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Abstract

HUmic-LIke Substances (HULIS) have been identified as major contributors to the or-
ganic carbon in atmospheric aerosol. The term HULIS is used to describe the organic
material found in aerosol particles which resembles the humic organic material in river
and sea water and in soils. In this study two sets of filter samples from atmospheric5

aerosols were collected at different sites. One sample was collected at the K-puszta
rural site in Hungary, about 80 km SE of Budapest, and a second set of samples was
collected at a site in Rondônia, Amazonia, Brazil, during the LBA-SMOCC biomass
burning season experiment. HULIS were extracted from the samples, and their hy-
groscopic properties were studied using a Hygroscopicity Tandem Differential Mobility10

Analyzer (H-TDMA) at relative humidity (RH) <100%, and a cloud condensation nu-
cleus counter (CCNC) at RH >100%. The H-TDMA measurements were carried out at
a dry diameter of 100 nm and for RH ranging from 30 to 98%. At 90% RH the HULIS
samples showed diameter growth factors between 1.04 and 1.07, reaching values of
1.4 at 98% RH. The cloud nucleating properties of the two sets of aerosol samples15

were analyzed using two types of thermal static cloud condensation nucleus counters
(CCNC). Two different parameterization models were used to investigate the potential
effect of HULIS surface activity, both yielding similar results. For the K-puszta win-
ter HULIS sample, the surface tension at the point of activation was estimated to be
lowered by between 34% (47.7 mN/m) and 31% (50.3 mN/m) for dry sizes between20

50 and 120 nm in comparison to pure water. A moderate lowering was also observed
for the entire water soluble aerosol sample, including both organic and inorganic com-
pounds, where the surface tension was decreased by between 2% (71.2 mN/m) and
13% (63.3 mN/m).
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1 Introduction

Aerosol particles play an important role in the atmosphere via their influence on the
radiative budget of the earth by directly scattering and absorbing the incoming sun-
light (e.g., Ramanathan et al., 2001; Satheesh and Moorthy, 2004), and indirectly by
serving as cloud condensation nuclei (CCN) for the formation of cloud droplets (e.g.,5

Kaufmann et al., 2002; Andreae and Rosenfeld, 2008). The indirect effect is dependent
on particle hygroscopicity at water vapour supersaturated conditions, more specifically
the saturation ratio needed to activate the CCN into forming a cloud droplet. The prop-
erties of the CCN are important to understand the cloud formation processes and to
predict the resulting droplet size distributions determining the cloud albedo and cloud10

lifetime (e.g., Warner, 1967; Rosenfeld, 2000), parameters that are strongly linked to
the indirect aerosol effect.

The atmospheric aerosol is known to contain a complex mixture of different chem-
ical compounds comprising inorganic as well as organic constituents. The fraction of
organic material in the atmospheric aerosol varies strongly, and reports on the fine15

fraction (particle diameter, Dp<1 µm) state values varying between 20 and 80% in the
US alone (Jacobson et al., 2000). Out of this organic fraction, about 10–60% has been
found to be Water Soluble Organic Carbon (WSOC) (Krivacsy et al., 2001; Kleefeld
et al., 2002; Young et al., 2004). Up to now, the knowledge about the hygroscopic
growth and CCN properties of the multitude of water-soluble organic compounds found20

in aerosol particles is very limited (Kanakidou et al., 2005).
Even though the super micron particles constitute most of the particle mass, the

dominant number of particles in atmospheric samples is found in the submicron size
range and thus their hygroscopic properties are of high importance. It has been shown
that some of the water soluble organic compounds (WSOC) are surface active and25

might affect the water uptake and cloud droplet activation of aerosol particles, not only
by contributing to the soluble mass but also by reducing the surface tension (Graber
et al., 2006; Facchini et al., 2000; Charlson et al., 2001; Nenes et al., 2002). It has
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also been discussed whether or not surface to bulk partitioning is an important effect
in atmospheric aerosols. It has been shown that surface partitioning of some com-
ponents, such as fatty acids, can affect the critical supersaturation, resulting in an
increased molecule concentration at the surface of the particle at the expense of the
bulk concentration of that particular component (Sorjamaa et al., 2008; Prisle et al.,5

2007; Prisle et al., 2009). As the particle takes up water, the volume to surface ratio
increases, which leads to a migration of molecules from the surface to the bulk.

A typical aerosol sample can be described in terms of the inorganic and the total car-
bonaceous fraction. The total carbonaceous matter can be subdivided into the water in-
soluble organic matter plus black carbon and the water soluble organic matter. The wa-10

ter soluble organic matter can be further subdivided into more hydrophilic organic mat-
ter and a less hydrophilic organic fraction called isolated organic matter (ISOM), which
is mostly HUmic-LIke Substances (HULIS), characterized by relatively long chains of
organic molecules (Fig. 1). These can originate from a number of sources. Biomass
burning (Mayol-Bracero et al., 2002), polymerization in the aerosol aqueous phase15

(Gelencser et al., 2002), oxidation of soot (Decesari et al., 2002) and acid catalyzed
reaction of isoprenoids and terpenoids (Limbeck et al., 2003) are examples of possible
origins. HULIS are significant contributors to the organic fraction of the atmospheric
aerosol in various environmental reservoirs and an evaluation of hygroscopic and CCN
nucleating properties of HULIS is an important task to further understand the role of20

organic carbon in cloud formation processes and to quantitatively evaluate the contri-
bution from HULIS in this context.

