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Abstract

Most parameterizations for precipitating convection in use today are bulk schemes,
in which an ensemble of cumulus elements with different properties is modelled as a
single, representative entraining-detraining plume. We review the underpinning math-
ematical model for such parameterizations, in particular by comparing it with spectral5

models in which elements are not combined into the representative plume. The chief
merit of a bulk model is that the representative plume can be described by an equation
set with the same structure as that which describes each element in a spectral model.
The equivalence relies on an ansatz for detrained condensate introduced by Yanai
et al. (1973) and on a simplified microphysics. There are also conceptual differences10

in the closure of bulk and spectral parameterizations. In particular, we show that the
convective quasi-equilibrium closure of Arakawa and Schubert (1974) for spectral pa-
rameterizations cannot be carried over to a bulk parameterization in a straightforward
way. Quasi-equilibrium of the cloud work function assumes a timescale separation be-
tween a slow forcing process and a rapid convective response. But, for the natural bulk15

analogue to the cloud-work function (the dilute CAPE), the relevant forcing is charac-
terised by a different timescale, and so its quasi-equilibrium entails a different physical
constraint. Closures of bulk parameterization that use the non-entraining parcel value
of CAPE do not suffer from this timescale issue. However, the Yanai et al. (1973) ansatz
must be invoked as a necessary ingredient of those closures.20

1 Introduction

The parameterization of precipitating convection for both general-circulation and nu-
merical weather prediction models is a notoriously stubborn problem (e.g. Arakawa,
2004; Randall et al., 2007). The parameterization scheme takes as input the grid-
scale flow in the parent model and attempts to deduce from that the tendencies to the25

resolved-flow arising from complicated, nonlinear sub-grid processes that are imper-
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fectly understood (due to the microphysics for instance), and even imperfectly defined
(for example, the convective and boundary-layer parameterizations will often be de-
signed separately and their coupling considered only later). Thus, the task is daunting
but nonetheless important in order to obtain satisfactory behaviour from the parent
model.5

One approach to convective parameterization is to estimate a target atmospheric
state produced through the action of convection and to drive the model state towards
that target (e.g. Betts and Miller, 1986). Another is more process-oriented, assuming
that the “mass flux” in convective “plumes” dominates the transport, and being based
on simple one-dimensional models of entraining plumes. The concept of an entraining10

plume is clearly a great over-simplification of the dynamics and thermodynamics of
an individual cloud. However, the plume concept does appear tolerably accurate when
averaged over many clouds (e.g. Lin and Arakawa, 1997; Kuang and Bretherton, 2006)
and so to provide a reasonable basis for parameterization (e.g. Lin, 1999), although
possibly only because of a somewhat fortuitous cancellation between errors (Lin and15

Arakawa, 1997).
The purpose of this article is to review “bulk” mass flux parameterizations of deep

convection and, in particular, to compare their theoretical basis to that of their “spec-
tral” counterparts. It has been argued (e.g. by Esbensen, 1978) that shallow convection
should be parameterized separately, not least because different adjustment timescales20

may apply, and we will not consider such cloud any further here. The model for an in-
dividual plume (labelled i ) can be formulated through budget equations which we shall
state explicitly in Sect. 2. The bulk and spectral models are distinguished through the
way in which the collective effects of an ensemble of plumes are treated. In a spectral
model, the plumes are grouped together into types characterised by some parameter,25
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say λ, so that the mass flux due to plumes of each type can be represented as1

M(λ)dλ=
∑

i∈(λ,λ+dλ)

Mi (1)

A generalization to multiple such parameters is trivial, although not common (Nober
and Graf, 2005, is an exception). In a bulk model there is no consideration of plume
types and the collective effects are treated through summation over all plumes to pro-5

duce a single, effective “bulk” or “ensemble” plume. In both types of model, it is as-
sumed that there are sufficient plumes to be treated statistically, such as might be
found within a region of space-time “large enough to contain an ensemble of cumulus
clouds but small enough to cover only a fraction of a large-scale disturbance” (Arakawa
and Schubert, 1974, p. 675). The existence of any such well-defined region in practice10

is certainly open to question (see e.g. Mapes, 1997), particularly in respect of the roles
of spatial and temporal averaging (e.g Yano et al., 2000), but we shall nonetheless
proceed with that notion here.

