26029

Atmos. Chem. Phys. Discuss., 9, 26029–26062, 2009 www.atmos-chem-phys-discuss.net/9/26029/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx – Part 1: Mean structure and diurnal cycle

D. A. Rahn and R. D. Garreaud

Departamento de Geofísica, Universidad de Chile, Santiago, Chile

Received: 6 November 2009 - Accepted: 19 November 2009 - Published: 7 December 2009

Correspondence to: D. A. Rahn (darahn@gmail.com)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

Atmospheric subsidence over the subtropical southeast Pacific (SEP) leads to a lowlevel anticyclonic circulation, a cool sea surface and a cloud-topped marine boundary layer (MBL). Observations in this region from a major field campaign during October

and November 2008, the VOCALS Regional Experiment, provide ample data to characterize the lower atmospheric features over the SEP. The observations are also useful to test the ability of an area-limited, high-resolution atmospheric model to simulate the SEP conditions. Observations and model-results (where appropriate) improve the characterization of the mean state (Part 1) and variability (Part 2) of the lower troposphere including circulation, MBL characteristics and the upsidence wave.

Along 20° S the MBL is generally deeper offshore (1600 m at 85° W) but there is also considerable variability. MBL depth and variability decrease towards the coast and maximum inversion strength is detected between 74–76° W. Southeasterly trades prevail within the MBL although the wind speed decreases toward the coast. Above the

- ¹⁵ MBL along the coast of Chile, flow is northerly, has a maximum at 3 km, and extends westward to ~74° W, apparently due to the mechanical blocking exerted by the Andes upon the westerly flow aloft. Mean MBL features along northern Chile (18–25° S) are remarkably similar (e.g., MBL depth just below 1 km) in spite of different SST. Observed diurnal cycles of the temperature at the coast and further offshore exhibit a number of
- ²⁰ conspicuous features that are consistent with the southwestward propagation of an upsidence wave initiated during late evening along the south Peru coast. Furthermore, the passage of the vertical motion results in either constructive or deconstructive interference with the radiatively-forced diurnal cycle of MBL depth.

1 Introduction

²⁵ The region offshore of northern Chile and southern Peru exhibits the archetypical structure that characterizes the lower-troposphere of the eastern boundary of subtropical

ACPD 9, 26029-26062, 2009 Part 1: Mean structure and diurnal cycle D. A. Rahn and R. D. Garreaud **Title Page** Introduction Abstract Conclusions References Tables **Figures** Close Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

oceans. A surface anticyclone over the subtropical southeast Pacific (SEP) is maintained by large-scale subsidence, producing dry, stable conditions and forcing alongshore equatorward flow at low levels that prevail year round (Garreaud and Muñoz, 2005). Wind-induced coastal upwelling cools the ocean surface, offsetting the high so-

- Iar radiation in these latitudes (Rutllant et al., 2004). Cold SST and warm air aloft result in a cool, moist marine boundary layer (MBL) separated from the free troposphere by a strong temperature inversion. The MBL is often topped by a shallow layer of stratocumulus (Sc) cloud. Indeed, the SEP is blanketed by the largest and most persistent deck of Sc in the world (Klein and Hartmann, 1993), thus playing a major role in the
- regional and global climate (Bony and Dufrense, 2005; Stephens, 2005 and references therein). The diurnal cycle of the clouds and free troposphere circulation is also particularly marked over the SEP (Garreaud and Muñoz, 2004; O'Dell et al., 2008; Wood et al., 2008). These outstanding attributes of the SEP cloud deck appears related to the presence of the Andes Cordillera that rises to more than 4500 m a.s.l. within 200 km
- of the coastline. Additionally, several copper smelter and other anthropogenic activities along the Chile-Peru coast contribute to a high aerosol concentration in the coastal MBL in sharp contrast with extremely clean air farther offshore (Huneeus et al., 2006; Tomlinson et al., 2007; Painemal and Zuidema, 2009).

Given their common and unique features, the SEP is a natural laboratory for studying the coupled ocean-atmosphere-land system on diurnal to inter-annual timescales. This region, however, is sparsely observed. In situ observations are largely restricted to a few meteorological stations along the coastal desert (including just one regular radiosonde station at Antofagasta, 23° S), one weather station in the offshore island of San Felix (27° S, 80° W, see details in Painemal et al., 2009), and one fully instrumented ocean buoy at 20° S, 85° W (Whelan et al., 2009). Meteorological data has also been obtained in a handful of scientific cruises transecting the region (Garreaud et al., 2001; Bretherton et al., 2004; Kollias et al., 2004; Serpetzoglou et al., 2008; de Szoeke et al., 2009), but these records alone did not suffice for a comprehensive description of

the SEP's lower troposphere.

ACPD 9, 26029-26062, 2009 Part 1: Mean structure and diurnal cycle D. A. Rahn and R. D. Garreaud **Title Page** Introduction Abstract Conclusions References **Tables Figures** Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

The VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS) is an international program that precisely targets the SEP region aiming at (i) improving the understanding and regional/global model representation of aerosol indirect effects on the clouds and (ii) eliminating systematic errors of coupled atmospheric-ocean general and regional ⁵ circulation models in the region (Wood et al., 2006). To this end, a major regional experiment was carried out during October and November 2008 in northern Chile and southern Peru. The so-called VOCALS-REx included an unprecedented number of atmospheric and oceanographic measurements taken concurrently from five aircraft, two research vessels, and two land sites, as described in Wood et al. (2007).

