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Abstract

We present airborne in situ measurements made during the AMMA (African Monsoon
Multidisciplinary Analysis)/SCOUT-O3 campaign between 31 July and 17 August 2006
on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO2 and
N2O were measured with the High Altitude Gas Analyzer (HAGAR), CO was measured5

with the Cryogenically Operated Laser Diode (COLD) instrument, and O3 with the Fast
Ozone ANalyzer (FOZAN). We analyze the data obtained during five local flights to
study the dominant transport processes controlling the tropical tropopause layer (TTL)
above West-Africa: deep convection up to the level of main convective outflow, over-
shooting of deep convection, horizontal inmixing across the subtropical tropopause,10

and horizontal transport across the subtropical barrier. Except for the flight of 13 Au-
gust, distinct minima in CO2 indicate convective outflow of boundary layer air in the
TTL. The CO2 profiles show that the level of main convective outflow was mostly lo-
cated between 350 and 360 K, and for 11 August reached up to 370 K. While the CO2
minima indicate quite significant convective influence, the O3 profiles suggest that the15

observed convective signatures were mostly not fresh, but of older origin. When com-
pared with the mean O3 profile measured during a previous campaign over Darwin in
November 2005, the O3 minimum at the main convective outflow level was less pro-
nounced over Ouagadougou. Furthermore O3 mixing ratios were much higher through-
out the whole TTL and, unlike over Darwin, rarely showed low values observed in the20

regional boundary layer. Signatures of irreversible mixing following overshooting of
convective air were scarce in the tracer data. Some small signatures indicative of this
process were found in CO2 profiles between 390 and 410 K during the flights of 4 and
8 August, and in CO data at 410 K on 7 August. However, the absence of expected
corresponding signatures in other tracer data makes this evidence inconclusive, and25

overall there is little indication from the observations that overshooting convection has a
profound impact on TTL composition during AMMA. We find the amount of photochem-
ically aged air isentropically mixed into the TTL across the subtropical tropopause to
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be not significant. Using the N2O observations we estimate the fraction of aged extra-
tropical stratospheric air in the TTL to be 0.0±0.1 up to 370 K during the local flights,
increasing above this level to 0.2±0.15 at 390 K. The subtropical barrier, as indicated
by the slope of the correlation between N2O and O3 between 415 and 490 K, does not
appear as a sharp border between the tropics and extratropics, but rather as a gradual5

transition region between 10 and 25◦ N latitude where isentropic mixing between these
two regions may occur.

1 Introduction

The tropical tropopause layer (TTL), the region in the tropics where air has characteris-
tics of both the stratosphere and the troposphere, is a critical region of the atmosphere.10

It is the main region for air entering the stratosphere and therefore it sets the chem-
ical boundary conditions for the stratosphere. The TTL is commonly defined as the
layer extending from the level of main convective outflow at 10–14 km to the cold point
tropopause at about 16–19 km altitude (Gettelman and Forster, 2002). Laterally, the
TTL is bounded by the position of the subtropical jets. Processes active in the TTL15

include the global-scale circulations in the stratosphere (Brewer-Dobson) and tropo-
sphere (Hadley-Walker), large-scale and small-scale atmospheric waves, convection
organized on all time and space scales, mixing, radiative heating and cooling, chem-
istry and cloud microphysics. Satellite observations and 2-D or 3-D transport mod-
els provide a general picture of the TTL, but typically cannot well resolve spatial, in20

particular vertical, variations within the layer. Hence, highly resolved in situ measure-
ments of trace gases and their use as tracers of atmospheric transport have proven
extremely useful for studying the radiative, chemical, and dynamical properties of the
TTL (e.g., Park et al., 2007). Tracers are compounds whose lifetimes are longer than
the timescales of the processes transporting them, such that their distributions are25

mainly determined by dynamical processes. In the stratosphere, the correlation be-
tween two long-lived tracers (tracer-to-tracer correlation) often turns out to be very
compact (Plumb and Ko, 1992). The form and curvature of the correlation curve is
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dependent on the lifetimes of the tracers and on transport processes. Different atmo-
spheric regions may exhibit different correlation curves between tracers. Variations
from these correlations may be caused by horizontal or vertical mixing between the
regions or by chemistry. Hence, tracer-to-tracer correlations are a particularly useful
tool to study transport and mixing between the troposphere and the stratosphere (e.g.,5