Several experimental studies have been conducted on the hygroscopic properties
of HULIS, giving quite diverse results, due to the vast number of species that can fall
under the HULIS definition, since HULIS is ultimately defined by the separation method25

used in the isolation procedure of the sample. Gysel et al. (2004), Dinar et al. (2006)
and Ziese et al. (2007) all determined the hygroscopic properties of isolated HULIS
samples, measuring hygroscopic growth factors between 1.05 and 1.24 at 90% RH.

26929

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/26925/2009/acpd-9-26925-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/26925/2009/acpd-9-26925-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 26925–26967, 2009

Hygroscopic
properties of

Amazonian biomass
burning

E. O. Fors et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

In this study, the hygroscopic and CCN nucleating properties of two sets of atmo-
spheric samples were investigated using a Hygroscopic Tandem Differential Mobility
Analyser (H-TDMA) and two different cloud condensation nuclei counters (CCNC).
Connecting these data sets, two different parameterization models were used to quan-
tify the possible surface tension altering effects of the HULIS fraction. One model5

extrapolates H-TDMA data to supersaturation to predict the critical supersaturation ra-
tio, while the other model uses an iterative scheme, requiring both H-TDMA and CCNC
data, to obtain a concentration dependent parameterization of the surface tension.

2 Samples

A set of six samples was taken during the LBA-SMOCC campaign in Rondônia, Brazil,10

17 September–4 October 2002, during the dry period. Rondônia is a region with high
rates of deforestation and biomass burning. The sampling time varied between 36 and
84 h. Three samples were taken during daytime hours only, while three other samples
were taken during the night time, named “SMOCC D1”, “SMOCC D2”, “SMOCC D3”,
“SMOCC N1”, etc., where D and N denote Day and Night sample, and the numbers15

represent the collection periods. The three intervals are 17–21 September (period 1),
21–28 September (period 2) and 28 September to 4 October (period 3). The samples
were collected with a high volume sampler, with a cut-off diameter of 2.5 µm, meaning
that all particles with an aerodynamic diameter less than 2.5 µm were deposited on
a filter. A detailed description of the aerosol sampling and chemical measurements20

performed during the SMOCC experiment can be found in Decesari et al. (2006) and
in Fuzzi et al. (2007). The limited collected mass of each sample made only one type
of measurement per sample possible, either using the H-TDMA or the CCNC. Table 1
shows which samples were used for which measurements. For the SMOCC samples,
only isolated HULIS samples were available.25

A set of two 24-h samples was taken at the K-puszta rural site ca. 80 km south of
Budapest, Hungary, during 16 February and 11 July 2001. The sampling station was
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situated on a forest clearing on the Great Hungarian Plain. A more detailed description
of the site can be found in e.g. Pio et al. (2007). These samples are denoted K-puszta
winter and summer. The samples were collected on quartz fibre filters with a high
volume sampler, with a cut-off of 1.5 µm. Unlike the SMOCC samples, each K-puszta
sample resulted in three types of sub-samples: extract, effluent and HULIS (defined5

in the following section). Each sample was evaluated both using the H-TDMA and
the CCNC for all samples except for the summer HULIS sample. Table 1 lists the
determined set of aerosol samples.

3 Extraction

First, the water-soluble aerosol components were extracted by placing the filters for10

24 h in MilliQ water. Then the extract was filtered through a Millipore membrane filter of
0.45 µm pore size (the remaining sample from here denoted as extract) and the pH was
adjusted to pH=2 with hydrochloric acid. The separation of HULIS from other dissolved
components was performed on Oasis HLB (Waters, USA) solid phase extraction (SPE)
columns. Typically 60% of the water-soluble organic carbon content is retained under15

these conditions, while inorganic ions passed through the SPE columns together with
the most hydrophilic organic compounds (effluent). The retained organic compounds,
in the method denoted ISOM, were eluted with methanol. The methanol eluate was
evaporated to dryness, and known portions of the isolated organic matter were re-
dissolved in water prior to H-TDMA and CCNC measurements. A detailed discussion20

of the SPE procedure, including column selection and performance, can be found in
Varga et al. (2001). In this work the ISOM fraction is hereafter referred to as HULIS,
in consistency with literature. This procedure was conducted on all samples. For the
K-Puszta samples, all fractions were saved and analysed. However, for the SMOCC
samples, only the HULIS was saved for analysis, as there were at this point no plans25

of analysing the extract and effluent samples.
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4 Methods

For both the H-TDMA and the CCNC measurements, monodisperse aerosol particles
were generated from the solutions using a small nebulizer, dried in diffusion dryers,
diluted with clean oil-free air and then given a well defined charge distribution with
a bipolar charger.5

4.1 H-TDMA measurements

The measurements of hygroscopic growth at subsaturation were carried out using
an H-TDMA system (Hygroscopicity Tandem Differential Mobility Analyzer) (Swietlicki
et al., 2007) with the same instrumental setup used by, e.g., Svenningsson et al. (2006).
The H-TDMA consists of two DMAs with a humidifier as conditioning section in be-10

tween. The first DMA selects a monodisperse fraction of the aerosol while the second
DMA in combination with a condensation particle counter (CPC) analyzes the altered
size distribution after humidification to a specific RH. Both DMAs were operated as
open end systems, with humidity controlled for both the aerosol and for the sheath air
flow. This was done through water-to-gas Gore-Tex® membranes, with regulation of15

the temperature of the surrounding water and mixing of dry and humidified air for the
control of the aerosol and sheath air flows, respectively, and with mass flow controllers
mixing humid and dry air. This setup enables measurements of both possible deli-
quescence and efflorescence behaviour of the aerosol. Measurements were made for
particles with an initial electrical mobility equivalent dry DMA1 diameter of 100 nm at20

DMA2 relative humidity (RH) values between 30% and 98%. Measurements at high RH
were controlled by test salt measurements of known hygroscopic growth to determine
the exact RH during the growth measurements. The result is presented as measured
hygroscopic growth factor, Gf, defined according to

Gf=
Ddrop

Dp
(1)25
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where Ddrop is the droplet diameter and Dp is the dry diameter of the particle.