- ¹⁰ In this work we take advantage of the multi-platform, multi-instrument VOCALS-REx datasets to describe the large-scale structure and variability of the lower-troposphere over the SEP with emphasis on the MBL depth. Depth is important for features such as liquid water path, decoupling, and propagation speed of gravity waves. Whenever applicable, previous observations were used to place the two-month VOCALS-REx period
- ¹⁵ in context. Further, the in-situ observations and satellite products were complemented with results from a high resolution, two-month long simulation using the Weather and Research Forecast model (WRF, Skamarock, 2005). Our objective is threefold. First, a description of the lower tropospheric circulation and temperature structure is given to shed light on the coupled ocean-atmosphere-land system. Second, our large-scale
- ²⁰ meteorological characterization of the SEP provides context to many of the mesoscale and microphysical studies ongoing in the frame of VOCALS. Finally, while the WRF results were used to enhance our meteorological description, comparison between modeled and observed quantities (e.g., MBL depth) and processes (e.g., diurnal cycle) serve as a hard test for the ability of WRF to simulate the weather in oceanic, subtrop-
- ical regions. Discrepancies are identified and possible explanations are offered to help understand the impact of model biases.

Given the breadth of results, they are divided among two papers. In Part 1 (this paper) the mean structure and circulation of the atmosphere is documented, including their mean diurnal cycles. Part 2 focuses on the day-to-day fluctuation of the MBL

and the variability is interpreted in terms of the synoptic forcing over the SEP region (Rahn and Garreaud, 2009). Structure of Part 1 is as follows. Section 2 presents a brief description of the subset of VOCALS-REx observations used in this study and the setup of the WRF simulations. In Sect. 3 the mean structure (time average and variance) of

- the MBL over the SEP during VOCALS-REx is described. Aircraft missions during the field campaign were mostly concentrated at 20° S from the coast up to about 85° W, while enhanced radiosonde observations were performed along the coast (roughly at 71° W). Observations along these zonal and meridional transects were compared and complemented with the all-SEP WRF results. In Sect. 4 the diurnal cycle of the MBL is descented using the land site and shipkers about the sector of further intermeted.
- ¹⁰ is documented using the land-site and shipborne observations and further interpreted using the various fields from the WRF simulation. Results are summarized in the fifth and final section.

2 Data

2.1 Observations

- ¹⁵ Measurements from a large variety of sources were obtained during the VOCALS-REx period extending from 15 October to 15 November 2008 as described in detail by Wood et al. (2007). Figure 1 shows the location where MBL top was detected during VOCALS-REx from radiosondes, launched at coastal stations or on ships, and from aircraft passing through the inversion layer. Radiosondes were launched at surface ²⁰ stations along the coast at Iquigue (20.2° S), Antofagasta (23.6° S), Paposo (25.0° S),
- ²⁰ stations along the coast at rquique (20.2 S), Antolagasta (23.6 S), Paposo (25.0 S), and Santo Domingo (33.7°S). Launch times varied among stations and are summarized in Table 1. Arica (18°S) is included as a land station since vertical profiles were obtained near here from the C130 and G1 planes during takeoff and landing in and out of Arica, one of which was usually within a few hours of 12:00 UTC.
- ²⁵ The NOAA C130 flew 15 transects along ~20° S, some of them extending out to 86° W, porpoising between 200 m and 4000 m a.s.l. High-resolution cloud top heights

retrieved from the Wyoming Cloud Radar onboard the C130 was also used as a proxy of the MBL top. The DOE G1 does not have the range as the C130 and so measured closer to shore mainly along 18.5° S. During the voyage of the R/V Ron Brown soundings were launched every four hours and totaled nearly 200. There were stationary

⁵ periods at the Woods Hole buoy 20° S, 85° W and at the Dart Buoy 20° S, 75° W. Additionally, the R/V José Olaya launched soundings from 5 to 17 October 2008 and was typically within a couple hundred kilometers of the central Peruvian coast in a fairly focused region (13–16° S). The northern and southern transects from the R/V José Olaya are excluded from analysis here since they reached farther offshore and were significantly different from the rest of the more clustered data near the shore.

Additional information is included from previous austral fall cruises (2001 and 2003–2007) in the SEP that also tended to focus on the 20° S transect with long stationary periods at the Woods Hole buoy. Cruises include those from the East Pacific Investigation of Climate in 2001 (Bretherton et al., 2004), Stratus 2003 (Kollias et al., 2004), Stratus 2004 (Serpetzoglou et al., 2008), and Stratus 2007 (de Szoeke et al., 2009).

2.2 Numerical simulation

In this work, we used the WRF model over a square domain with 280 grid points and 20-km horizontal grid spacing (Fig. 2). Vertical resolution consists of 44 sigma levels with telescoping resolution toward the surface (\sim 10 m resolution near the surface).

- The simulation was initialized on 1 October 2008 and run continuously for two months. Global Forecast System (GFS) analyses (1° lat-lon grid) were used as initial and boundary conditions (updated every 6 h). Parameters used for the run are the following: Thompson microphysics scheme, rapid radiative transfer model and Dudhia radiation schemes, Monin-Obukhov (Janjic) surface scheme, Pleim land-surface model, Mellor-
- ²⁵ Yamada-Janjic boundary layer scheme, Betts-Miller-Janjic cumulus scheme, secondorder turbulence and mixing, and a horizontal Smagorinsky first-order closure eddy coefficient.

MBL depth from the output is calculated by finding the location of the temperature

extrema and then selecting that with the lowest temperature below 3 km. Since the minimum temperature is not necessarily at the base of the inversion, from this initial height where the minimum temperature is, each measurement above this height is checked until the temperature is found to be 0.5 K or higher than the minimum temper-

- ature, essentially moving up until the base of the inversion is found. The inversion is usually fairly strong so that this level is well-defined. The point under this threshold is defined as the MBL depth. MBL depth from this simple method has been inspected manually for quality control and works well to provide an objective height of the base of the temperature inversion.
- In the model, the MBL is not always defined since there is not always a capping inversion (e.g., during the passage of a midlatitude front). Figure 2 shows the fraction of time that a MBL is present in the model. North of about 25° S the MBL is always defined. Toward the south the MBL is defined less frequently. Boundary effects along the southwest borders are visible but because the domain is large, influence of the boundary is negligible in the VOCALS region. When the MBL is undefined these times and locations are not used in subsequent calculations, filtering out events with large upward motion.