Hoor et al., 2002), or between the tropical and extratropical stratosphere (e.g., Volk
et al., 1996). Over the last two decades various field campaigns have taken place to
obtain in situ observations of the TTL and get more insight into the different processes
taking place in this layer of the atmosphere. Marcy et al. (2007) have presented mea-
surements of HCL, O3, HNO3, H2O, CO, CO2 and CH3Cl in the tropical upper tropo-10

sphere and lower stratosphere (UT/LS) during the Pre-AVE campaign over Costa Rica
in January 2004. They infer that a significant amount of stratospheric air and O3 were
present in the TTL, making it distinct from both the stratosphere and the remainder of
the troposphere. Park et al. (2007) have presented CO2 measurements during the Pre-
AVE, CR-AVE and TWP-ICE campaign in Costa Rica and Australia. They suggest that15

the TTL is composed of two layers, the lower TTL which is subject to significant inputs
of convective outflow, and the upper TTL, where air ascends slowly and ages uniformly.
They calculate a mean age of air entering the lower stratosphere of 26 days during NH
winter. Tuck et al. (2003) have analyzed tracers and thermodynamical data from var-
ious ER-2 and WB57F aircraft campaigns and documented significant transport from20

the lower midlatitudes stratosphere toward the tropics, coming to the conclusion that
the characteristics of the TTL are determined by a trade-off between subtropical jet
stream dynamics and inner tropical ascent via deep convection. Until now, in situ mea-
surements of tracers throughout the TTL have not been reported during NH summer
and none have been made above the African continent. However, this region may25

play an important role in troposphere-to-stratosphere transport. Ricaud et al. (2007)
present satellite data of N2O, CH4 and CO and radar data in the tropical tropopause re-
gion during NH spring and suggest that rapid uplift over land convective regions may be
the dominant process of troposphere-to-stratosphere exchange. They suggest that the
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maximum penetration of convective systems into the lower stratosphere would occur
primarily over Africa at all seasons. Beginning in 2001, the large project AMMA (African
Monsoon Multidisciplinary Analyses) was set up to study the West-African monsoon
and its influence on the physical, chemical and biological environment, regionally and
globally. The overall objective of the project was to provide the underpinning science5

that relates variability of the West African Monsoon to issues of health, water resources,
food security and demography for West-African nations and to define and implement
relevant monitoring and prediction strategies (www.amma-international.org). Within
the frame of AMMA and the project SCOUT-O3 (Stratospheric-Climate Links with Em-
phasis on the Upper Troposphere and Lower Stratosphere) an aircraft campaign took10

place at the peak of the summer monsoon period in 2006, probing the air from the
boundary layer up to the stratosphere (Cairo et al., 2009). The campaign took place
in July/August 2006 and was based in Ouagadougou, Burkina Faso. The main aim of
this aircraft campaign was to quantify the contribution of different air mass origins on
the chemical composition of the TTL during the summer monsoon over West Africa. At15

this time of year the TTL can be impacted by recent local or regional convective uplift,
but also by uplift from the lower troposphere upwind (e.g. over Asia), intrusion of air
from the mid-latitude lower stratosphere or cross-hemispheric transport of air masses
from the Southern Hemisphere (Law et al., 2009). A detailed description of the mete-
orological situation during the West-African monsoon in 2006 can be found in Janicot20

et al. (2008). In this paper we will present in situ tracer data of CO2, N2O, O3 and CO
that were obtained on board the M55 Geophysica aircraft during the AMMA/SCOUT-O3
project and analyse them regarding the principal transport processes that control the
chemical composition of the TTL and tropical lower stratosphere above West-Africa.
Vertical profiles and correlations between the various species, serving as stratospheric25

tracers, as boundary layer tracers, or age-of-air tracers will be used to contrast obser-
vations of the background TTL with convectively influenced air, to diagnose irreversible
mixing of convectively overshooting air with the background TTL, and to assess isen-
tropic mixing across the subtropical tropopause and the subtropical transport barrier.
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2 In situ measurements

Tracer measurements were made between 31 July and 17 August 2005 on board the
M55 Geophysica aircraft from (and during transfer to/from) Ouagadougou, Burkina
Faso (12◦ N, 1◦ W). A total of nine flights were performed with measurements from
the free troposphere up to the tropical lower stratosphere around 20 kilometer alti-5

tude. Four transfer flights were made between Verona (Italy), Marrakech (Morocco)
and Ouagadougou (Burkina Faso). Five local flights between 4◦ N and 17◦ N latitude
and 3◦ W and 3◦ E longitude were made to study mesoscale convective systems (MCS)
and long range transport, and to validate the CALYPSO satellite. A brief overview of
the flights is given in Table 1. A more extended overview of the flights and the Geophys-10

ica campaign can be found in Cairo et al. (2009). A suite of long-lived tracers (CO2,
N2O, CFC−12, CFC−11, H−1211, SF6, CH4, H2) was measured by the University
of Frankfurt’s High Altitude Gas Analyzer (HAGAR) on all flights except on 7 August
when a software failure occurred. HAGAR is a two-channel in situ gas chromato-
graph (GC) that is combined with a CO2 sensor (LI-COR 6251). The two GC-channels15

with electron capture detectors (ECD) measure the long-lived tracers N2O, CFC−12,
CFC−11,H−1211, CH4, SF6 and H2 with a time resolution of 90 s. The CO2 sen-
sor achieves a time resolution of 5 s using non-dispersive infrared absorption (NDIR).
A detailed description of the instrument can be found in Riediger (2000) and Strunk
(1999). Frequent in flight calibrations within the instrument were performed in order20