4.2 CCN counter measurements

To determine the size-dependent activation curve of the investigated aerosol, a narrow
size fraction was selected using a DMA (TSI, Model 3080). The monodisperse aerosol
was divided between a condensation particle counter (TSI, Model 3010) and a static5

thermal-gradient CCN chamber.
The size dependent CCN properties of the SMOCC particles were determined with

a static thermal-gradient CCN counter from the Max Planck Institute for Chemistry
(MPIC), Mainz. The main part of the CCN counter is an 80 mm diameter chamber with
a distance of 10 mm between the upper and lower plate. The plates are continuously10

kept wetted and their temperature difference is controlled to define the supersatura-
tion in the chamber. Various supersaturation ratios, sc, can be adjusted. The device
uses laser illumination and a video camera for detection of activated droplets. The two
CCN counters were intercalibrated, using the calibration procedure described in Frank
et al. (2007). The activation of particles of dry diameters between 40 and 125 nm was15

studied. At each measurement the particle diameter was kept fixed and the supersat-
uration was changed stepwise. For the SMOCC samples, the error estimates for the
critical supersaturation are 95% confidence intervals. The uncertainty was calculated
using two methods. Firstly, a cumulative Gaussian (normal) distribution function which
was fitted to each CCN spectrum to derive a midpoint activation diameter (da) of the20

aerosol, defined as the diameter at which the cumulative Gaussian function reaches
half its maximum height. In addition, the uncertainty if the supersaturation setting of
the instrument was calculated according to Frank et al. (2007). It turned out that the
supersaturation setting of the instrument is the major part of the uncertainty.

The size dependent CCN properties of the K-puszta particles were determined us-25

ing a static thermal-gradient diffusion CCN chamber from the University of Wyoming,
model CCNC-100B. This CCN counter uses the same principle for generating the su-
persaturation as the Mainz CCN counter described above, while the centre axis of the
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chamber is illuminated by a laser diode (670 nm) and the activated droplets are de-
tected by measuring the forward scattered light intensity at an angle of 45 degrees to
the diode light beam. The CCNC-100B was calibrated using monodisperse sodium
chloride and ammonium sulphate particles as in Bilde and Svenningsson (2004). For
the K-puszta samples, the error estimates for the critical supersaturation are 95% con-5

fidence intervals based on the calibration data for the CCN spectrometer. Sodium
chloride and ammonium sulphate were used for the calibration. A van’t Hoff factor of
2 was used for sodium chloride whereas for ammonium sulfate, it was adopted from
the literature (Low, 1969; Young and Warren, 1992) and ranges between 2.2–2.4 at the
point of activation. H-TDMA data on sodium chloride supports the use of a shape fac-10

tor for a cube, i.e. 1.08. This shape factor also resulted in a better agreement between
the ammonium sulphate and sodium chloride data compared to a unity shape factor
and was thus used for the sodium chloride data in this case.

4.3 CCN modelling

There are a number of different model parameterizations available for calculating15

critical supersaturation ratios by extrapolating H-TDMA data into the supersaturated
regime. All model parameterizations rely on an assumption of the value of the sur-
face tension as a function of surfactant concentration. In this work we use two single
parameter models: κR introduced by Rissler et al. (2004), also described in Vestin
et al. (2006), and ρion from Ziese et al. (2007). Both of them are based on the Köhler20

equation:

pw = (Dp)=p0awexp

(
4Mwσ

RTρwDdrop

)
(2)

where pw is the water vapour pressure, p0 the saturation water vapour pressure, aw
the activity of water in solution, Mw the molar weight of water, σ the surface tension,
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R the universal gas constant, T the temperature, ρw the density of water, and Ddrop the
droplet size.

In addition to the two models used in this work, Petters and Kreidenweis (2007) have
suggested an approach based on a single parameter, also named κ, defined through
its effect on the water activity of the solution. Kreidenweis et al. (2005) suggested5

a similar definition, but with a polynomial expression included, to take non-ideal effects
into account. That approach has the drawback of requiring growth factors at three or
more RH values, in contrast to the other models requiring growth factors at only one
RH. All the mentioned models have equally correct ways of describing the hygroscop-
icity of a particle. In this work we prefer to use the parameters κR and ρion due to their10

intuitive physical meaning, namely the number of soluble entities per dry volume unit.

4.3.1 κR model

In the first model the number of soluble entities per volume unit is calculated from the
measured hygroscopic growth factor, Gf, according to (Köhler theory assuming volume
additivity)15

Gf= 3

√
1+κR ·χφ ·

Mw

ρw
·

aw

1−aw
(3a)

or rearranged

κR =

(
Gf 3−1

)
· (1−aw)

aw ·χφ · Mw
ρw

(3b)

where κR is the number of soluble entities per volume dry unit, Mw the molecular weight
of water, ρw the water density, and χφ a correction term introduced to account for non-20

ideal behaviour. The correction term is here determined using a model salt, assuming
that the non-ideality of the solution can be described by the non-ideality of the model
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salt at the same aw. The model is also tested assuming ideal behaviour (χφ=1). This is
in principle the same equation as later used in Petters and Kreidenweis (2007), but with
a somewhat different definition of the parameter, κ. Following the approach of previous
publications where the κR model has been applied (Rissler et al., 2004; Vestin et al.,
2006; Rissler et al., 2006) ammonium sulphate was used as the model salt, since this is5

common and often the dominating inorganic compound in many atmospheric aerosols.
The water activity correction term (χφ) is derived from Putokuchi et al. (1995), Tang
et al. (1994) and at higher water activities from Low (1969).