3 Mean structure

3.1 Entire subtropical southeast Pacific

Let us begin our description with an overall picture of the simulated MBL over the entire subtropical southeast Pacific and a qualitative comparison with satellite data. Figure 3a shows the all-time average of selected variables over the SEP region using WRF output. On average the simulated MBL depth (Fig. 3a) increases offshore with a broad maximum centered around 20° S, 100° W. Overall the basic structure is similar to that inferred from satellite-based studies such as the September–October 2000 average (Wood and Bretherton, 2004), July 2006–June 2007 average (Leon et al., 2008), and

October 2008 average (Zuidema et al., 2009). The simulated heights are, however, generally lower especially to the east of 75° S. When considering the cross-shore direction, the MBL depth is loosely related to sea surface temperature (SST, Fig. 3a) such that higher SSTs are in general associated with higher MBL heights in agreement ⁵ with results from Zuidema et al. (2009). In contrast, the MBL depth varies little along the coast in spite of more than 5°C difference between central Chile and northern Peru. Winds within and at the top of the MBL are anticyclonic, associated with the typical near-surface high pressure distribution. Strong winds are found at the coast in central

Chile associated with the coastal jet (Garreaud and Muñoz, 2005). Above the MBL at
 750 hPa (~2.5 km a.s.l.) there is still anticyclonic flow over much of the SEP (Fig. 3b).
 Influence of the terrain is apparent since on average poleward flow prevails in a narrow band that extends from the coast to 74° W with largest values to the south of 20° S.
 Observations later confirm these features.

Cloud and aerosol microphysics within numerical models can be difficult to simulate
and may vary greatly from one model to another, not to mention the relationship with the observed fields (Myhre et al., 2007). Figure 3c depicts the temporal fraction of low cloud (<3 km) during October and November 2008. The overall picture is again consistent with cloud studies from satellites (e.g., Klein and Hartmann, 1993; Garreaud and Muñoz, 2005), including a maximum frequency off southern Peru, a broad mini-
mum offshore nearly collocated with the deepest MBL and a more localized minimum off central Chile. Total accumulated precipitation over October and November 2008 (Fig. 3d) is small near the coast and increases offshore reaching a maximum around 15° S, 95° W due to the precipitating trade wind cumulus, which is also derived from satellites (Leon et al., 2008; Kubar et al., 2009). We have refrained of doing further
characterization of the simulated cloud/precipitation properties until ongoing work us-

ing the VOCALS-REx dataset provides a more comprehensive observational picture for comparison.

ACPD

9, 26029–26062, 2009

Part 1: Mean structure and diurnal cycle

> D. A. Rahn and R. D. Garreaud

3.2 20° S transect and alongshore MBL observations

We now focus on the cross-shore (at 20° S) and alongshore transects where VOCALS-REx data allows a more quantitative MBL description and estimate of the model performance. Figure 4a illustrates a cross section of the MBL depth within two degrees of

⁵ 20° S from all available sources. Most of the data is from VOCALS-REx, but data from previous years is included as a reference. The two-month mean and standard deviation along 20° S from WRF is included to give a sense of the modeled MBL. Model and observations both show the upward sloping of the MBL depth from the coast westward. The deepest MBL (~1600 m a.s.l.) is observed west of 80° W, but this region in also characterized by high variability (see Part 2). Near the coast the average MBL depth is just over 1 km and there is less variability than offshore, suggesting a more consistent control of the MBL in the coastal region.

To the west of 80° W the simulated MBL depth is within the range of the observations (albeit about 200 m shallower than reality). The simulated depth, however, has an

- exaggerated decrease toward the coast so that near the shore the simulation underestimates the MBL height by about half. The simulated MBL depth is also particularly steady east of 74° W. The underestimation of the MBL depth near the shore seems to pervade many numerical models (Hannay et al., 2009; Wyant et al., 2009) representing a major challenge for the modeling community.
- Figure 4b shows the inversion strength from WRF output and observations, simply calculated as the maximum minus the minimum temperature near the inversion. The model tends to underestimate this inversion strength, which is not surprising since it is difficult to represent such a strong vertical gradient in models even with relatively high vertical resolution. Agreement between model and observations tends to improve off-
- shore and inversion strength increases from offshore to onshore until reaching a peak and diminishing again until the coastline, but the model peak appears to occur a couple degrees closer to shore.

Soundings along the coast at the various land stations are used to construct a mean

ACPD 9, 26029–26062, 2009 Part 1: Mean structure and diurnal cycle D. A. Rahn and R. D. Garreaud

state of the alongshore MBL structure. Examination of individual soundings from the R/V José Olaya and the four land sites in northern Chile (Arica, Iquique, Antofagasta and Paposo) reveals a recurrent structure with a well defined MBL capped by a strong temperature inversion. Distribution of MBL height from the land stations including all
 00:00 UTC and 12:00 UTC soundings is shown in Fig. 5, and the values of the mean

and standard deviation are contained in Table 1. The MBL depth from southern Peru down to Paposo tends to follow a normal distribution in a 600 m or so range. On average, the MBL is deepest (slightly over 1 km) and relatively flat between Paposo and Arica (19–25° S). The coastal MBL around 15° S is shallower than observed farther south, probably in connection with intense, localized upwelling off the Pisco peninsula.

Santo Domingo (33° S) soundings show MBL depth distributed over a greater range (with a positive skew) compared with stations farther north, attesting to the changes induced by mid-latitude systems. Profiles at Santo Domingo tend to contain a complicated structure, beyond that of a MBL, inversion, and free troposphere, making determination of the MBL depth more ambiguous. Despite this complexity, it is generally true that the MBL does tend to be shallower here than to the north with a mean MBL depth of 580 m.