to meet the specifications for accuracy and precision. All measurements are directly
traceable to the current WMO scales based on intercalibrations against standards of
NOAA/GMD or (for CO2) the University of Heidelberg (I. Levin). For CO2 the mean
precision during all flights was 0.3 ppm. The precisions for the measurement of the
other tracers are in the order of 0.5–3%; for the N2O measurements used in this study25

it is better than 1.5%. Accuracies of the HAGAR measurements is limited by the pre-
cision and are thus only slightly larger than these precision values. Additionally, CO
was measured with a precision of 1% and accuracy of 6–9% by the Italian institute
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INOA (Istituto Nazionale di Ottica Applica) with the tunable diode laser COLD (Cryo-
genically Operated Laser Diode) as described in detail by Viciani et al. (2008). Ozone
was measured with the Fast Ozone ANalyzer (FOZAN) of the Central Aerological Ob-
servatory (CAO, Russia) (Ulanovsky, 2001) with an accuracy of 10%. Mixing ratios
for all gas measurements are expressed in dry mole fractions. Flight parameters as5

altitude, pressure and temperature were recorded by the aircraft.

3 Analysis of main transport processes

The results of the analysis of the different transport processes occurring in the summer
TTL over West-Africa will be discussed in the following sections. Section 3.1 describes
both main convective outflow as well as overshooting convection, Sect. 3.2 describes10

isentropic stratospheric inmixing across the subtropical tropopause and Sect. 3.3 de-
scribes isentropic mixing across the subtropical barrier in the lower stratosphere. Each
section will have a short introduction about the concepts of the transport process de-
scribed.

3.1 Convection15

Convection plays an important role in determining the thermodynamic and chemical
properties of the TTL. It can provide a fast pathway for halogenated very short lived
species and other boundary layer trace gases to reach the TTL and subsequently the
stratosphere, where they could contribute to the depletion of ozone. The amount of
very short lived species that can reach the stratosphere thus depends crucially on the20

convective mass flux into the TTL as well as the maximum altitude level that is reached
by deep convection. There are two mechanisms in which convection contributes to
vertical transport through the TTL. The first is direct convective uplift to the level of
neutral buoyancy, which is located at a potential temperature of at most 365 K (Folkins
et al., 2000). At this level the potential temperature becomes equal to the highest25
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equivalent potential temperatures realized in the marine boundary layer. It is there-
fore near the maximum altitude an air parcel from the boundary layer can reach by
undiluted, nonovershooting ascent (Reid and Gage, 1981). This convection up to the
level of neutral buoyancy can be followed by slow diabatic ascent up to and across the
tropopause due to radiative heating and the dynamical forcing by the Brewer Dobson5

circulation (Folkins et al., 1999). The typical time scales for this diabatic transport,
as derived from numerical models and tracer measurements, range between 2 and
3 months for the upward transport from a potential temperature of 350 K up to 390 and
420 K, respectively (e.g., Andrews et al., 1999). The second mechanism, by which
convection can influence the TTL to much higher levels than its neutral buoyancy level,10

is irreversible mixing of air following dynamic overshooting (Danielsen, 1982, 1993;
Sherwood, 2000). When an air parcel overshoots its level of neutral buoyancy it will
be colder than the surrounding air and start descending back to its equilibrium level.
However, when it entrains and mixes with warmer surrounding air it will come to rest at
a warmer, higher equilibrium level, i.e. its potential temperature increases (Danielsen,15

1982). This overshooting of convection occurs predominantly above continental areas
(Liu and Zipser, 2005; Zipser et al., 2006) and in large mesoscale convective systems
(Rossow and Pearl, 2007), which are generated regularly over West-Africa in the mon-
soon period, thereby providing a fast pathway for boundary layer air into the upper
TTL or even the lower stratosphere. Although the existence of this mechanism is gen-20

erally accepted, its importance at global scale is less clear. In this section the two
mechanisms for convective influence will be studied with help of the tracer data mea-
sured during AMMA/SCOUT-O3. In Sect. 3.1.1 we will examine the first mechanism
and assess the level of main convective outflow and the influence of local and aged
convection on the CO2 profiles. In Sect. 3.1.2 we will examine the data for signatures25

of overshooting air.
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3.1.1 Main convective outflow

CO2 can be used as a tracer for continental convection because its mixing ratio is
reduced in the boundary layer due to uptake by vegetation during daytime. Deep con-
vection during the African Monsoon season peaks in the evening (Sultan et al., 2007)
when boundary layer CO2 is expected to be around its minimum. Convective transport5

of boundary layer air into the TTL during the Monsoon season therefore results in a
layer of low CO2 mixing ratios around the level of main convective outflow. Above this
level, diabatic ascent is expected to dominate convection, vertical mixing and mixing
of older air from mid-latitudes into the tropics. Hence, a coherent “tape recorder” sig-
nal due to the monotonic aging of the slowly ascending air and the progressing CO210