The critical water vapour supersaturation, sc, (Sc−1) can be approximated by the
following equation is determined by the approximated expression of the Köhler theory,10

similar to that derived in Seinfeld and Pandis (2006):

sc =

√√√√ 4A3

27C
· 1

κR ·χφ ·D3
p

(4)

where A and C are defined as

A=
4Mwσ
RTρw

and C=
Mw

ρw
(5)

For a more detailed description of the procedure, see Rissler et al. (2004), Vestin et al.15

(2007) and Rissler et al. (2006). In Rissler et al. (2004), the soluble volume fraction, ε,
was used instead of κR, otherwise the calculations were analogous.

By using the surface tension of water, the presence of surface active compounds
is neglected. However, HULIS are suspected to act as surface active compounds,
reducing the surface tension of water at the point of activation (Kiss et al., 2005). To20

get an estimate of the surface tension effect of HULIS, the surface tension was adjusted
until the modelled supersaturation based on HTDMA derived growth factors was equal
to the measured critical supersaturation. This was done for the HULIS sample from K-
puszta, where both CCNC and H-TDMA data was available. Note that a measurement
or model error will result in an incorrect estimation of the surface tension.25
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4.3.2 ρion model

The second model used in this work was first introduced by Ziese et al. (2007) for
a similar HULIS sample set. It is also based on Köhler theory, but without taking into
account the non-ideality of the solute. The growth factor from the H-TDMA data serves
as input to the model to calculate the number of soluble entities per volume unit, here5

called ρion, assuming a constant solubility and dissociation up into the supersaturated
regime. The equation used to describe the water uptake is

S =exp

 4Mwσ
RTρwdp

−
ρion ·Mw

ρw

D3
p

D3
drop−D3

p

 (6)

where ρion is defined as

ρion =
ν ·ρs ·φ
Ms

(7)10

where ν is the maximum number of ions that the molecule can dissociate into and is the
osmotic coefficient. Note that ρion has the same meaning as κR, namely the number of
moles of soluble material per dry particle volume. Equation (6) is in principle the Köhler
equation, with an approximation made of dilute solutions (compare Eq. 17.24 in Sein-
feld and Pandis, 2006). This is one more approximation compared to Eq. (3a), used15

in the κR model at subsaturations, but does not assume, as in the approximation used
at super saturation, Eq. (4), that the volume occupied by the solute can be neglected
relative to the droplet volume.

In the ρion-model an additional variable is introduced; the surface tension is not held
constant, or retrospectively adjusted to CCNC data one dry size at the time, but forced20

to follow the Szyszkowski-Langmuir equation (Szyszkowski, 1908):

σ =σw−aT ln(1+bC) (8)
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where σw is the surface tension of water, C is the number of moles of solute per mass
of water and a and b are fitting parameters. Introducing a new parameter, b′, according
to

b′ =b ·
ρs

Msρw
(9)

Eq. (8) can be rewritten as5

σ =σw−aT ln

1+b′
d3

p,0

d3
p −d3

p,0

 (10)

Equation (6) can now be rewritten as

S =exp


4Mw

(
σw−aT ln

(
1+b′ d3

p,0

d3
p−d

3
p,0

))
RTρwdp

−
ρionMw

ρw

d3
p,0

d3
p −d3

p,0

 (11)

An iteration procedure is then carried out to find a solution that matches both the CCNC
and the H-TDMA data. As an initial guess, the surface tension is assumed to be the10

same as for water and can be calculated from Eq. (11), rearranged as

ρion =
ρw

(
d3

p −d3
p,0

)
Mwd

3
p,0

·


4Mw

(
σw−aT ln

(
1+b′ d3

p,0

d3
p−d

3
p,0

))
RTρwdp

− ln(S)

 (12)

based only on the Gf in one point from the H-TDMA data set. From Eq. (11), the critical
supersaturation can now be calculated and the parameters a and b′, which define the
surface tension of the sample, are adjusted until the result of the modelled critical15

supersaturation from the H-TDMA data matches the CCNC data. These parameters
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are now used to calculate a new and the iteration continues until the solution has
converged (Ziese et al. 2007).

The main advantage of this approach is that one obtains a concentration depen-
dent surface tension function as an output, which is consistent with the Szyszkowski-
Langmuir equation. The drawback is that no non-ideal behaviour between the water5

activity used for the H-TDMA measurement and the water activity at the activation point
is taken into account, unlike the κR model, where the model salt is assumed to describe
the non-ideality of the particle. It should also be noted that the surface tension param-
eters are adjusted until they match the data. A measurement error (or model error) will
therefore result in an incorrect surface tension parameterization.10

At subsaturation the ρion model uses a more approximate form of the Köhler equation
than the κR model. However, at supersaturations the formula is not using the assump-
tion that the volume occupied by the solute can be neglected relative to the droplet
volume as made in the κR model (Seinfeld and Pandis, 2006).