3.3 20° S and alongshore mean cross sections

Data from Iquique and all offshore soundings (including previous years) launched within two degrees of 20° S are used to construct mean profiles by binning the data every 1° longitude and then contouring. The resulting cross section of potential temperature, zonal and meridional wind components are shown in Fig. 6. As seen before, the MBL is well defined and its depth tends to decrease towards the shore. Coldest temperatures within the MBL are contained between about 74° W and 78° W and are associated with the coolest average SST (Fig. 6c) as detected by the Advanced Very High Resolu-

with the coolest average SST (Fig. 6c) as detected by the Advanced Very High Resolution Radiometer (AVHRR). This same range of longitudes exhibits warm air in the free troposphere thus producing the maximum inversion strength as detected in Fig. 4b. The upward sloping of the isentropes above 3 km between ~73° W and the coast sug-

gest reduced subsidence in the coastal strip due to the blocking effect of the inland terrain.

Flow within the MBL exhibits the SE trades in excess of 6 m s^{-1} to the west of 75° W but it diminishes rapidly toward the coast down to a 1 m s^{-1} southerly breeze. In contrast with this near stagnant condition within the coastal MBL, the above-inversion coastal wind exhibits an onshore wind up to 4 m s^{-1} and a poleward flow of $2-4 \text{ m s}^{-1}$. Observed magnitude and extent of this wind is consistent with the two month average of the simulated wind (Fig. 3b). While fewer observations exist in the near coast region, the ample observations at Iquique also show these features.

- Let us now examine the alongshore variations using the mean profiles of the 00:00 and 12:00 UTC soundings at each location along the coast of Chile between 33.5° S to 18° S (Fig. 6b). The potential temperature cross section shows the southward cooling at mid-levels. Near the inversion level (around 1 km) the isopleths diverge to the south since the soundings at Santo Domingo are more variable leading to a more uniform
- vertical distribution of potential temperature. Within the MBL the air is a couple degrees warmer in the north. At Santo Domingo the mean potential temperature is about 286 K, while at Paposo it is about 288 K and at Iquique it is about 290 K. Unfortunately there is a substantial gap in observations between 25° S and 33° S so how the MBL (specifically its depth and mean temperature) changes in this region is not known, but the AVHRR
 20 SST (Fig. 6d) suggests a gentle modification. It is also surprising that the MBL depth
- remains nearly level between 25–18 $^\circ$ S despite a ${\sim}2\,\text{K}$ increase in SST and MBL mean temperature.

Zonal winds below 3.5 km are general very small (Fig. 6f) consistent with the blocking effect exerted by the coastal range and the Andes cordillera inland (average height

²⁵ about 4 km as indicated in Fig. 6f). Above 3.5 km, the westerly flow increases dramatically. At Iquique there is a slight onshore $(1-2 \text{ m s}^{-1})$ component above the MBL (~1.5 km) that is consistent with the 20° S cross sections, suggesting an extent of the onshore elevated breeze out to about 74° W. The meridional wind component exhibits southerly winds in the lower troposphere and a strong northerly flow at mid-levels.

ACPD 9, 26029-26062, 2009 Part 1: Mean structure and diurnal cycle D. A. Rahn and R. D. Garreaud **Title Page** Abstract Introduction Conclusions References **Tables Figures** Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

The low-level southerlies maximize near Santo Domingo (33° S) in connection with the coastal jet in that region (Muñoz and Garreaud, 2005). The mid-level northerlies encompass the entire cross section with a maximum of $6 \,\mathrm{m\,s}^{-1}$ above Paposo near 3 km. Such northerly flow has been previously documented by a handful of radiosondes near

the Andes foothills in central Chile (Kalthof et al., 2002; Rutllant and Garreaud, 2004) and interpreted as a geostrophic response to a meso-high pressure over the Anden slope. Nevertheless, the coastal and offshore VOCALS-REx soundings together with our modeling results (Fig. 3b) indicates that such mid-level northerly flow extends at least 100 km off the coast thus playing an important role on the regional tropospheric
 transport.

4 Diurnal cycle

4.1 Insights from WRF

As commented in the introduction, satellite cloud climatologies reveal a particularly marked diurnal cycle over the SEP, including a prominent 6-h harmonic in LWP that ¹⁵ can not be attributed to the dominant 12-h harmonic of solar radiation (O'Dell et al., 2008; Wood et al., 2008). Based on numerical simulations over the SEP using the 5th generation Mesoscale Model (MM5), Garreaud and Muñoz (2004) identified a pulse of upward motion in the middle troposphere (the so-called upsidence wave) that detaches from southern Peru coast at early evening and could cause the complex, strong diurnal ²⁰ cycle in temperature and cloudiness in this region.

Our VOCALS-REx simulation using WRF also features a prominent upsidence wave. Figure 7 shows the mean diurnal cycle of vertical velocity anomalies (departures from the all-times mean) at 2.5 km every 3 h. At 12:00 UTC the dominant mean subsidence is weakly perturbed by scattered anomalies of both signs. Over the next six hours ²⁵ downward motion intensifies, especially off northern Chile. Later in the day, a band of upward motion appears along the coast of Peru, reaching maximum intensity around

ACPD 9, 26029-26062, 2009 Part 1: Mean structure and diurnal cycle D. A. Rahn and R. D. Garreaud **Title Page** Introduction Abstract References Conclusions Tables **Figures** Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

21:00 UTC and detaching from the coast by 00:00 UTC in a crescent-shaped area. As the upsidence wave travels into the SEP it begins to dissipate and leave the domain around 09:00 UTC substantially weakened. This WRF-based result is in excellent agreement with its MM5-based counterpart (Fig. 5 in Garreaud and Muñoz, 2004),
 ⁵ despite the different model and simulation period.

A cross section of average diurnal perturbations along the direction of wave propagation is constructed to visualize the vertical extent, relation, and offshore propagation of various features (Fig. 8) of the upsidence wave. Beginning at 12:00 UTC vertical motion has only weak, positive anomalies, until 18:00 UTC when strong upward motion (U) develops near the coast. A cold anomaly (C1) at the MBL top develops at 21:00 UTC and is directly related to the upward motion. At 00:00 UTC upward motion increases, moves offshore, covers a more extensive horizontal region, and is mostly between 2 and 4 km. Trailing the cold perturbation is a warm anomaly (W1) that, unlike the leading edge, is not associated with a strong vertical velocity anomaly aloft but in

fact is under strong upward motion. After the vigorous upward motion aloft dissipates by 09:00 UTC, the cold anomaly (C1) persists until becoming diffuse by 15:00 UTC. The agreement in timing and position between the major vertical velocity and temperature anomalies is a natural consequence of the strongly stratified environment over the SEP (Garreaud and Muñoz, 2004), but it is worth noting that temperature anomalies can persist in absence of vertical velocity forcing.