seasonal cycle in the tropospheric boundary layer can be observed (Boering et al.,
1996; Park et al., 2007). In this section we will discuss the strength and height of
the main convective influence with help of the CO2 profiles and compare with results
of an analysis by Law et al. (2009). Law et al. (2009) calculate the fraction of mea-
sured air that has potentially been influenced by recent convection with help of ECMWF15

backtrajectories and infrared satellite images identifying convective clouds. They label
an airmass as possibly recently convectively influenced when its backward trajectory
crossed a region whose cloud top radiance was below 200 K within a longitudinal band
from 30◦ W to 40◦ E, corresponding to an age of at most three to four days. Figure 1
shows the vertical CO2 profiles for the four local flights on 4, 8, 11 and 13 August,20

respectively. Mixing ratios as low as 372 ppm are observed in the daytime boundary
layer over Ouagadougou; even lower values could be present in rural areas. The influ-
ence of vegetative uptake of CO2 is getting smaller in the free troposphere, resulting
in higher mixing ratios of around 380 ppm. Convection during afternoon and evening
transports the CO2-depleted boundary layer air up to about 13–14 km, or a potential25

temperature level of 350 K (Fig. 2), where again a distinct layer with low mixing ratios
is observed. Above this level the typical coherent “tape recorder” signal is observed.
The flight of 11 August shows the highest and strongest outflow signature, with mixing
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ratios as low as 374 ppm found up to 370 K. This flight aimed specifically at sampling
air influenced by a large and intense MCS that had crossed westward across Burkina
Faso during the previous days (Cairo et al., 2009). Law et al. (2009) also find that of all
flights performed during the campaign, the TTL sampled during the flight on 11 August
was most influenced by recent convection. They calculate that for this flight 7–10% of5

the measured air between 340 and 380 K was possibly influenced by recent convective
activity. Our CO2 observations suggest that convective outflow of this intense MCS in
fact reached unusually high potential temperatures of 370 K. For the flight of 8 August,
Law et al. (2009) also indicate possible convective influence up to a level of 390 K,
although to a lesser extent, i.e. for only 2 to 5% of the measured air. This agrees well10

with the CO2 profile, which shows a level of main convective outflow at 350 K with a
CO2 mimimum that is less pronounced than on 11 August. However, above this level
the “tape recorder” signal is less compact as during the other flights, which might be
an indication of overshooting convection, which will be discussed in the next section.
For the flight of 4 August, the CO2 profile shows again a recognizable level of main15

convective outflow at 355 K, again less distinct as for the flight of 11 August. Law et
al. (2009) indeed infer possible influence of recent convection for only 3 to 4% of the
air, and just up to 355 K, during that day. Least influence of convection is evident in
the profile of 13 August, where an outflow level can hardly be discerned, with mixing
ratios at 13 km as high as in the free troposphere. This again agrees well with the20

analysis of Law et al. (2009), who also find least possible influence of recent convec-
tion (less than 2% above 350 K) during this flight. Overall, the observed features in the
CO2 profiles and their relative strengths and maximum altitudes are thus qualitatively
in line with the fractions of sampled air having recently (within about 4 days) passed
over convective systems, as calculated by Law et al. (2009). However, these fractions25

are calculated to be on the order of a few percent only (at most 10% for 11 August).
The observed pronounced CO2 reductions by up to 4 ppm in the convective outflow
region cannot easily be explained by such small recent convective input, unless re-
gional boundary layer mixing ratios are much lower on the average than those actually
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observed over Ouagadougou. Another, more likely, explanation is that the CO2minima
are not only due to recent convection, but to a larger part caused by older convection
having occured more than four days ago. Since CO2 is chemically conserved in the
TTL, it is not possible to distinguish between the effects of recent and older convection
with help of the CO2 profiles. However O3 profiles can give an indication whether the5

convection was of recent or of older origin. In the tropical boundary layer typical ozone
mixing ratios range from 15 to 40 ppb (Folkins and Martin, 2005). Deep convection will
transport this O3 poor air together with ozone precursors from the tropical boundary
layer into the TTL, where, as long as no new convective input takes place, the mixing
ratio will steadily increase by photochemical production until it reaches its steady state.10

Therefore, O3 mixing ratios are an indication for the convective replacement timescale
over a region. However, not only convection, photochemical production, and the time
since the air has last experienced convective flushing determine the O3 mixing ratios
in the TTL. The O3 budget in the TTL can also be significantly affected by isentropic
stratospheric inmixing bringing in extratropical stratospheric air with high O3 mixing ra-15

tios. Vertical mixing, e.g. following overshooting of air, may also mix down higher ozone
concentrations from higher altitudes. We show in Sect. 3.2 that horizontal stratospheric
inmixing, however, is not significant during the four flights considered here. Mixing fol-
lowing overshooting will be discussed in the next section (Sect. 3.1.2). Figure 3 shows
the ozone profiles during the AMMA campaign. The average profile of all five local20

flights is indicated as the black line. For comparison, the dark green line represents the
average ozone profiles during the SCOUT-O3 campaign, which took place in November
and December 2005 above northern Australia. This latter profile shows the typical S-
shape, with low O3 mixing ratios of 30 ppb over the marine boundary layer, increasing
concentrations in the free troposphere, again low O3 mixing ratios at the level of main25