4.4 ZSR method15

To estimate the relative volume parts of the HULIS and effluent part of the K-puszta
samples, the Zdanovskii-Stokes-Robinson method was used (Stokes and Robinson,
1966). At any specific water activity, the hygroscopic growth factor of the mixture,
Gf mix, can be written as

Gfmix =
3

√∑
εsGf 3

s (13)20

where εs are the volume fractions of the HULIS and the effluent in the dry particle,
and Gf s are the individual compounds’ corresponding growth factors. In this work, Gf s
from the complete humidograms of the HULIS, the effluent and the extract samples
were used as input to Eq. (13). For this, a single parameter function based on Köhler
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theory was used to fit the H-TDMA data:

Gf = 3

√
1+A ·

RH/100

1−RH/100
(14)

where A is a fitting variable.

5 Results and discussion

5.1 Hygroscopic properties5

The HULIS samples from both SMOCC and K-Puszta showed low hygroscopic growth.
The variability in diameter growth factors at 90% RH was quite small and fell in the
range between 1.05 and 1.11 for all HULIS samples (Figs. 2 and 3 and Table 2). This
is in the lower range of what has been reported previously by others (Gysel et al., 2004;
Dinar et al., 2006; Ziese et al., 2007), where growth factors at 90% RH have been found10

to be between 1.05 and 1.24 (Table 2). In Table 3 the κR values are shown, calculated
for the hygroscopic growth between 90–98% RH. The calculations were made both as-
suming a dissociation as that of a model salt (here Ammonium sulphate) and assuming
full dissociation (values in parenthesis). For both SMOCC sampling periods, the day
samples were more hygroscopic than the night samples. Figure 3 presents the humido-15

grams for the two SMOCC periods, and for comparison, hygroscopic growth measured
on-line at the SMOCC site during the time periods, averaged as internal mixture and
weighted by mass (to simulate the soluble ions collected on a filter and re-suspended)
is shown. As can be seen, the HULIS samples are significantly less hygroscopic than
the on-site measurements, due to the absence of inorganic salts which are found the20

ambient aerosol but not in the isolated HULIS samples.
Determining the κR values for all HULIS samples revealed that they most often were

dissolved and non-ideal to similar degrees throughout the RH range from 90 to 98%.
The only exceptions are both SMOCC samples from period 3 (SMOCC D3 and N3),
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where an increase in the number of soluble entities per volume unit, κR, above 90%
was observed with increased RH (Figs. 4 and 5, Table 3). Although these are the only
HULIS samples in this work to show such behaviour, this effect has been observed pre-
viously for HULIS samples collected in Budapest (Ziese et al., 2007), and can possibly
be explained by the presence of chemical compounds gradually dissolving as the RH5

increases. This behaviour makes a simple parameterization for CCN activity based on
hygroscopicity at subsaturation a difficult task. It is also noteworthy that the K-puszta
winter samples (extract- and effluent samples) and the summer effluent sample also
display this non-ideal behaviour (Fig. 4 and Table 3). This can be due to inorganic or
organic compounds, that are present in both samples (recall that typically 40% of the10

HULIS was not extracted from the effluent sample), which take up water, and increase
the dilution so that the HULIS will dissociate to a higher extent than in the isolated
HULIS sample. Another interpretation is that inorganic salts with a high deliquescence
point, such as K2SO4, are present in the extract and effluent samples.

For the SMOCC samples, H-TDMA measurements were done both with humidifica-15

tion in the aerosol and the sheath air, and with constant pre-humidification to 90% in
the aerosol line with subsequent RH control in the sheath air. This means that with the
pre-humidification, the particles will have a possibility to deliquescent and restructure
(restructuring decreases their mobility diameter) before equilibrating. This operating
mode allowed measuring signs of efflorescence and restructuring of the aerosol. Both20

SMOCC night samples showed clear signs of restructuring, with Gf vales below 1 at
low RH, indicating shrinkage of the particles after the pre-humidification, while for the
day samples this effect was less pronounced.

5.2 Cloud nucleating properties

As can be seen in Fig. 6 and Table 4, the critical supersaturations, sc, experimen-25

tally determined for HULIS samples from the European rural background were signif-
icantly higher than for the water extract and the effluent samples, which is consistent
with the hygroscopic growth measured at subsaturations. This result is not surprising,
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considering that the hygroscopic inorganic salts and highly soluble organic compounds
are contained in the water extract and the effluent. The small difference in sc between
the effluents and the extracts indicates that the HULIS in the European sample only
weakly influence the point of activation. The critical supersaturations measured by the
CCNC for the SMOCC samples are presented in Table 4 and Fig. 9. The measured sc5

values were in the same range as in the European HULIS winter sample, although the
SMOCC day sample (SMOCC D2) was found slightly less hygroscopic.

5.3 Comparison CCN measurements and model results

For the modelling of critical supersaturations, average values of κR and ρion calculated
from H-TDMA data between 95 and 98% RH were used. Both models were tested at10

first using the surface activity of pure water and the resulting critical supersaturation
was compared to that measured. For the extract and effluent samples from K-Puszta,
the modelled and measured critical supersaturations were in good agreement, with
a slightly overestimated sc, explained by the droplet surface tension likely being some-
what lower than that of pure water. However, using the surface tension of pure water in15

the calculations for the K-puszta HULIS sample leads to a clear overestimation of the
critical supersaturation, which means that the HULIS activate more easily in the CCN
counter than predicted by the model calculations (Fig. 7a and b). This is consistent
with previous findings that HULIS can lower the surface tension, and thereby reduce
the critical supersaturation (Graber et al., 2006). For a surface tension of water, both20

models overestimate the critical supersaturation by a factor of ∼2.
The ρion and the κR model showed quite similar results. This is the case even

though the non ideal behaviour is considered in the κR model, which is explained by
that the correction term (χϕ) at sub saturation and at activation is nearly the same,
and therefore the effect of taking the non ideal behaviour into account is minor. For25