4.2 Observations

We now use VOCALS-REx soundings to verify the existence of the upsidence wave mainly through its effect on temperature. Figure 9a shows the average 00:00 and 12:00 UTC temperature profiles emphasizing the uniform conditions between Paposo and Arica (Fig. 6b). The evening minus the early morning (00:00 UTC–12:00 UTC) potential temperature profiles are shown in Fig. 9b. For every location, except for Iquique, the temperature shows warming aloft at 00:00 UTC in connection with a downward (upward) displacement of the inversion during daytime (nighttime). This sort of diurnal 9, 26029–26062, 2009

Part 1: Mean structure and diurnal cycle

> D. A. Rahn and R. D. Garreaud

cycle in the near-shore MBL has been simulated and documented previously (e.g., Lilly, 1968; Blaskovic et al., 1991). In contrast, the Iquique sounding has a deeper boundary layer at the end of the day and its timing is coincident with the passage of the axis of the upsidence wave over Iquique that produces maximum upward motion at 00:00 UTC (Fig. 7e).

5

10

The R/V Ron Brown had two stationary time periods during its transit along 20° S, one at 85° W (25–27 October) and one at 75° W (30 October–3 November). Figure 10 shows the time series of potential temperature anomalies (departure from the hourly mean) as well as the mean diurnal cycle of these anomalies. Because the time period is limited (~3 days), it is important to include the entire time series to demonstrate that there are no strong anomalies overshadowing a diurnal cycle. At 85° W, there are strong anomalies at mid levels in the full time series (Fig. 10a), associated with

synoptic-scale perturbations, but a weak diurnal cycle (Fig. 10b). The diurnal cycle in the MBL depth is about 350 m leading to strong changes in potential temperature near the inversion base. The MBL-depth cycle exhibits regular overnight (daytime) deepening (shallowing) as usually the case for stratocumulus capped MBLs (e.g., Lilly, 1968; Caldwell et al., 2005).

At 75° W the time series depicts a fairly clear diurnal cycle of potential temperature anomalies between two and three kilometers above sea level (Fig. 10c), readily evident

- in the average diurnal anomaly with a minimum near 05:00 UTC and a maximum near 20:00 UTC (Fig. 10d). Notably, the amplitude of potential temperature diurnal cycle in the lower free troposphere is about 2 K. The mean MBL depth varies ~100 m during day in a cycle that has a more complex structure than farther offshore. This cycle is readily seen in the diurnal potential temperature anomalies near the inversion base.
- The key feature is the abrupt and early demise of the daytime warming (MBL shallowing) about 3 h before local sunset in contrast with the evolution at 85° W where the "normal" warming demise occurs ~3 after sunset. Demise of the nighttime cooling at 75° W is also premature relative with the evolution at 85° W. The warming-to-cooling transition atop of the MBL occurs in phase across much of the middle troposphere and

ACPD

9, 26029–26062, 2009

Part 1: Mean structure and diurnal cycle

> D. A. Rahn and R. D. Garreaud

is coincident with the onset of period of upward motion associated with the passage of the upsidence wave (blue arrow in Fig. 10d).

An illustration of the observed hourly potential temperature at 2.5 km above the surface for the two R/V Ron Brown sites is shown in Fig. 11. Warmest temperatures

- s are at 18:00 and 03:00 UTC for 75° W and 85° W, respectively. Coolest temperatures are at 03:00 and 15:00 UTC for 75° W and 85° W, respectively. Peaks in the temperature correspond fairly well to the onset of the upward motion (cooling) and troughs in temperature correspond to the onset of downward motion (warming). If these peaks and troughs in temperature propagated along 20° S from 75° W to 85° W as coherent
- features, it takes between 6 and 9h to move between the two locations traveling in 10 a straight line (1050 km), resulting in a propagation speed between $32-48 \text{ m s}^{-1}$. The upsidence wave propagates along a northeast to southwest axis (Fig. 7). Correcting the previous east-west propagation speed by ~sin(45°) results in a observational estimate of the upsidence wave phase speed of $23-34 \text{ m s}^{-1}$, in agreement with satellite data (Wood et al., 2008) and our model-based estimate (30 m s^{-1}) . 15

4.3 Model-observations discrepancies

To further compare the observed and simulated diurnal cycles of temperature, Fig. 12 presents mean diurnal temperature anomalies for the observations (as in Fig. 10 but repeated over 48 h), the WRF-simulated anomalies for the same time period as the observations, and the WRF-simulated anomalies for the entire two month period. While 20 the two-month averages are more diffuse because they represent a greater range of conditions, model results from the subset time period and the entire two months are in agreement, indicating robust diurnal features. There is a fairly good agreement between the WRF and observations in the middle troposphere, both in the timing and amplitude of the diurnal cycle. Even the 2-month average of the model contains the 25 four distinct potential temperature anomalies at the top of the MBL. The simulated 2month period includes average diurnal perturbations in upward vertical motion by the shading and arrows that indicate the vertical motion that is acting as the mechanism

for the rapid change in temperature.