convective outflow, and above that increasing mixing ratios due to the photochemical
production of O3 in the lower stratosphere. The AMMA-SCOUT-O3 profiles also show
this S-shape profile, although less pronounced. Again, concentrations are average to
about 30 ppb in the boundary layer; this mean value above Ouagadougou agrees also
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well with that observed in the boundary layer over Niamey, Niger, by regularly launched
ozone sondes (Cairo et al., 2009) and is thus thought to be fairly representative for a
wider region. In the free troposphere O3 increases with height up to around 60 ppb at
a potential temperature level of 340 K. O3 mixing ratios at the level of main convective
outflow, however, are much higher on average than those observed during the SCOUT-5

O3 campaign or in the boundary layer during AMMA-SCOUT-O3. For most of the flights
no boundary layer values are observed at the main level of convective outflow (355 K),
thereby indicating that recent convection had only a minor impact on the sampled air.
Only on 4 August there are values as low as 30 ppb found at a level of 355 K, indi-
cating more recent convective flushing. Above 370 K the O3 mixing ratios are up to10

twice as high as during the SCOUT-O3 campaign. Randel et al. (2007) show that in
a narrow vertical layer between ~16 and 19 km (~375–450 K) approximately a factor 2
change in ozone between the minimum (during NH winter) and maximum (during NH
summer) takes place due to variations in vertical transport associated with mean up-
welling in the lower stratosphere (the Brewer Dobson circulation). Folkins et al. (2006)15

show with help of ozone sondes that the seasonal difference in upwelling can explain
20 to 40 ppb of the difference between August and November/December at the 370 K
level. Thus, the higher mixing ratios observed during AMMA are probably caused by
the seasonal difference in upwelling due to the Brewer Dobson circulation. In sum-
mary, the CO2 profiles show that the region around West-Africa is highly influenced by20

convection up to 355 K, during 11 August even up to 370 K. Clearly pronounced levels
of main convective outflow are observed during three of the four flights. However, O3
profiles strongly suggest that this convective influence is mostly of older origin, and has
been transported for at least several days before measured. Only the observations of
4 August exhibit some signatures of recent convection in the O3 profile. Overall, these25

results are in good agreement with the findings of Law et al. (2009).
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3.1.2 Overshooting of convection

Now we examine potential signatures of overshooting convection in the tracer data by
observations of CO, CO2 and O3. In Fig. 4 the CO2 profiles during AMMA/SCOUT-O3
are plotted in one figure, with their average represented by the black line. On 8 August
there are large deviations from this average between 390 and 420 K. Both enhanced5

and reduced values of CO2 can be found at this level. On 4 August there are also some
reduced values between 400 and 420 K. The enhanced values on 8 August cannot be
explained by transport processes; given they occur shortly after a calibration phase of
the instrument we cannot completely rule out an unusual instrumental instability. The
low values could be an indication of irreversible mixing of overshooting air. If irreversible10

mixing takes place during or following convective overshoot, air parcels originating from
the boundary layer with a potential temperature of 350–360 K (the level of neutral buoy-
ancy) will mix with air masses with a higher potential temperature along a mixing line.
In practice, mixing may proceed along a multitude of such mixing lines resulting in a
mixing band in a profile plot (provided sufficient sampling). In Fig. 4, two possible ide-15

alized mixing lines are displayed. They indicate that, in order to explain the signatures,
mixing would have occurred between air parcels with potential temperatures of approx-
imately 355 K and 400–420 K, that is overshooting convection would have reached up
to 17–18 km. Overshooting convection can also be diagnosed in tracer-tracer correla-
tions. Without mixing, the correlation between a tropospheric (e.g. CO, CO2) and a20

stratospheric tracer (e.g. O3) will form an L-shape: in the troposphere an almost con-
stant mixing ratio of the stratospheric tracer and much variation in the mixing ratio of the
tropospheric tracer, and the opposite in the upper TTL and stratosphere. Thus, the cor-
relation plot exhibits two distinct branches for the stratosphere and the tropopsphere,
which meet in the lower TTL. Mixing following overshooting would again be seen along25

mixing lines between these two branches, connecting boundary layer observations with
values observed at the highest level of overshoot. Figure 5 shows the correlation plot
between O3 and CO2 for the local flights, coloured according to potential temperatures
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and with the average correlation in black. The figure shows a flipped L-shape with vari-
able CO2 mixing ratios and constant O3 mixing ratios in the troposphere up to about
360 K, and above that increasing O3 mixing ratios and slowly decreasing CO2 mixing
ratios. Again, the correlation plot shows a deviation from the average correlation curve
between potential temperatures of about 360 and 420 K. They occur along mixing lines5

corresponding to those displayed in Fig. 4. However, similar signatures are not ob-
served during that part of the flight in other species like H2O, NOy and particles (not
shown). If overshooting of convection had occurred one would expect clear signals
of enhanced H2O and particles as moister air with more particles from the boundary
layer would be entrained. Voigt et al. (2008) indicate layers with enhanced particles10