A spectral parameterization certainly requires more computations, with multiple
plume types to be explicitly considered. Historically this was an important consider-15

ation, and (at least in part) has motivated the development of various bulk parame-
terizations for operational models (e.g. Tiedtke, 1989; Gregory and Rowntree, 1990;
Gregory, 1997; Bougeault, 1985; Gerard and Geleyn, 2005). In recent times, with
enhanced computer performance, it is less clear that the run time of a convective pa-
rameterization should be quite such a strong consideration in its formulation. Major20

computational resources are being devoted to model the climate with convection being
represented explicitly rather than parameterized (e.g. Khairoutdinov et al., 2005; Gar-
ner et al., 2007; Shutts and Allen, 2007). In comparison, the computational overhead
of a spectral as opposed to a bulk parameterization is modest indeed.

In parameterizations for mesoscale models another argument has sometimes been25

advanced for single-plume as opposed to spectral formulations: since the grid ele-
1Eq. (78) of Arakawa and Schubert (1974)
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ments are relatively small, “it is assumed that all convective clouds in an element are
alike” (Fritsch and Chappell, 1980, p. 1724). This argument (see also Frank and Co-
hen, 1987; Fritsch and Kain, 1993) fails to recognize that although there may be only
a small number of clouds present in a relatively small grid box, the properties of those
clouds may not be knowable a priori but rather are randomly drawn from those of the5

statistical ensemble. As shown by Plant and Craig (2008) then, the consideration of
smaller grid boxes actually leads not to a formulation based on a single-plume with
prescribed properties but rather to stochastic parameterizations in which a spectral
formulation is sub-sampled.

We do not seek here to review the available evidence about the relative perfor-10

mance of bulk and spectral parameterizations, not least because it would be debat-
able whether any truly clean tests exist. We do, however, revisit and reconsider the
mathematical formulation of plume-based models, asking in particular whether a bulk
parameterization is a valid simplification of a spectral parameterization in principle. We
wish to be very clear about the simplifications, approximations or ansatze required to15

construct the bulk analogue of a spectral parameterization. It has been recognized
by Lawrence and Rasch (2005) for example, that bulk and spectral parameterizations
are not completely equivalent representations for the turbulent transport of all quanti-
ties, a point that has important implications2 for chemical transport. Our attention here
though is restricted to moisture and thermodynamic transports.20

As our exemplar spectral formulation, we use the well-known scheme of Arakawa
and Schubert (1974, hereinafter AS74). As our exemplar bulk formulation, we use the
scheme of Yanai et al. (1973, hereinafter YEC73). This is not a parameterization as
such, rather a system for diagnostic analyses. However, the rationale for bulk param-
eterizations in the literature does seem to be by appeal to the YEC73 model. This is25

stated explicitly by Gregory and Rowntree (1990); Gregory (1997) for example.

2For example, an additional, and somewhat arbitrary, parameter appears in tracer transport
calculations when a spectral parameterization is approximated by a bulk plume (Lawrence and
Rasch, 2005, Sect. 2c(1)).
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The remainder of this article is structured as follows. Budget equations for individ-
ual plumes are given in Sect. 2 and assumptions about detrainment are discussed in
Sect. 3. It is at that stage that the bulk and spectral formulations first depart and the
implications for determining the collective effects of the cloud ensemble are explained
in Sect. 4. Sect. 5 introduces the concept of a normalization transformation, which will5

be useful when we proceed to discuss closure in Sect. 6. Conclusions are presented
in Sect. 7.