the HULIS sample, the ρion model gives a lower sc value than the κR model. This
difference originates mainly from the different degrees of simplifications included in
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the Köhler equations used to calculate the activation. In the predictions of the critical
supersaturation based on the κR model, the solute volume is assumed to be small
enough to be neglected at droplet activation, while the ρion model does not make
this assumption. Under normal circumstances, such as measurements using ambi-
ent aerosols, this effect will not be crucial, but it becomes significant when investigating5

compounds with growth factors similar to those of HULIS, as can be seen from the
difference in critical supersaturation predicted by the two models. This effect and its
dependence on measured Gf and dry size is illustrated in Fig. 8, where the predicted
supersaturations for 50 and 100 nm dry particles are presented as a function of mea-
sured Gf at 90% RH. When the hygroscopic growth approaches 1 (hydrophobic parti-10

cles), the sc values should converge towards the theoretical value of the Kelvin effect.
This is the case for the ρion model, while the κR approach overpredicts the sc values.
Based on this fact, the κR approach should not be used for predicting sc values from Gf
values close to 1, without taking this into account. In the two studies by Rissler et al.
(2004) and Vestin et al. (2007) this effect was corrected for.15

To determine the surface tension effect of the K-puszta samples, the iteration proce-
dure described in a previous section was carried out to derive the Szyszkowski surface
tension parameterization. This approach also affects the estimation of ρion from the
hygroscopic growth at subsaturations. The results are presented in Tables 5 and 6.
For the HULIS sample, this reveals a value of ρion=1157 moles/m3 which is lower than20

reported previously (between 3516 moles/m3 and 13 269 moles/m3) in similar studies
(Ziese et al., 2007). As can be seen in Table 5, for the ρion procedure, the surface
tension at activation of the HULIS sample was estimated to be between 47.7 mN/m for
50 nm dry size particles and 50.3 mN/m for 120 nm dry size particles.

The iteration procedure was also carried out for the winter and summer extract and25

the winter and summer effluent samples. In all cases, the iteration calculation con-
verged towards a solution. According to the model, all samples, to different degrees,
showed surface tensions lower than that of pure water at the point of activation (Ta-
ble 5). The surface tension lowering of the effluent samples were less pronounced
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than the extract samples. This can be expected since the extract samples include both
the inorganic compounds and the full HULIS fraction, while the effluent samples include
the inorganic compounds but only the part of the HULIS fraction that was not retained
in the SPE column (Varga, 2001).

For the κR model a similar procedure was used, adjusting σ for each dry size indi-5

vidually until the residual between the modelled and the measured sc was minimized.
The κR model gave a similar but slightly lower σ at cloud droplet activation than the ρion
procedure with surface tensions at activation, ranging between 43.7 mN/m for 50 nm
dry size particles and 47.2 nM/m for 100 nm dry size particles for the K-puszta winter
HULIS samples. The different results for the two models are explained by the overesti-10

mation of the supersaturation in the κR model previously discussed. In any case, these
results indicate that the rural HULIS discussed in this work is more surface active than
the urban HULIS previously investigated by Ziese et al. (2007), which gave σ values
for HULIS between 52.1 mN/m (dry diameter 40.6 nm) and 70.3 mN/m (dry diameter
125 nm). The reason for this behaviour remains unknown.15

The effect of surface active compounds is also dependent on the degree of exter-
nal mixing. During the SMOCC campaign, H-TDMA measurements were done during
the dry period, which confirmed the aerosol to be externally mixed, with two fractions
having Gfs of 1.09 and 1.26 at 90% RH, respectively (Rissler et al., 2006). If the
nearly hydrophobic mode consists of a large fraction of HULIS, the surface tension ef-20

fect might actually have a substantial influence on cloud droplet activation, even though
it is not evident in our internally mixed samples. ZSR modelling of the H-TDMA data
suggested that the HULIS fraction was larger for the winter sample, with a volume frac-
tion of the water soluble species, i.e. the extract sample, of ∼36% compared to the
summer sample, where it was ∼21%. It can be assumed that the concentration of25

HULIS originating from natural biological sources will be significantly lower during win-
ter. However, this does not necessarily mean that the volume ratio between inorganics
and HULIS will change accordingly, since this ratio is also influenced by combustion
particles, which contribute inorganic ions, but which also may contribute to the HULIS
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fraction via oxidation of soot. Total concentration measurements would be needed to
draw further conclusions on this matter.

For the SMOCC samples, it is not possible to draw very far-reaching conclusions,
since the H-TDMA measurements were carried out before and after the CCNC mea-
surements, and not at the same time. This means that a closure based on CCNC5

and H-TDMA measurements will use different sample periods for the different instru-
ments, and changes in e.g. air mass origin will have an effect on the closure. However,
when using the ρion approach on the H-TDMA data using the surface tension of water,
the critical supersaturation was overpredicted for all instances except the SMOCC D3
sample, again indicating that the HULIS in these samples could also affect the surface10

tension (Fig. 9a and b).
As a final remark, it should be noted that possible bulk to surface partitioning effects

such as described by Prisle et al. (2008) have not been taken into account. To our
knowledge there is no current way of quantifying this effect for a mixed particle of
unknown chemical composition.15