and NOy, but these are found at other locations during the flight. The latter study
does, however, show with backtrajectories that the air measured during this flight was
located above a mesoscale convective system for at least 1.5 days prior to the mea-
surements, with cloud top levels up to at least 120 hPa (16 km altitude). As during the
flight of 7 August CO2 was not measured due to failure of the HAGAR instrument we15

examine the CO data measured by the COLD instrument. Figure 6 shows the CO pro-
files for both 7 and 8 August (the only flights during which COLD measured). Around
410 K, very high CO mixing ratios are observed, which could again be an indication
of vertical mixing following overshooting. This feature is also present in the correlation
plot between CO and O3, which is shown in Law et al. (2009). However, as the two20

possible mixing lines in Fig. 6 indicate, this would imply mixing of air from the main
convective outflow level (355 K) with air parcels at potential temperatures of at least
430 K, i.e. overshoot to extremely high levels. Again, other tracers do not show simi-
lar signatures. Although enhancements are observed in mixing ratios of NOy and CCN
during that day, these only indicate an influence up to 14–15 km, and during a later sec-25

tion of the flight (not shown). Water vapour mixing ratios do not show any signatures
indicative of overshooting convection (not shown). Overall, we conclude that signa-
tures potentially indicating impact of overshooting convection are observed in the lower
stratosphere in the CO and CO2 mixing ratios during the AMMA campaign. However,
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these signatures are not corroborated by measurements from other instruments on
board the airplane. Thus, evidence for the impact of overshooting is inconclusive. In
particular, there is no clear indication that overshooting of convection plays a major role
in troposphere-to-stratosphere transport during the time of the campaign.

3.2 Stratospheric isentropic inmixing into the TTL5

Horizontally, the tropical tropopause layer is confined by the subtropical jets. The
strength and position of these jets vary by season, with a strong jet close to the equator
in the winter hemisphere and a weak, poleward shifted jet in the summer hemisphere.
Haynes and Shuckburgh (2000) show that a strong subtropical jet forms an effective
transport barrier for the meridional, isentropic transport between the lower part of the10

TTL and the extratropical lower stratosphere.
Isentropic, quasi-horizontal transport from the extra-tropical stratosphere may play a

significant role in determining the chemical (trace species) and radiative character of
the TTL (Gettelman and Forster, 2002). Analysis of previous aircraft measurements
suggests that there may be significant quasi-isentropic transport from the lower mid-15

latitude stratosphere toward the tropics (Tuck et al., 2003; Marcy et al., 2007). In order
to quantify the amount of extratropical stratospheric air entering the TTL we examine
the N2O data. N2O has its source located at the surface and is well mixed through-
out the troposhere. Photochemical sinks in the mid-stratosphere result in declining
N2O mixing ratios above the tropopause. Reductions in N2O mixing ratios below the20

typical tropospheric value therefore indicate entrainment of stratospheric, photochem-
ically aged (in the order of years) air masses. The profiles of N2O shown in Fig. 7
exhibit constant tropospheric concentrations for the local flights, and a well defined de-
crease from the tropopause upward, indicating that mixing with stratospherical older air
masses is exceedingly rare below the tropopause, whereas the decrease just above25

the tropopause indicates increasing in-mixing of older air masses. The measurements
made in Verona and during the transfer flights (> 30◦ N) show decreasing N2O values
above 330 K, indicating the level of the tropopause in the extratropical region. In order
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to estimate the fraction of air transported from the extratropical lower stratosphere the
N2O mixing ratios of the extratropical stratosphere are compared with the values in the
TTL. The fraction of aged extratropical air (χ ) can be expressed as:

χ =
[N2O]−[N2O]trop

[N2O]extratrop−[N2O]trop
, (1)

where [N2O] is the measured N2O mixing ratio; [N2O]trop is the average N2O mixing5

ratio at the bottom of the TTL, inferred as the average between potential temperatures
of 320 K and 350 K between 0–20◦ N; [N2O]extratrop is the average N2O mixing ratio
of the extratropical lowermost stratosphere, inferred as the average between potential
temperatures of 350 K and 400 K during all flights northward of 40◦. The values derived
here are [N2O]extratrop=309 and [N2O]trop=320 ppb. Fig. 8 shows the derived fraction10

of extratropical air in the TTL. The blue line represents the average height of the cold
point tropopause during the campaign. The fraction of aged extratropical air in the TTL
is around zero in the lower part up to 370 K and is only slightly increasing towards the
top of the TTL (here defined as the cold point tropopause). Note that this result refers
to in-mixing of photochemically aged air only and thus does not necessarily rule out in-15

mixing of extra-tropical stratospheric air altogether. In fact active isentropic exchange
across the weak summer subtropical jet with a net export of air masses from the TTL to
the extratropical stratosphere is known to flush the lowermost stratosphere with young
air over the course of the summer. Any re-entrainment of these young air masses
into the TTL would not be detected by the above diagnostic (but would also be of little20

relevance for the chemical composition of the TTL).