2 Plume equations

The budget equations for a single entraining plume are given3 in AS74, specifically

∂ρσi

∂t
=Ei −Di −

∂Mi

∂z
(2)10

∂ρσisi
∂t

=Eis−DisDi −
∂Misi
∂z

+Lρci +ρQRi (3)

∂ρσiqi

∂t
=Eiq−DiqDi −

∂Miqi

∂z
−ρci (4)

∂ρσi li
∂t

=−Di lDi −
∂Mi li
∂z

+ρci −Ri (5)

Here i labels a plume within the ensemble, which occupies a fractional area of σi .
s=CpT+gz is the dry static energy, QR the radiative heating rate and R the rate of15

autoconversion of liquid water to precipitation and c the rate of condensation. Ei and
Di are respectively the entrainment and detrainment rates. In writing the entrainment

3Their Eqs. (43) to (50). Note that we have made some changes of notation from
AS74 in order to assist in the comparison with YEC73. Specifically Ci→ρci , E→e and
QR(AS74)→ρQR(YEC73).
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terms on the right-hand side of the above equations it has been assumed4 that q̃≈q
and s̃≈s, where the overbar denotes horizontal averaging and the tilde denotes a quan-
tity evaluated within the cloud-free environment, which is assumed homogeneous. In
writing the detrainment terms the subscript Di denotes a value on detrainment from
the i th plume. Detrainment occurs only in a thin layer at the plume top, and it should5

be understood that Ei=0 in the detrainment layer and that Di=0 elsewhere. Although
some authors (e.g. Johnson, 1977; McBride, 1981) have experimented with simple
representations of lateral detrainment throughout the depth of individual plumes, the
effects seem to be modest.

The above equations also include the mass flux,510

Mi =ρσiwi (6)

The effects of the plumes on their environment can be represented very simply under
the usual mass flux approximations of w̃�wi and σi�1. For some intensive variable
χ we have6

ρχ ′w ′ =
∑
i

Mi (χi − χ̃ ) (7)15

The prime denotes a local deviation from the horizontal mean. It should be recalled
that a mass-flux representation for the vertical fluxes, although extensively used in
convective parameterization and in diagnostic studies, is not without its difficulties (e.g.
Swann, 2001; Yano et al., 2004).

The above equations do not describe mesoscale circulations (e.g. Yanai and John-20

son, 1993), downdrafts (e.g. Johnson, 1976) or phase changes involving ice (e.g John-
son and Young, 1983). These are, of course, considerable limitations for practical ap-

4Nordeng (1994, p. 11) argues that the usual assumptions for the source of entrained air will
tend to overestimate dilution in the deepest plumes.

5Eq. (2) of AS74
6cf. Eq. (23) of YEC73, or Eqs. (35) and (36) of AS74
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plications, but not important for our present purposes. Should a bulk parameterization
without downdrafts (say) prove to be an ill-defined simplification of a spectral param-
eterization then it would not become well-defined through the addition of downdraft
terms.

The equivalent equation set7 in YEC73 differs from that above in that:5

i. time derivative terms are omitted;8

ii. AS74’s approximation χ̃→χ is not made in the entrainment terms;

iii. values on detrainment are assumed identical to the in-plume values, χDi=χi .

Although it is not necessary to do so, both YEC73 and AS74 simplify somewhat the
radiative heating term in Eq. (3): YEC73 by neglecting in-cloud radiation and AS74 by10

neglecting this within the entrainment layer.9

Assuming the in-plume air to be saturated at and above cloud base, we also have
the relationships10

si −s≈ 1
1+γ

(
hi −h

∗)
(8)

L(qi −q
∗
)≈ γ

1+γ

(
hi −h

∗)
(9)15

7Their Eqs. (27) to (30)
8Such terms are later dropped by AS74. Cho (1977) considered the effects of incorporating

a plume lifecycle into a mass-flux ensemble framework, and showed that the effects on the
apparent heating Q1 are negligible. However, an additional contribution arises to the apparent
moisture sink Q2 (their Eqs. 38 and 39) due to the mixing of air from the decaying plume with
its environment. Budget diagnosis suggests that this may be significant near cloud base, but is
less important elsewhere. See also Grell et al. (1991, p. 26).

9See the sentence after their Eq. (86).
10Eqs. (55) to (57) of AS74
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where

γ =
L
cp

∂q
∗

∂T

∣∣∣∣∣
p

(10)

Here h=s+Lq is the moist static energy and the star denotes a saturated value. Notice
that χ

∗
is to be interpreted as the saturation value that corresponds to T and p: it is

not the same as χ ∗, the horizontal average of the local saturation values. The same5

equations appear11 in YEC73, albeit with χ replaced by χ̃ .

