldehyde total 0.29 0.24 0.12 0.65 3315
45 June 0.47 0.41 0.24 0.84 171

July 0.39 0.35 0.14 0.73 327
August 0.50 0.43 0.19 0.95 307
September 0.27 0.25 0.13 0.49 220
October na na na na 0
November 0.26 0.25 0.20 0.34 11
December 0.16 0.15 0.11 0.26 324
January 0.18 0.16 0.10 0.30 358
February 0.32 0.30 0.19 0.51 57
March 0.26 0.23 0.13 0.46 281
April 0.21 0.19 0.12 0.39 234
May 0.27 0.26 0.15 0.44 229
June 0.40 0.36 0.20 0.69 188
July 0.22 0.20 0.11 0.39 206
August 0.27 0.24 0.12 0.50 204
September 0.19 0.18 0.10 0.32 184
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Table A1. Continued.

compound time average median 5% 95% N
mass ppbv ppbv ppbv ppbv hours

acetone total 1.17 0.91 0.27 2.90 3315
59 June 2.17 1.96 1.13 3.66 171

July 1.93 1.81 0.67 3.77 327
August 2.44 2.34 1.23 4.14 307
September 1.28 1.18 0.73 2.11 220
October 0.53 0.52 0.47 0.62 0
November na na na na 11
December 0.38 0.37 0.27 0.54 324
January 0.31 0.30 0.22 0.44 358
February 0.39 0.37 0.25 0.58 57
March 0.62 0.49 0.31 1.46 281
April 0.67 0.58 0.40 1.31 234
May 1.02 0.99 0.59 1.58 229
June 1.66 1.62 0.87 2.61 188
July 1.28 1.22 0.65 2.26 206
August 1.50 1.44 0.73 2.57 204
September 0.73 0.73 0.47 1.02 184
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Table A1. Continued.

compound time average median 5% 95% N
mass ppbv ppbv ppbv ppbv hours

isoprene-MBO total 0.11 0.09 0.03 0.28 3315
69 June 0.15 0.14 0.06 0.28 171

July 0.20 0.19 0.07 0.34 327
August 0.21 0.19 0.07 0.40 307
September 0.14 0.13 0.08 0.20 220
October na na na na 0
November 0.09 0.09 0.06 0.13 11
December 0.06 0.05 0.03 0.09 324
January 0.05 0.05 0.03 0.09 358
February 0.05 0.05 0.03 0.12 57
March 0.06 0.05 0.03 0.09 281
April 0.05 0.05 0.02 0.10 234
May 0.07 0.07 0.04 0.14 229
June 0.17 0.16 0.07 0.30 188
July 0.14 0.13 0.06 0.27 206
August 0.17 0.15 0.08 0.33 204
September 0.09 0.09 0.05 0.13 184
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Table A1. Continued.

compound time average median 5% 95% N
mass ppbv ppbv ppbv ppbv hours

MACR. MVK total 0.11 0.09 0.04 0.27 3315
71 June 0.19 0.19 0.05 0.34 171

July 0.16 0.14 0.04 0.32 327
August 0.19 0.16 0.05 0.39 307
September 0.09 0.08 0.03 0.15 220
October na na na na 0
November 0.15 0.14 0.13 0.23 11
December 0.08 0.07 0.04 0.15 324
January 0.06 0.06 0.04 0.11 358
February 0.08 0.07 0.04 0.17 57
March 0.09 0.08 0.04 0.17 281
April 0.06 0.05 0.03 0.13 234
May 0.07 0.06 0.04 0.11 229
June 0.12 0.11 0.05 0.21 188
July 0.10 0.09 0.05 0.22 206
August 0.17 0.15 0.08 0.31 204
September 0.12 0.12 0.05 0.16 184
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Table A1. Continued.

compound time average median 5% 95% N
mass ppbv ppbv ppbv ppbv hours

MEK total 0.12 0.09 0.04 0.31 3315
73 June 0.16 0.14 0.05 0.31 171

July 0.17 0.14 0.04 0.37 327
August 0.25 0.22 0.09 0.49 307
September 0.13 0.13 0.03 0.28 220
October na na na na 0
November 0.08 0.08 0.06 0.09 11
December 0.06 0.06 0.04 0.09 324
January 0.06 0.05 0.03 0.11 358
February 0.08 0.08 0.05 0.13 57
March 0.10 0.09 0.05 0.22 281
April 0.09 0.08 0.05 0.14 234
May 0.10 0.10 0.05 0.18 229
June 0.12 0.12 0.05 0.23 188
July 0.18 0.15 0.03 0.37 206
August 0.17 0.15 0.05 0.33 204
September 0.07 0.07 0.04 0.11 184
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Table A1. Continued.