3.3 Isentropic mixing across the subtropical barrier

Except for its lowest part where isentropic mixing with the extratropics is still relatively
efficient, the tropical stratosphere is more or less isolated from the extratropical part
of the stratosphere (Volk et al., 1996; Minschwaner et al., 1996). The subtropical bar-25

rier constitutes a region of strong horizontal shear and maximum PV gradient along
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isentropes, thereby prohibiting fast isentropic mixing between the tropical stratosphere
and mid-latitude stratosphere, especially in the winter hemisphere. Due to the isolation
of the tropical stratosphere, tracer pairs with differing source/sink structures (e.g. O3–
N2O, O3–NOy) show different correlation slopes in the tropical and extratropical strato-
sphere (Volk et al., 1996; Fahey et al., 1996). At mid-latitudes, where quasi-horizontal5

mixing is faster than both vertical transport and chemical time scales, a compact cor-
relation evolves whose slope at any point is determined by the ratio of globally in-
tegrated sources and sinks of the two species above the given altitude (Plumb and
Ko, 1992). Further, since the sources and sinks for O3 and N2O are insignificant in
the lower stratosphere, this ratio remains approximately constant there, and thus the10

lower stratospheric correlation is fairly linear. In the tropics, on the other hand, quasi-
horizontal mixing is slower, and the correlation is to a large part determined by vertical
ascent and local chemistry (Volk et al., 1996); in situ production of O3 in the lower
stratosphere thus results in a correlation slope different from the mid-latitudes. The
correlation slope is thus a reliable indicator for the origin of an air mass. A change15

in the slope of these correlation branches marks the position of the subtropical bar-
rier. Mixing events between the two regions manifest themselves as lines or bands
connecting the characteristic tropical and extratropical correlation branches. Figure 9
shows the correlation between O3 and N2O for the local and the transfer flights during
AMMA/SCOUT-O3. The colours indicate the latitude of the measurements. Differ-20

ent correlation slopes are observed at different latitudes. The slopes of these corre-
lations are visualised in Fig. 10 by plotting the ratio of the differences between the
measured O3 and N2O values from tropospheric reference values, i.e. plotting the cor-
relation slope from the tropospheric origin of the correlation (chosen as 320 ppb N2O
and 50 ppb O3). The figure shows only data above a potential temperature of 415 K,25

above which a significant separation between the tropical and midlatitude correlations
can be discerned. The lowest slope values of 0.02 observed southward of 15◦ N indi-
cate air within the isolated tropical region (the “tropical pipe”), whereas the midlatitudes
exhibit slope values exceeding 0.04. Values in between these extremes are found in a
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band between 10◦ N and 30◦ N, suggesting a wider transition zone rather than a sharp
subtropical barrier. In order to examine whether the subtropical barrier might neverthe-
less be sharp, but undulate within that latitude band due to wave motions, we also plot
the slope values against equivalent latitude in Fig. 11. Reversible wave motions should
be mostly eliminated in this projection as they occur at roughly conserved potential vor-5

ticity, and thus equivalent latitude. Nevertheless, the transition between inner tropical
and midlatitude slope values still spans a band between 10◦ N and 25◦ N equivalent
latitude. It thus appears that during AMMA there is not a sharp barrier but a subtropical
transition zone with a width of about 15◦ latitude. In Fig. 12 we compare our results with
correlation slopes (N2O vs O3) found earlier during the ASHOE/MAESA campaign in10

March and October/November 1994. The slope values from AMMA data are coloured
and plotted against latitude. The ASHOE/MAESA slopes (in grey) can be viewed in
analogy to the NOy/O3 ratios published in (Fahey et al., 1996) and in fact show fairly
sharp transitions between low tropical values and extratropical values in March (around
10◦ N) and in October (around 15◦ N). In contrast, the transition during AMMA in August15

is more gradual and ranges between 10◦ N and 25◦ N. We note here that the ER-2 data
from ASHOE/MAESA in the region in question are on average sampled at a higher al-
titude than the M55 data from AMMA, the former being mostly collected during transfer
flights at maximum altitude (20–21 km). As the subtropical barrier increases in strength
above 20 km, the ASHOE/MAESA data are thus expected to be more suitable to indi-20

cate the location and width of the barrier, whereas the Geophysica during AMMA may
have sampled at an altitude range (below 20 km) at which the barrier is weaker and
thus more permeable to mixing. On the other hand, the subtropical barrier is also ex-
pected to be weakest during summer on the summer hemisphere due to the absence
of strong wave activity in the surf zone, which tends to shapen the barrier. Thus the ob-25

served differences between ASHOE/MAESA and AMMA in the width of the transition
between tropical and extratropical tracer values may well be explained by differences
in both sampling altitude and season.
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4 Conclusions