3 Detrainment assumptions

It is in the detrainment assumptions that the spectral and bulk formulations depart in
a significant way. Let us consider each formulation in turn.

3.1 Detrainment in AS7410

A thin detrainment layer at the top of each plume occurs at its level of neutral buoyancy,
denoted ẑi . All plumes detraining at a given level are assumed to have the same in-
plume liquid water there, l̂≡li (ẑi ). Later in their derivation, AS74 choose to use a single
spectral parameter λ, such that ẑ and λ are monotonic functions of each other. Their
assumption for l̂ is then required for consistency with that choice. Note that a distinction15

is drawn between l̂ and the detrained liquid water lDi on the grounds that “additional
condensation (or evaporation) may be taking place near cloud top due to concentrated
radiational cooling (or heating) there” (AS74, p. 680).12

11As their Eqs. (33) and (34)
12See our Eq. (16) below for the mathematical statement of this.
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The neutral-buoyancy condition is the equality of the environmental and the in-plume
virtual dry static energy, which can also be expressed as,13

hi (ẑi )≡ ĥ∗ =h
∗
+hvc (11)

where the virtual contribution is given by

hvc =−
(1+γ)Lε
1+γεδ

(
δ(q

∗−q)− l̂
)

(12)5

with

ε=
cpT

L
(13)

and δ=0.608. Simplification of the budget equations in the detrainment layer also
produces detrainment relations for other variables, specifically14

DisDi =Di ŝ+Lρci +ρQRi (14)10

DiqDi =Di q̂
∗−ρci (15)

Di lDi =Di l̂ +ρci (16)

where15

ŝ≡ s+svc ; q̂∗ ≡q
∗
+qvc (17)

with virtual contributions of15

svc =− Lε
1+γεδ

(
δ(q

∗−q)− l̂
)

; qvc =− γε
1+γεδ

(
δ(q

∗−q)− l̂
)

(18)

Although it is not stated explicitly, AS74 neglect precipitation formation in the detrain-
ment layer, and so omit a term −Ri from the right-hand-side of Eq. (16).

13Eqs. (63) and (64) of AS74
14These are consistent with Eqs. (68) and (69) of AS74.
15cf. Eqs. (72) and (73) of AS74
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3.2 Detrainment in YEC73

In order to formulate the detrainment assumptions of YEC73, we must first introduce
the mass-flux-weighting operation,16 defined by

χB =

∑
iMiχi∑
iMi

(19)

which produces a “bulk” value of χ .5

At the heart of bulk models is an ansatz that the liquid water detrained from each
individual plume is given by the bulk value,17

lDi = li = lB (20)

The relation is described by YEC73 (p. 615) as being a “gross assumption” but “needed
to close the set of equations”. Its practical importance is not clear from the literature.10

Yanai et al. (1976) compared results from bulk and spectral diagnostic models18 using
data from the Marshall Islands. At least in terms of the profiles of total mass flux and
detrainment flux, differences were modest. However, the comparison is complicated by
“data corrections” made for the spectral but not for the bulk analysis,19 and the remarks
of Tiedtke (1989, p. 1781) on this matter still hold today: it is difficult to know how well15

such comparisons might hold more generally.
Another point of difference between YEC73 and AS74 is that the detrainment layer

is defined by YEC73 to be the height ẑi at which20

hi (ẑi )= h̃∗ (21)
16YEC73 used a double overbar to denote this operation.
17Eq. (39) of YEC73
18Both models used the same, approximate, neutral-buoyancy condition, to be discussed

shortly.
19See Sect. 3 of Yanai et al. (1976).
20Eq. (38) of YEC73. Although YEC73 claim that the same assumption is used in a version of

AS74 (referenced by YEC73 as 1973 and with a status of “to be published”), we must presume
24955
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from which it follows that

si (ẑi )= s̃ ; Ti (ẑi )= T̃ ; qi (ẑi )= q̃∗ (22)

In this definition, “the virtual temperature correction has been neglected for simplic-
ity” (Yanai et al., 1976, p. 978). It should be recognized, however, that the virtual
temperature effect cannot be accounted for fully within a bulk model since it involves5

the in-plume liquid water l̂ (Eqs. 11 and 17). The virtual temperature correction is not
often discussed. Johnson (1976, p. 1894) noted that hvc/h̃