compound time average median 5% 95% N
mass ppbv ppbv ppbv ppbv hours

benzene total 0.10 0.08 0.02 0.23 3315
79 June 0.06 0.06 0.02 0.12 171

July 0.06 0.05 0.01 0.16 327
August 0.11 0.09 0.04 0.29 307
September 0.07 0.06 0.02 0.15 220
October na na na na 0
November 0.20 0.12 0.10 0.46 11
December 0.13 0.11 0.09 0.21 324
January 0.17 0.17 0.11 0.27 358
February 0.20 0.19 0.14 0.32 57
March 0.18 0.16 0.10 0.37 281
April 0.08 0.08 0.06 0.11 234
May 0.06 0.06 0.03 0.09 229
June 0.04 0.04 0.02 0.08 188
July 0.05 0.04 0.02 0.09 206
August 0.06 0.05 0.02 0.12 204
September 0.04 0.04 0.02 0.07 184
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Table A1. Continued.

compound time average median 5% 95% N
mass ppbv ppbv ppbv ppbv hours

monoterpenes total 0.26 0.18 0.06 0.66 3315
81 June 0.40 0.32 0.16 0.86 171

July 0.38 0.35 0.12 0.71 327
August 0.48 0.42 0.24 0.93 307
September 0.25 0.25 0.13 0.39 220
October na na na na 0
November 0.12 0.11 0.09 0.16 11
December 0.10 0.09 0.06 0.13 324
January 0.14 0.09 0.05 0.29 358
February 0.14 0.07 0.05 0.69 57
March 0.15 0.09 0.06 0.41 281
April 0.12 0.10 0.06 0.20 234
May 0.20 0.15 0.09 0.44 229
June 0.41 0.36 0.16 0.80 188
July 0.36 0.30 0.15 0.75 206
August 0.37 0.25 0.12 1.05 204
September 0.19 0.16 0.09 0.37 184
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Table A1. Continued.

compound time average median 5% 95% N
mass ppbv ppbv ppbv ppbv hours

hexanal. total 1.09 1.00 0.23 2.26 3315
cis-3-hexenol June 0.79 0.65 0.25 1.72 171
101 July 0.80 0.74 0.24 1.62 327

August 1.12 0.91 0.28 2.88 307
September 0.47 0.45 0.23 0.80 220
October na na na na 0
November 2.11 2.31 1.43 2.45 11
December 1.40 1.38 0.90 1.99 324
January 1.21 1.13 0.85 1.81 358
February 0.90 0.88 0.63 1.17 57
March 1.48 1.09 0.74 4.08 281
April 1.94 1.88 1.25 3.01 234
May 1.53 1.42 1.05 2.26 229
June 1.42 1.25 0.74 2.37 188
July 0.70 0.58 0.28 1.60 206
August 0.53 0.49 0.27 0.94 204
September 0.22 0.22 0.16 0.29 184
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Table A1. Continued.

compound time average median 5% 95% N
mass ppbv ppbv ppbv ppbv hours

monoterpenes total 0.23 0.15 0.03 0.68 3315
137 June 0.38 0.33 0.13 0.91 171

July 0.35 0.32 0.07 0.70 327
August 0.45 0.37 0.18 1.01 307
September 0.18 0.17 0.06 0.36 220
October na na na na 0
November 0.10 0.09 0.04 0.18 11
December 0.06 0.05 0.03 0.10 324
January 0.11 0.05 0.01 0.25 358
February 0.11 0.04 0.02 0.68 57
March 0.12 0.07 0.03 0.40 281
April 0.09 0.07 0.03 0.20 234
May 0.18 0.13 0.06 0.53 229
June 0.36 0.30 0.11 0.77 188
July 0.37 0.30 0.13 0.81 206
August 0.36 0.24 0.10 0.97 204
September 0.16 0.13 0.05 0.32 184
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Fig. 1. Sensitivity from calibrations of light compound, methanol at M33, and a heavier com-
pound, monoterpenes at M137, and SEM operation voltage (right axis) during spring 2006 to
fall 2007. When SEM was used up we changed a new one (in 19 July 2006 and 15 March
2007), initial operation voltage was 2000 V.
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Fig. 2. Measured volume mixing ratio of methanol during four periods of constant SEM opera-
tion voltage (Fig. 1) each in separate panel. Sensitivity of methanol (right axis) was determined
from regular calibration. Notice that the duration is different for each panel.
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35