Near the inversion base, however, the characteristics are not as well represented since a shallower MBL in the simulation is clearly evident, especially at the near shore R/V Ron Brown station (20° S, 75° W). The simulation does capture the small, local tem-

- ⁵ perature perturbations observed at the top of the MBL (four daily), but these anomalies are not at the same times (middle panels in Fig. 12). The major warm anomaly near the MBL top initiates at about 18:00 UTC in the observations and WRF. The following cold anomaly is at 00:00 UTC in the observations but occurs at 03:00 UTC in the simulation. These low-level model discrepancies are most likely a result of the shallower
- ¹⁰ MBL depth. If these features at the MBL are initiated by the upward motion near the coast and propagate away from the shore as a gravity wave within the MBL, the speed of propagation is $c = (g'H)^{1/2}$, where g' is reduced gravity and H is MBL depth. Assuming a similar g' and wavelength between model and observations, the WRF-simulated gravity wave would have a phase speed 0.71 slower than the observed wave, since the simulated MBL depth is only half of the observed value. This slower propagation
 - of the simulated gravity wave accounts for most of the delay in the onset of the cold anomalies atop the MBL at 20° S 75° W relative to the observations.

5 Summary

Ample data over the subtropical southeast Pacific obtained during the VOCALS-REx
 period (October–November 2008) has been used to characterize the mean state of the lower troposphere in this region, including circulation, temperature structure, MBL depth, and the impact of the upsidence wave in the diurnal cycle. The observations are largely clustered along a zonal transect at 20° S (from the coast to about 85° W) and along the northern Chilean coast. A numerical simulation using the WRF model
 was run to expand upon observations and produced reasonable results including the distribution of cloud and drizzle when contrasted with satellite data. Direct comparison of the model MBL solution with observations, however, reveals model weaknesses near

the coast. Several features of the SEP mean conditions are documented, including:

- Low-level anticyclonic circulation around the surface high pressure producing a trade wind ~6 m s⁻¹ offshore and much slower flow toward shore. Above the MBL there is still anticyclonic flow over the Pacific Ocean, but along the coast there is a north-northwest wind associated with anomalous high pressure along the topography induced by the blocking effect of the Andes cordillera. Model and observations both confirm the existence of a northerly barrier jet along the Andes with average poleward flow extending out to ~74° W and maximum speed over 6 m s⁻¹ above Paposo at ~3 km.

5

20

- Average MBL depth is ~1600 m at 20° W, 85° W and decreases to ~1000 m at the shore. Variability offshore is significantly larger offshore than onshore leading to either steeper or flatter gradients. The simulation has this same trend but the MBL depth near the shore is much lower (about half of the observed value). A minimum in SST is offshore near 76° W in contrast with the warmest air aloft, producing maximum inversion strength between 74–76° W.
 - Along the coast the average potential temperature within the MBL is cooler in the south, consistent with a SST decrease of 5 K from 18° S to 34° S. Despite large changes in the SST, the MBL in northern Chile (18–25° S) is fairly constant with a depth of about 1000 m. At 33° S, the MBL at Santo Domingo is generally lower than the other coastal stations, but the temperature profiles contain much larger variability due to being close to the mid-latitude storm tracks.

The diurnal cycle of temperature profiles obtained during VOCALS-REx exhibits several features that can be interpreted as the signature of the upsidence wave over the SEP, a regional-scale phenomena previously identified in modeling studies (Garreaud and Muñoz, 2004) and satellite-derived cloud analyses (O'Dell et al., 2008):

 All but one of the coastal soundings behaves as a typical cloud-topped MBL where the depth increases over night into the morning and decreases during the day. 26045

AC	ACPD						
9, 26029–2	9, 26029–26062, 2009						
Part 1: Mean structure and diurnal cycle							
D. A. Rahn and R. D. Garreaud							
Title	Title Page						
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
14	14 14						
•	•						
Back	Back Close						
Full Screen / Esc							
Printer-friendly Version							
Interactive Discussion							

The exception is at Iquique where the MBL is deeper at the end of the day, attributed to the influence of the upward vertical motion shown by models to be directly over Iquique at this time.

 The stationary offshore observations taken onboard the R/V Ron Brown have some conspicuous features. At 20° S, 75° W there is a damped, complicated MBL variation over the day, presumably because the normal radiative forcing and forcing from the subsidence wave are out of phase.

5

10

15

- At the same point and farther west (20° S, 85° W) the potential temperature in the lower free troposphere (2–3 km) exhibit a significant diurnal cycle (up to 2 K) whose timing is very well explained by the alternation between positive and negative anomalies in the vertical velocity field created by the passage of the upsidence wave.
- There is an issue between model and observations with the timing of the perturbations at the top of the MBL, but this is explained by the difference in MBL height that impacts the propagation speed of a gravity wave. An underestimate in MBL depth by half produces a phase speed 0.7 slower. This highlights an important issue in that a correctly-simulated depth of the MBL is necessary to capture the precise diurnal cycle in the SEP near the coast.

While the mean MBL structure of the SEP has a well defined structure, especially in the east-west direction, our analyses reveal significant changes in the MBL depth offshore. In Part 2 of this work we use observations and the WRF simulation to (i) document these day-to-day changes, (ii) diagnose their forcing and ultimately (iii) connect them with the extratropical synoptic activity.

Acknowledgements. This project was funded by the FONDECYT Grant 1090412 and CONI CYT Grant ACT-19/R-19. We are grateful to the numerous participates in VOCALS-REx that took observations. University of Wyoming personnel provided radar-derived cloud top heights from the C-130 supported by NSF grant AGS-0715077.

References

20

30

Blaskovic, M., Davies, R., and Snider, J. B.: Diurnal variation of Marine Stratocumulus over San Nicolas Island during July 1987, Mon. Weather Rev., 119, 1469–1478, 1991.

Bony, S. and Dufresne, J.-L.: Marine boundary layer clouds at the heart of tropi-

- cal cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851, 2005.
 - Bretherton, C. S., Uttal, T., Fairall, C. W., Yuter, S. E., Weller, R. A., Baumgardner, D., Comstock, K., Wood, R., and Raga, G. B.: The EPIC 2001 stratocumulus study, B. Am. Meteorol. Soc., 85, 967–977, 2004.
- ¹⁰ Caldwell, P., Bretherton, C. S., and Wood, R.: Mixed-layer budget analysis of the diurnal cycle of entrainment in southeast Pacific stratocumulus, J. Atmos. Sci., 62, 3775–3791, 2005. de Szoeke, S., Fairall, C. W., and Pezoa, S.: Ship observations coasting South America in the

tropical Pacific Ocean, J. Climate, 22, 458–464, 2009.