∗�1 and so the virtual term
could reasonably be neglected in YEC73. However, Nordeng’s (1994, p. 25) experi-
ments with a bulk parameterization found some significant effects from changing the
detrainment condition used.10

It is straightforward to evaluate the specific-humidity component of hvc/h̃
∗ explicitly,

and for Jordan’s (1958) “mean hurricane season” sounding we find that the ratio has
a maximum amplitude of around 0.005 in the lower troposphere. Moreover, svc/ŝ and
qvc/q̂

∗ peak at 0.002 and 0.04, respectively, so that it would appear reasonable to ne-
glect virtual effects as being small corrections to in-plume variables in the detrainment15

layer. However, the purpose of Eq. (11) or (21) is to determine ẑi and Fig. 1a shows that
the environmental gradient of saturated moist static energy is small in the tropical up-
per troposphere. Hence, even small errors in the specification of the neutral-buoyancy
condition could result in considerable errors in a calculation of cloud top. Such errors
are difficult to estimate reliably when ∂h̃∗/∂z is small, particularly if there is any noise20

in the h̃∗ sounding data. For this reason, in Fig. 1b we plot the quantity

∆ẑ=
1
2

{∣∣∣∣ svc

∂s̃/∂z

∣∣∣∣+∣∣∣∣ qvc

∂q̃∗/∂z

∣∣∣∣
}

(23)

which provides a simple-minded estimate of the effect of virtual contributions on the
evaluation of cloud top, and which should be reliable for plumes terminating in the

there were changes in producing the final version of AS74, as the neutral-buoyancy conditions
are clearly not identical.
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lower troposphere. The corrections are ∼150m.
Of course, one could choose to formulate a bulk model with an estimated virtual

correction included, leading to Eqs. (11) and (17) but with l̂→lB (cf. Nordeng, 1994).
This would be an improvement if |lB−l̂ |<|δ(q

∗−q)−l̂ |

4 Construction of bulk budget5

We are now in a position to consider the collective effects of the plume ensemble. In
Sect. 4.1 we describe YEC73’s construction of a bulk plume, and proceed in Sect. 4.2
to compare that to a construction from AS74’s equation set.

4.1 Construction in YEC73

Budget equations for a representative bulk plume are obtained in YEC73 by summing10

over plumes in Eqs. (2) to (5). Recalling also points (i) to (iii) from Sect. 2 and the
detrainment assumptions of Sect. 3.2 then we obtain

E −D− ∂M
∂z

=0 (24)

Es̃−Ds̃−
∂MsB
∂z

+Lρc=0 (25)

Eq̃−Dq̃−
∂MqB

∂z
−ρc=0 (26)15

−DlB−
∂MlB
∂z

+ρc−R =0 (27)

where

E =
∑
i

Ei ; D=
∑
i

Di ; M =
∑
i

Mi ; R =
∑
i

Ri (28)
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Other relevant equations for the bulk plume can be obtained by taking Eqs. (8)
and (9), multiplying by Mi , summing over clouds and then dividing by M. This gives

sB−s≈ 1
1+γ

(
hB−h

∗)
(29)

L(qB−q
∗
)≈ γ

1+γ

(
hB−h

∗)
(30)

The mass-flux approximation for the turbulent flux of χ (Eq. 7) now reads5

ρχ ′w ′ =M
(
χB− χ̃

)
(31)

There are also two microphysical relations.21 The evaporation term is

e=DlB (32)

which is simply obtained from a sum over plumes of22

ei =Di li (33)10

The precipitation rate, summed over the full cloud ensemble, is parameterized as the
product of lB with an empirical function of height23

R =k(p)lB (34)

This completes the equation set for the YEC73 bulk model.