1
Fig. 3. Meteorological data during the ambient VOC measurements. Half an hour2

averages (grey) and temperature and relative humidity 24 hour medians (black) and3

global radiation midday medians (12:30 ± 2 hours, black).4

Fig. 3. Meteorological data during the ambient VOC measurements. Half an hour averages
(grey) and temperature and relative humidity 24 h medians (black) and global radiation midday
medians (12:30 UT ±2 h, black).
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36

1
 Fig. 4. Ambient methanol (M33) and acetonitrile (M42) volume mixing ratios measured2

from 14 m height at SMEAR II station.3Fig. 4. Ambient methanol (M33) and acetonitrile (M42) volume mixing ratios measured from
14 m height at SMEAR II station.
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1
Fig. 5. Ambient acetaldehyde (M45) and acetone (M59) volume mixing ratios measured2

from 14 m height at SMEAR II station.3
Fig. 5. Ambient acetaldehyde (M45) and acetone (M59) volume mixing ratios measured from
14 m height at SMEAR II station.

126

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/81/2009/acpd-9-81-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/81/2009/acpd-9-81-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 81–134, 2009

VOC concentrations:
annual cycle in
boreal forest

T. M. Ruuskanen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

38

1
Fig. 6. Acetone (M59) versus methanol (M33) volume mixing ratio measured from 14 m2

height at SMEAR II station, summer is June–August, winter December–February and3

spring March–May.4

Fig. 6. Acetone (M59) vs. methanol (M33) volume mixing ratio measured from 14 m height at
SMEAR II station, summer is June–August, winter December–February and spring March–May.
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1
Fig. 7. Ambient isoprene–MBO (M69) and MARC–MVK (71) volume mixing ratios2

measured from 14 m height at SMEAR II station3
Fig. 7. Ambient isoprene-MBO (M69) and MARC-MVK (71) volume mixing ratios measured
from 14 m height at SMEAR II station.
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1
Fig. 8. Ambient hexanal – cis-3-hexenol (M101) and monoterpene (M137) volume2

mixing ratios measured from 14 m height at SMEAR II station.3
Fig. 8. Ambient hexanal – cis-3-hexenol (M101) and monoterpene (M137) volume mixing ratios
measured from 14 m height at SMEAR II station.
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1
Fig. 9. Monoterpenes (M137) versus benzene (M79) volume mixing ratio measured from2

14 m height at SMEAR II station, summer is June–August, winter December–February3

and spring March–May.4

Fig. 9. Monoterpenes (M137) vs. benzene (M79) volume mixing ratio measured from 14 m
height at SMEAR II station, summer is June–August, winter December–February and spring
March–May.
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1
Fig. 10. Ambient MEK (M73) and benzene (M79) volume mixing ratios measured from2

14 m height at SMEAR II station.3
Fig. 10. Ambient MEK (M73) and benzene (M79) volume mixing ratios measured from 14 m
height at SMEAR II station.

131

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/81/2009/acpd-9-81-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/81/2009/acpd-9-81-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 81–134, 2009

VOC concentrations:
annual cycle in
boreal forest

T. M. Ruuskanen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

2 6 10 14 18 22
-12

0

12

T 
8.

4m
 [C

o ]

2 6 10 14 18 22
0

500

1000

P
P

FD
 [

m
ol

m
-2

s-1
]

2 6 10 14 18 22
0

30

60

z/
u*

 [s
]

2 6 10 14 18 22
20

30

40

O
3 8

.4
m

 [p
pb

v]

2 6 10 14 18 22
100

130

160

C
O

 8
.4

m
 [p

pb
v]

2 6 10 14 18 22
0

1

2

N
O

x 8
.4

m
 [p

pb
v]

Summer 06 Winter 06 Spring 06 Summer 07

DA

B

C

E

F

Fig. 11. Diurnal variation of temperature, ozone (O3), carbon monoxide (CO) and NOx were
measured at 8.4 m height, photosynthetical photon flux density (PPFD) above canopy and tur-
bulent mixing timescale for measurement height of 14 m (t=z/u∗) during the ambient VOC mea-
surements. Hourly medians were calculated from half an hour averages for winter (December–
February), spring (March–May) and summer (June–August).
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Fig. 12. Diurnal variation of methanol (M33), acetaldehyde (M45), acetone (M59), isoprene
(M69), benzene (M79) and monoterpenes (M137). Hourly medians were calculated from hourly
averages for winter (December–February), spring (March–May) and summer (June–August),
fall is not presented, due to instrument breakdowns from October to beginning of December
2006.
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