- Garreaud, R. D., Rutllant, J., Quintana, J., Carrasco, J., and Minnis, P.: CIMAR-5: A snapshot of the lower troposphere over the subtropical southeast Pacific, B. Am. Meteorol. Soc., 82, 2193–2207. 2001.
 - Garreaud, R. D. and Muñoz, R. C.: The diurnal cycle in circulation and cloudiness over the subtropical southeast Pacific: a modeling study, J. Climate., 17, 1699–1710, 2004.

Garreaud, R. D. and Muñoz, R. C.: The low-level jet off the subtropical west coast of South America: structure and variability, Mon. Weather Rev., 133, 2246–2261, 2005.

Hannay, C., Williamson D., Hack, J., Kiehl, J., Olson, J., Klein, S., Bretherton, C., and Kohler, M.: Evaluation of forecasted simulated southeast Pacific stratocumulus in the NCAR, GFDL, and ECMWF models, J. Climate, 22, 2871–2889, 2009.

Huneeus, N., Gallardo, L., and Rutllant, J. A.: Offshore transport episodes of anthropogenic

- ²⁵ sulfur in northern Chile: potential impact on the stratocumulus cloud deck, Geophys. Res. Lett., 33, L19819, doi:10.1029/2006GL026921, 2006.
 - Kalthoff, N., Bischoff-Gauß, I., Fiebig-Wittmaack, M., et al.: Mesoscale wind regimes in Chile at 30° S, J. Appl. Meteorol., 41, 953–970, 2002.
 - Klein, S. A. and Hartmann, D. L.: The seasonal cycle of low stratiform clouds, J. Climate, 6, 1587–1606, 1993.
 - Kollias, P., Fairall, C. W., Zuidema, P., Tomlinson, J., and Wick, G. A.: Observations of marine stratocumulus in the SE Pacific during the PACS 2003 cruise, Geophys. Res. Lett., 31,

ACPD

Part 1: Mean structure and diurnal cycle

- D. A. Rahn and
- R. D. Garreaud

Title Page						
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
I	►I					
•	•					
Back	Close					
Full Scre	Full Screen / Esc					
Inter-mendly version						
Interactive Discussion						

L22110, doi:10.1029/2004GL020751, 2004.

10

25

- Kubar, T. L., Hartmann, D. L., and Wood, R.: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part I: Satellite observations, J. Atmos. Sci. 66, 2953–2972, 2009.
- Leon, D. C., Wang, Z., and Liu, D.: Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), J. Geophys. Res., 113, D00A14, doi:10.1029/2008JD009835, 2008.
 - Lilly, D.: Models of cloud-topped mixed layers under a strong inversion, Q. J. Roy. Meteor. Soc., 94, 292–309, 1968.
- Muñoz, R. C. and Garreaud, R. D.: Dynamics of the low-level jet off the west coast of subtropical South America, Mon. Weather Rev., 133, 3661–3677, 2005.
 - Myhre, G., Stordal, F., Johnsrud, M., Kaufman, Y. J., Rosenfeld, D., Storelvmo, T., Kristjansson, J. E., Berntsen, T. K., Myhre, A., and Isaksen, I. S. A.: Aerosol-cloud interaction inferred from
- ¹⁵ MODIS satellite data and global aerosol models, Atmos. Chem. Phys., 7, 3081–3101, 2007, http://www.atmos-chem-phys.net/7/3081/2007/.
 - O'Dell, C. W., Wentz, F. J., and Bennartz, R.: Cloud liquid water path from satellite-based passive microwave observations: a new climatology over the global oceans, J. Climate., 21, 1721–1739, 2008.
- Painemal, D. and Zuidema, P.: Cloud droplet number concentration variability over the southeast Pacific Stratocumulus region, International Conf. on Clouds and Precipitation, Cancun, Mexico, July 7–11, A33D-15, 2008.
 - Painemal, D., Garreaud, R. D., Rutllant, J., and Zuidema, P.: Southeast Pacific stratocumulus: high frequency variability and meso-scale structures over San Félix Island, J. Appl. Meteorol. Clim., in press, 2009.
 - Rahn, D. A. and Garreaud R. D.: Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx – Part 2: Synoptic variability, Atmos. Chem. Phys. Discuss., 9, 26063– 26094, 2009,

http://www.atmos-chem-phys-discuss.net/9/26063/2009/.

- ³⁰ Rutllant, J. A. and Garreaud, R. D.: Episodes of Strong Flow down the Western Slope of the Subtropical Andes, Mon. Weather Rev., 132, 611–622, 2004.
 - Rutllant, J. A., Rosenblutha, B., and Hormazabal, S.: Intraseasonal variability of wind-forced coastal upwelling off central Chile (30° S), Cont. Shelf Res., 24, 789–804, 2004.

9, 26029–26062, 2009

Part 1: Mean structure and diurnal cycle

- D. A. Rahn and
- R. D. Garreaud

Title	Title Page					
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	►					
•	•					
Back	Close					
Full Scre	Full Screen / Esc					
Printer-friendly Version						
Interactive Discussion						

- Serpetzoglou, E., Albrecht, B., Kollias, P., and Fairall, C. W.: Boundary layer, cloud, and drizzle variability in the southeast Pacific stratocumulus regime, J. Climate, 21, 6191–6214, 2008.
- Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A description of the advanced research WRF version 2, Tech rep., NCAR, 88 pp., 2005.

5

10

- Stephens, G.: Cloud feedbacks in the climate system: a critical review, J. Climate, 18, 237–273, 2005.
- Tomlinson, J. M., Li, R., and Collins, D. R.: Physical and chemical properties of the aerosol within the southeastern Pacific marine boundary layer, J. Geophys. Res., 112, D12211, doi:10.1029/2006JD007771, 2007.
- Whelan, S. P., Lord, J., Galbraith, N., Weller, R., et al.: Stratus 9/VOCALS ninth setting of the stratus ocean reference station & VOCALS regional experiment, Tech. Report. Woods Hole Oceanographic Institution, 127 pp., 2009.