21Equivalent to Eqs. (47) and (48) of YEC73.
22Eq. (31) of YEC73
23R must scale with the strength of the convection occurring, and so the “empirical function”

must be scaled similarly: cf. Eq. (45) for the AS74 formulation. More formally, in the language
of Sect. 5, k(p) is a globally-rescaled quantity.
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4.2 Construction from AS74

The model of YEC73 does not provide such a complete description of the individual
entraining plumes. Rather, it posits detrainment conditions using bulk quantities, and
so Sect. 4.1 does not make plain the relationship between bulk and spectral models.
Here we will construct a bulk plume starting from the description of individual plumes5

in AS74.
Starting from Eqs. (2) to (5), we set the time derivatives to zero and sum over plumes

to obtain

E −D− ∂M
∂z

=0 (35)

Es−
∑
i

DisDi −
∂MsB
∂z

+Lρc+ρ
∑
i

QRi =0 (36)10

Eq−
∑
i

DiqDi −
∂MqB

∂z
−ρc=0 (37)

−
∑
i

Di lDi −
∂MlB
∂z

+ρc−R =0 (38)

The next step is to apply the detrainment conditions for individual plumes from
Sect. 3.1. Substituting from Eqs. (14) to (16) leads to

Es−Dŝ−
∂MsB
∂z

+Lρce =0 (39)15

Eq−Dq̂∗−
∂MqB

∂z
−ρce =0 (40)

−Dl̂ −
∂MlB
∂z

+ρce−R =0 (41)
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where we have introduced the superscript e to denote a quantity which is summed
only within the entraining layers of contributing plumes. Shortly we shall also use an
analogous superscript d to denote a quantity summed only within the detraining layers.

Equations (29) and (30) from the YEC73 bulk system also apply here, as does the
mass flux relationship of Eq. (31).5

The microphysical equation for evaporation in AS74 is,24

e=
∑
i

ei =
∑
i

Di lDi (42)

which can be rewritten as

e=Dl̂ +ρcd (43)

while the rain rate is parameterized as25
10

Ri =C0Mi li (44)

where C0 is a constant. Hence,

R =C0MlB (45)

Clearly the microphysics is extremely simple. Hack et al. (1984) argued that a straight-
forward improvement would be to set C0 differently for deep and shallow clouds.26 But15

notice that if C0→Ci in Eq. (44) then the simple formula in Eq. (45) can no longer be
constructed for a bulk formulation. Rather, some knowledge of the partitioning of lB
across the spectrum would be required. Indeed, this is a good example of a general
point about the use of more-complicated representations for individual plumes. In gen-
eral these will only be well-defined within a spectral formulation, and in essence a bulk20

formulation is committed to crude microphysics.

24Their Eq. (40)
25See Eqs. (78), (86) and Appendix B (p. 697, statement between Eqs. B6 and B7) of AS74.
26See their Fig. 3.
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4.3 Comparison of bulk budgets

It may be helpful at this stage to highlight the differences between the two bulk-model
equation sets from Sects. 4.1 and 4.2.

1. In the dry-static-energy (Eqs. 25 and 39) and moisture budgets (Eqs. 26 and 40)
the differences are:5

(a) entrainment of s (q) for the AS74 model and of s̃ (q̃) for the YEC73 model.

(b) detrainment of ŝ (q̂∗) for the AS74 model and of s̃ (q̃) for the YEC73 model.
This arises because YEC73 neglect virtual effects in the detrainment condi-
tion. Note that ŝ (q̂∗) is a function of both large-scale (overbarred) variables
and of the non-bulk, in-plume variable l̂ (Eqs. 17 and 18).10

(c) condensation within the detrainment layer is explicit in the YEC73 model, but
implicit in the AS74 model (because ŝ 6=sDi and q̂∗ 6=qDi ).

2. In the liquid-water budgets (Eqs. 27 and 41) the differences are:

(a) detrainment of l̂ for the AS74 model and of lB for the YEC73 model.27 Knowl-
edge of l̂ (z) requires knowledge of the plume spectrum because for each15

height z it has to be determined by integrating the budget equations for an
individual plume that detrains at ẑi=z.

(b) condensation within the detrainment layer is explicit in the YEC73 model, but
implicit in the AS74 model (because l̂ 6=lDi ).