For the growing droplet, this surface partitioning will result in a lower number of
soluble entities in the bulk compared to a bulk system with the same overall chemical
composition. The surface-to-bulk ratio decreases with increased water uptake and
may lead to a migration of surface active compounds from the surface to the bulk.
When extrapolating data from subsaturation to supersaturation without taking this into20

account, Raoult’s law (the “salt” effect) is underestimated, leading to an overprediction
of the critical supersaturation. Since compounds that have this behaviour are surface
active, they may also lower the surface tension, leading to additional overprediction of
the critical supersaturation. This means that our iterated surface tension values can be
considered lower limit values, since they are calculated assuming no surface to bulk25

partitioning.
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6 Summary and conclusions

We investigated HULIS samples with two different origins: aged biomass burning
aerosol from Brazil (SMOCC sample) and rural Hungarian aerosol (K-Puszta sample).
Their hygroscopic properties were determined using H-TDMA and CCNC techniques,
and two different models were used to parameterize the Köhler equation from the sub-5

saturated H-TDMA data to predict the supersaturation at the point of activation. Fur-
thermore, for the rural Hungarian aerosol samples, the total soluble fraction (extracts)
and the fraction remaining after removing the HULIS from the extracts (effluents) were
analysed.

The six HULIS samples showed hygroscopic growth factors between 1.05 and 1.1110

for 100 nm particles at 90% RH. The models successfully predicted the critical super-
saturations of the extract- and the effluent samples when assuming that the particles
had the surface tension of pure water. The critical supersaturations of HULIS particles
were overpredicted by between 0.9% (absolute) for the 50 nm dry size and 0.3% for
the 120 nm dry size when assuming water surface tension. The difference between15

the response of 50 and 120 nm particles is to be expected, as small particles are more
sensitive to changes in surface tension. When iteratively adjusting the surface tension
to minimize the residual between the CCNC and the H-TDMA data, surface tensions
at the point of activation were found between 47.7 and 50.3 mN/m for dry sizes be-
tween 50 and 120 nm, which is a significant decrease from the surface tension of water20

(72.8 mN/m). A moderate lowering of the effluent and extract samples’ surface ten-
sions was observed, indicating that the effect may have an influence on the ambient
aerosol. However, the effect on critical supersaturation was minor.

All SMOCC HULIS samples showed similar hygroscopic properties compared to the
Hungarian HULIS sample, with the day samples showing slightly lower hygroscopic-25

ity. Since the biomass burning samples were either analysed with the H-TDMA or
the CCNC, and not in parallel due to a lack of sample volume, it is not possible to
draw definite conclusions from these samples. However, predictions of the critical
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supersaturation from the average hygroscopic growth factors (from four samples) us-
ing water surface tension seem to overestimate the measured critical supersaturation.
This also suggests that the surface tension at the point of activation is lower than that
of water due to the HULIS’ surfactant properties.

It can be concluded that HULIS can have a significant surface activity potential5

when isolated, and this alters the critical supersaturation needed for activation of cloud
droplets. However, when they act as part of the entire water soluble matter, this ef-
fect is no longer significant, most likely due to the water uptake by inorganic salts,
which have a high solubility and dilutes the HULIS concentration. In this study only
one HULIS measurement could be used to draw a quantitative conclusion regarding10

this effect, and given the diversity of different kinds of HULIS which are available in the
atmosphere, more general conclusions would need further investigation on the matter.
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Table 1. Origin of aerosol samples analyzed with the H-TDMA and the CCNC techniques.

Sample Location Sampling time Type Method used
H-TDMA CCNC

HULIS (SMOCC, D1) Rondônia, Brazil Day, 17–21 Sep 2002 biomass burning ×
HULIS (SMOCC, D2) Rondônia, Brazil Day, 21–28 Sep 2002 biomass burning ×
HULIS (SMOCC, D3) Rondônia, Brazil Day, 28 Sep–4 Oct 2002 biomass burning ×
HULIS (SMOCC, N1) Rondônia, Brazil Night, 17–21 Sep 2002 biomass burning ×
HULIS (SMOCC, N2) Rondônia, Brazil Night, 21–28 Sep 2002 biomass burning ×
HULIS (SMOCC, N3) Rondônia, Brazil Night, 28 Sep–4 Oct 2002 biomass burning ×
Extract (Winter) K-puszta, Hungary Day/Night, 16 Feb 2001 rural background × ×
Effluent (Winter) K-puszta, Hungary Day/Night, 16 Feb 2001 rural background × ×
HULIS (Winter) K-puszta, Hungary Day/Night, 16 Feb 2001 rural background × ×
Extract (Summer) K-puszta, Hungary Day/Night, 11 Jul 2001 rural background × ×
Effluent (Summer) K-puszta, Hungary Day/Night, 11 Jul 2001 rural background × ×
HULIS (Summer) K-puszta, Hungary Day/Night, 11 Jul 2001 rural background ×
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Table 2. Previously measured HULIS growth factors at 90% RH together with the Gf from this
work. Sample notations are according to the published papers.

Sample Gf at 90% RH

KP010112-ISOM, 100 nm dry size (Gysel et al., 2004) 1.08
KP010126-ISOM, 100 nm dry size (Gysel et al., 2004) 1.11
KP010726-ISOM, 100 nm dry size (Gysel et al., 2004) 1.16
KP010816-ISOM, 100 nm dry size (Gysel et al., 2004) 1.17
LBO-night, 60 nm dry size (Dinar et al., 2006) 1.18
LBO-day, 60 nm dry size (Dinar et al., 2006) 1.24
Budapest, sample 1 (Ziese et al., 2007) 1.17
Budapest, sample 2 (Ziese et al., 2007) 1.05
K-puszta, summer 1.11
K-puszta, winter 1.05
SMOCC, D1 1.06
SMOCC, D3 1.11
SMOCC, N1 1.06
SMOCC, N3 1.05
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Table 3. κR value statistics for RH values between 90 and 98%. The κR presented are based on
assuming that the non-ideality of the solute can be accounted for by a model salt. κR values in
paranthesis are values resulting from ideal behaviour or the droplet – assuming full dissociation.
r2 is the coefficient of determination between RH and κR. The significances of the trend (linear
increase of κR as a function of RH) was also calculated (Trend 95% CI).