Wood, R. and Bretherton, C. S.: Boundary layer depth, entrainment, and decoupling in the

- cloud-capped subtropical and tropical marine boundary layer, J. Climate, 17, 3576–3588, 2004.
 - Wood, R., Bretherton, C., Huebert, B., Mechoso, C. R., Weller, R., and coauthors: VO-CALS Regional Experiment: Scientific program overview, http://www.atmos.washington.edu/ ~robwood/VOCALS/VOCALS_SPO_Complete.pdf, 2006.
- 20 Wood, R., Bretherton, C., Fairall, C., et al: VOCALS Regional Experiment: Experimental design overview, http://www.atmos.washington.edu/~robwood/VOCALS/VOCALS_EDO_ Revised_April07.pdf, 2007.

Wood, R., Köhler, M., Bennartz, R., and O'Dell, C.: The diurnal cycle of surface divergence over the global oceans, Q. J. Roy. Meteor. Soc., 00, 2–11, 2008.

- ²⁵ Wyant, M. C., Wood, R., Mechoso, C. R., and Bretherton, C. S.: The PreVOCA model assessment, 16th Conf. on Air-Sea Interaction, Pheonix, AZ, Amer. Meteor. Soc., 3.1, 2009.
 - Zuidema, P., Painemal, D., de Szoeke, S., Fairall, C.: Stratocumulus cloud-top height estimates and their climatic implications, J. Climate, 22, 4652–4666, 2009.

9, 26029–26062, 2009

Part 1: Mean structure and diurnal cycle

D. A. Rahn and

R. D. Garreaud

Title	Title Page					
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	►I					
•	•					
Back	Close					
Full Screen / Esc						
Full Scre	een / Esc					
Full Scre	een / Esc					
Full Scree Printer-frier	een / Esc ndly Version					
Full Scree Printer-frier Interactive	een / Esc ndly Version Discussion					

ACPD

9, 26029–26062, 2009

Part 1: Mean structure and diurnal cycle

D. A. Rahn and

R. D. Garreaud

Title I	Title Page						
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
14	۶I						
Back	Back Close						
Full Scre	Full Screen / Esc						
Printer-frien	Printer-friendly Version						
Interactive Discussion							

Table 1. Average MBL depth for various times including the difference between 12:00 and 00:00 UTC, standard deviation, and launch times. All times in UTC and units in meters.

	00:00	12:00	12–00	00 and 12	$\sigma_{ m 00~and~12}$	All	Launch Times
José Olaya	867	880	13	873	186	860	Variable
Arica	-	1041	_	-	-	1027	Near 12:00
Iquique	1083	1023	-60	1053	154	1038	Every 4 h
Antofagasta	909	1034	125	972	177	971	00:00 and 12:00
Paposo	918	1138	220	1028	201	1066	00:00, 12:00, 18:00
Santo Domingo	564	597	33	581	476	581	00:00 and 12:00

ACPD

Fig. 1. Location of soundings from the R/V Ron Brown, R/V José Olaya, and land-based launch sites during VOCALS-REx (October–November 2008). C130 and G1 airborne observations indicate where the aircraft passed through the top of the MBL.

Fig. 2. WRF Domain showing terrain elevation (m, bottom color scale and black contours every 2000 m) and fraction of time that a MBL was defined from WRF output (top color scale and white contours every 0.05).

ACPD

9, 26029–26062, 2009

Fig. 3. October and November 2008 average of selected variables using the WRF simulation. **(a)** SST (K, color), MBL depth (m, contour), and wind at the top of the MBL (arrows, $m s^{-1}$), **(b)** 750 hPa meridional wind component ($m s^{-1}$, color), height (m, contour), and wind (arrows, $m s^{-1}$), **(c)** low (<3 km) cloud fraction (color) and MBL depth (m, contour), and **(d)** total accumulated precipitation (color, mm) and MBL depth (m, contour).

ACPD

26053

ACPD

9, 26029–26062, 2009

Part 1: Mean structure and diurnal cycle

> D. A. Rahn and R. D. Garreaud

Fig. 5. Frequency of MBL depth for 100-m bins during VOCALS-REx for the costal sites (a) R/V José Olaya (~15° S), (b) Iquique (20.2° S), (c) Antofagasta (23.5° S), (d) Paposo (25° S), and (e) Santo Domingo (33° S) using 00:00 and 12:00 UTC soundings.

9, 26029–26062, 2009

ACPD

9, 26029–26062, 2009

Part 1: Mean structure and diurnal cycle

Fig. 7. WRF-simulated 2-month mean diurnal vertical velocity anomalies $(cm s^{-1})$ at 2.5 km every 3 h (UTC time indicated in each panel). Dashed line in **(a)** depicts location of subsequent cross section. Also shown is the location of the coastal sounding stations during VOCALS-REx.

Fig. 8. WRF-simulated 2-month mean of hourly potential temperature anomalies (contours, K) and vertical velocity anomalies (color fill; cm s⁻¹). The anomalies are shown in a cross-section extending southwest from Peru as depicted by the dashed line in the upper left plot of Fig. 7. Letters indicate (C1) the leading colder, deeper MBL anomaly, (W1) the warmer, shallower MBL, and (C2) the weaker trailing colder, deeper MBL. Letters indicate regions of (U) upward and (D) downward motion.

ACPD

9, 26029–26062, 2009

Part 1: Mean structure and diurnal cycle

Fig. 9. (a) Average profile of potential temperature (K) for all 00:00 and 12:00 UTC coastal soundings during VOCALS-REx and **(b)** difference between average 00:00 UTC and average 12:00 UTC potential temperature profiles.

ACPD

9, 26029–26062, 2009

Fig. 11. Observed potential temperature (K) at 2.5-km for each day at which the R/V Ron Brown was stationed at 20° S, 75° W (circles) and 20° S, 85° W (triangles).

Interactive Discussion