27We do not consider downdrafts here, which are significant in diagnostic studies (e.g.
McBride, 1981), but it is worth noting that their formulation requires fewer ad hoc assump-
tions if one uses AS74’s determination of detraining liquid water. Compare Johnson (1976) and
Nitta (1977), and see in particular p. 1166 of the latter.
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3. In the YEC73 model, precipitation is related to an empirical function of height,
whereas in the AS74 model this function is specified as the product of a constant
and the total mass flux (Eqs. 34 and 45).

4. Both models evaporate in-plume water at its detrainment level (Eqs. 32 and 43),
but the rate is affected by the assumptions on condensation at this level.5

5. The mass-flux budgets (Eqs. 24 and 35) are identical in the two models, as well
as the saturation relationships above cloud base (Eqs. 29 and 30).

5 Normalization transformations

The YEC73 bulk model is designed for diagnostic use and no closure is required. The
spectral model of AS74 can also be used in the same way (e.g. Nitta, 1975). How-10

ever, if a bulk or a spectral model is intended to form the basis of a parameterization
then it will require closure. In Sect. 6 we will discuss closure methods for bulk and
spectral parameterizations. Starting from some first guess for M(zbase,λ), the closure
is essentially the process of rescaling that guess to obtain a final result for the overall
amount of convective transport occurring. More formally, the rescaling can be thought15

of as a privileged member from the set of possible normalization transformations. Be-
fore proceeding to assess particular closure methods, it is convenient to define such
transformations explicitly and to set out the possible responses of relevant variables.

Normalization transformations, T , are applied to the spectral groupings of Eq. (1).
The transformation is a positively-valued rescaling of the updraft-base mass flux for20

each plume sub-ensemble (or loosely, each cloud type),

M(zbase,λ)→M(zbase,λ)T (λ) (46)

where zbase denotes the updraft base, at the top of the mixed layer. Note that this is
distinct from the cloud-base, which we denote as zc(λ), and from the lifting condensa-
tion level, zLCL≡zc(0). A subset of normalization transformations of particular interest25
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comprises those for which T is independent of λ, which we will refer to as global trans-
formations.

The importance of normalization transformations arises in considerations of possi-
ble timescale separations. A time-evolution operator describing changes in the plume-
ensemble between any two times can always be represented as a normalization trans-5

formation. We therefore assert that distinct, well-defined responses to a normalization
transformation constitute distinct, well-defined timescales characterizing the ensemble.

All of the variables, V, used in this article transform in one of the following ways.

1. Normalization-invariant variables are unaffected by a normalization transforma-
tion, V→V∀T . Such variables may be directly dependent on plume dynamics10

(e.g., si ), but only through intensive properties of each plume type. They must
be independent of the overall amount of convective transport (i.e., of M and D),
and also of the distribution of that transport across the plume spectrum (i.e., of
M(zbase,λ)/M(zbase)). They evolve only in response to changes in the large-scale
state (i.e., the overbarred variables), which occur on a large-scale timescale of15

τLS.

2. Globally-invariant variables are unaffected by a global transformation, so that
V→V if and only if T is independent of λ. Such variables are independent of the
overall amount of convective transport but are sensitive to its distribution across
the plume spectrum. Their evolution is governed by the timescale τspec, charac-20

terising changes to the spectral distribution under a fixed large-scale condition.

3. Normalization-rescaled variables transform as V→VT (λ)∀T . Such variables
transform alongside one part of the spectrum only, depending extensively on
a given plume type λ, but being independent of the rest of the spectrum. They
evolve in response to changes in the particular plume type, which can be charac-25

terised by a timescale τλ. The timescale must be at least as long as the corre-
sponding plume lifetime because normalization-rescaled terms such as ∂ρσi/∂t
were filtered out from Eqs. (2)–(5) in Sect. 2.
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4. Globally-rescaled variables transform as V→VT if and only if T is independent
of λ. Such variables depend extensively on the overall amount of convective
transport and are sensitive to its distribution across the plume spectrum. Their
evolution is governed by the timescale τadj introduced by AS74: if all forcing for
convection were to be removed then the overall convective transport would decay5

on this timescale.