KAPPA values above 90% RH average std r2 Trend
(moles/m3) 95% CI

HULIS (K-puszta, winter) 1571 (1177) 179 (110) 0.09 NO
Effluent (K-puszta, winter) 16 777 (11 475) 2696 (1758) 0.82 YES
Extract (K-puszta, winter) 10 968 (7570) 2107 (1466) 0.83 YES
HULIS (K-puszta, summer) 2924 (2148) 482 (347) 0.02 NO
Effluent (K-puszta, summer) 22 584 (14 977) 994 (496) 0.67 YES
Extract (K-puszta, summer) 19 233 (12 844) 1517 (880) 0.62 NO
HULIS (SMOCC, D1) 2102 (1574) 134 (126) 0.03 NO
HULIS (SMOCC, D3) 4729 (3365) 680 (527) 0.89 YES
HULIS (SMOCC, N1) 1605 (1222) 1661 (168) 0.23 NO
HULIS (SMOCC, N3) 2604 (1910) 381 (347) 0.70 YES
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Table 4. Critical supersaturation measured with the CCNCs for different dry diameters for
samples from K-puszta and SMOCC.

Critical supersaturation (%)
Dry diameter (nm) 40 50 60 75 80 100 120 125

Extract (K-puszta, summer) 0.84 0.60 0.43 0.29 0.20
Effluent (K-puszta, summer) 0.79 0.54 0.41 0.25 0.18
Extract (K-puszta, winter) 1.15 0.70 0.50 0.30 0.21
Effluent (K-puszta, winter) 1.07 0.69 0.51 0.33 0.24
HULIS (K-puszta, winter) 1.11 0.87 0.60 0.44 0.28
HULIS (SMOCC, D2) 1.36 0.82 0.55 0.26
HULIS (SMOCC, N2) 1.09 0.52 0.28
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Table 5. Surface tensions at the point of activation according to the ρion model for the K-puszta
winter sample.

Surface tension at activation (mN/m)
Diameter (nm) 40 50 60 80 100 120

Effluent (K-puszta, winter), Surface tension at point of activation (mN/m) 70.9 71 71 71.1 71.2
Extract (K-puszta, winter), Surface tension at point of activation (mN/m) 60.3 60.7 60.9 61.5 61.8
HULIS (K-puszta, winter), Surface tension at point of activation (mN/m) 47.7 48.2 49 50 50.3
Effluent (K-puszta, summer), Surface tension at point of activation (mN/m) 66.7 67 67.3 67.6 67.9
Extract (K-puszta, summer)Surface tension at point of activation (mN/m) 63.6 64 64.2 64.6 64.9
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Table 6. Fitted parameters for the ρion model for K-puszta compared to previous calculations
from Ziese et al. (2007). Note that ρion is given using the fitted surface tensions while in Table 3
the corresponding numbers for the κR model are listed using the surface tension of pure water.

Substance a (N/mK) b′ ρion (moles/m3)

HULIS (K-puzsta, winter) 2.01×10−5 106 1157
Effluent (K-puszta, winter) 8.03×10−7 106 12 692
Extract (K-puszta, winter) 1.53×10−6 106 8952
Effluent (K-puszta, summer) 6.63×10−6 106 15 552
Extract (K-puszta, summer) 7.31×10−6 106 12 105
HULIS, first sample, Budapest, Hungary (Ziese et al., 2007) 9.51×10−6 102 5434
HULIS, second sample, Budapest, Hungary (Ziese et al., 2007) 2.14×10−5 102 5268
HULIS, LBO night, Rehovot, Israel (Ziese et al., 2007) 3.51×10−5 102 3516
HULIS, LBO day, Rehovot, Israel (Ziese et al., 2007) 3.57×10−5 102 7317
HULIS, 3WSFA, Rehovot, Israel (Ziese et al., 2007) 2.68×10−5 102 13 269
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Fig. 2. Measured hygroscopic growth of Kpusza winter (a) and summer (b) samples and fitted
functions for particles with a dry diameter of 100 nm. The solid line represents ammonium
sulphate data from Tang and Munkelwitz (1999). The lines denoted fit are parameterisations
according to Eq. (14).
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the soluble ions collected on a filter and re-suspended). The average over all six periods ranges
between the two solid lines.
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The sc values are calculated according to Eq. (4).
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Fig. 7. Comparison of κR model (a) and ρion model (b) to CCNC data for the K-pusztawinter
sample. In (b) the ρion model is shown both assuming water surface tension and fitting the sur-
face tension to the data. In (a), the error bars along the 1:1 line represent typical uncertainties
of the experimental sc from the CCN counter.
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Fig. 8. Illustrating the effect on predicted supersaturation at low growth factors at 90% using
the approximated Köhler theory at activation. The approximation leads to an overestimation
of the critical supersaturation. The difference is getting smaller as the dry particle size or Gf
increases.
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Fig. 9. Measured and modelled sc values for the SMOCC day and night samples based on the
ρion model with water surface tension, using H-TDMA data as input. Due to the small amount
of material in the sample they were analysed either by the CCNC or the H-TDMA. Therefore,
the predicted sc values are based on data before and after the CCNC period.
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