We have presented in situ tracer data from the AMMA-SCOUT-O3 campaign in
July/August 2006 over West-Africa. Data were obtained on board the M55 Geophys-
ica with the High Altitude Gas ANalyzer (HAGAR), measuring CO2, N2O, CFC−11,
CFC−12, H−1211, CH4, SF6 and H2, as well as from the FOZAN and COLD instru-5

ments, measuring O3 and CO, respectively. We have used the data to examine the
dominant transport processes in the TTL: deep convection up to the level of main con-
vective outflow, irreversible mixing after overshooting of deep convection, isentropic
inmixing into the TTL across the subtropical tropopause, and horizontal transport in
the region of the subtropical barrier. The CO2 profiles (with the exception of 13 August)10

show distinct minima in the TTL, reflecting the outflow of boundary layer air depleted in
CO2. These reductions in CO2 suggest that i) convective influence in the TTL is quite
significant in the sampled air masses and that ii) the main convective outflow was usu-
ally located at potential temperature levels up to ~350–360 K (13–14 km), and for the
flight of 11 August even reached up to 370 K (~15 km). The O3 profiles, on the other15

hand, indicate that the larger part of the convective fraction in the sampled air masses
must be of rather older origin (several days), as regional boundary layer mixing ratios of
30 ppb are only occasionally found in the TTL (only during the flight of 4 August), while
average O3 mixing ratios in the TTL are observed to be 50 ppb or higher. Overshooting
convection does not seem to have a large impact on vertical profiles of tracers, which20

exhibit quite coherent shapes above the maximum level of convective outflow. Only a
few small signatures potentially indicative of mixing following overshooting convection
were observed in the CO2 data during the flights of 4 and 8 August; another poten-
tial signature was observed in CO on 7 August. However, similar signatures were not
simultaneously observed in other tracers. Stratospheric inmixing of photochemically25

aged air from the extratropical stratosphere appears to be minimal up to the mean lo-
cal tropopause at 376 K. The fractions of aged extratropical air in the TTL, as estimated
from N2O profiles is 0.0±0.1 up to 370 K and is increasing above this level up to a about
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(0.2±0.13) at 390 K. The subtropical barrier does not manifest itself as a sharp bound-
ary in tracer distrubutions, but rather as a gradual transition region between around 10
and 25◦ N where tracer mixing ratios change from characteristic tropical to extratropi-
cal values. The subtropical barrier thus appears to be rather permeable to horizontal
mixing in the summer subtropics below 20 km altitude.5
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Table 1. Overview of flights during AMMA-SCOUT-O3.

Date of flight Time (UTC) Goal

31 07 2006 05:50–09:13 Transfer flight-UTLS profile
01 08 2006 10:59–14:59 Transfer flight-UTLS profile
04 08 2006 08:26–12:13 Long range transport
07 08 2006 12:15–16:07 MCS close up
08 08 2006 11:46–15:31 CALIPSO validation
11 08 2006 14:44–18:22 MCS aged outflow
13 08 2006 12:50–16:23 Long range transport
16 08 2006 13:27–15:16 Transfer flight-UTLS profile
17 08 2006 04:10–07:51 Transfer flight-UTLS profile
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Fig. 1. Vertical profiles of CO2 for the local flights on 4, 8, 11 and 13 August, respectively.
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Fig. 2. Potential temperature profiles of CO2 for the flights on 4, 8, 11 and 13 August, respec-
tively.
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Fig. 3. Ozone profiles for the five local flights. The average profiles is indicated with the black
line. The green line represents the average ozone profile for the SCOUT-O3 campaign over
Australia in November/December 2005.
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Fig. 4. CO2 profiles for the local flights during AMMA/SCOUT-O3. Average profile in black. Two
examples of possible mixing lines are presented by the grey lines
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Fig. 5. Correlation between O3 and CO2. The data are coloured to potential temperature. The
black line represents the average CO2 profile for all local flights. The grey lines are the possible
mixing lines that are also displayed in Fig. 4.
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Fig. 6. CO profiles for 7 and 8 August. The black lines represent the two most extreme possible
mixing lines that could explain the high CO values at 410 K. One mixing line would mean mixing
of air parcels with a potential temperature of 355 K and 430 K, the other line mixing of air parcels
with potential temperatures of 355 K and 470 K. Any mixing line in between these two extremes
is possible to explain the enhanced CO values at 410 K.
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Fig. 7. Vertical profile of N2O coloured to latitude.
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Fig. 8. Fraction of aged extratropical air for each measurement. Black line: average fraction for
all four flights. Blue line: average height of the tropopause.
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Fig. 9. Correlation between N2O and O3 coloured to latitude.
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Fig. 10. Slope dN2O/dO3 as a function of latitude for the local AMMA/SCOUT-O3 flights and
the two transfer flights from Ouagadougou to Verona (Italy).
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Fig. 11. Slope dN2O/dO3 as a function of equivalent latitude for the local AMMA/SCOUT-O3
flights and the two transfer flights from Ouagadougou to Verona (Italy).
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Fig. 12. Slope of dN2O/dO3 as a function of latitude for the AMMA/SCOUT-O3 flights (coloured)
and ASHOE/MAESA (grey).
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