It may be helpful to clarify the meaning of some of the timescales by considering the
limiting case of a step-change in the large-scale forcing, the forcing being held fixed
on either side of the step (as in Cohen and Craig, 2004, for example). Mass fluxes
associated with specific plume types respond to the step with their specific timescales10

τλ, but the overall amount of convective activity, as measured by M(zbase), will approach
a new, steady value on the timescale τadj. However, a more complete adjustment, with
the spectral distribution M(zbase,λ)/M(zbase) also required to approach a new steady
state, will require a timescale τspec. To the best of this author’s knowledge, there is
no information available from the literature that would provide good estimates of τspec15

and its possible dependencies. However, it would not appear overly difficult to devise
idealized CRM simulations with a view to identifying such a timescale.28 We shall show
that this timescale is relevant for the closure of bulk mass flux parameterizations.

6 Closure

To close a parameterization, some additional physical constraints are imposed which20

determine the amplitude and spectral distribution of the plume ensemble. As described
in Sect. 5 the calculation of the final plume ensemble is performed by rescaling a first

28For a smoothly-varying forcing, adjusted, steady values may not be clear. Measures of the
lag-correlation between the forcing and M(zbase,λ), M(zbase) and M(zbase,λ)/M(zbase) could
then be used to determine timescales τλ, τadj and τspec, respectively (cf. Xu and Randall’s
(1998) determination of τadj).
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guess, and the physical constraints must therefore serve as a generator for the privi-
leged normalization transformation defining the rescaling. For a bulk parameterization,
a global transformation is sufficient to provide the rescaling, the spectral distribution
being implicit in the choice of E (z).

In order for a bulk and a spectral model to be capable of providing equivalent param-5

eterizations, there are two necessary conditions that we can demand of the closures
used:

1. given the generator of a normalization transformation that can be computed for
the spectral model, it must be possible to construct from that a generator capable
of providing a global transformation that can be computed for the bulk model.10

Such a global transformation could be used to close for the bulk model.

2. the generator of the global transformation that closes the bulk model must respect
all the same physical constraints that were specified in order to formulate the
generator for closure of the spectral model.

Below we describe the AS74 spectral-model closure (Sect. 6.1) and then investigate15

whether it is possible to develop an equivalent closure for the corresponding bulk model
which meets the conditions above (Secs. 6.2 and 6.3). In Sect. 6.4 we discuss other
closure methods used in the literature.

6.1 The AS74 closure

The AS74 closure starts from the following equation29 for the kinetic energy K of a sub-20

ensemble of plumes

∂K(λ)

∂t
=A(λ)M(zbase,λ)−D(λ) (47)

29Eq. (132) of AS74
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where D is the dissipation. A is known as the cloud work function, and is given by the
integrated in-plume buoyancy,30

A(λ)≡
zD(λ)∫
zbase

g

cpT

M(z,λ)

M(zbase,λ)

(
svc(λ)−sv

)
dz (48)

Here zD is the detrainment level, sv=CpTv+gz the virtual dry static energy and svc(λ)
its in-plume value. The closure relies on the fact that the time derivative of A can be5

decomposed as,31

dA
dt

=
dA
dt

∣∣∣∣
LS

+
dA
dt

∣∣∣∣
C
≡ ȦLS+ ȦC (49)

where the subscripts LS and C refer to “large-scale” and “cloud” contributions, respec-
tively.

It is worth noting that the phrase “large-scale” used by AS74 to describe the forcing10

of the cloud work function has been criticized (e.g. Randall et al., 1997; Mapes, 1997).
Indeed, similar criticisms could be applied to the terminology of “large-scale” as used
in studies of cumulus parameterization more generally. In the absence of a generally-
accepted and satisfactory alternative, however, we follow the conventional, if flawed,
terminology here.15

With that caveat, we wish to be very clear about the distinction between large-scale
and cloud terms. In the language of normalization transformations, the distinction is
entirely straightforward. A(λ) is a normalization-invariant, and its time derivative has
contributions which are normalization-invariant (the ȦLS part) and which are globally-
rescaled (the ȦC part). Thus, timescales τLS and τadj are appropriate for ȦLS and ȦC,20

30Eq. (133) of AS74. More generally, as pointed out by Arakawa (1993), analogous closures
could be based on any functional of the temperature and moisture profiles that has a threshold
describing convective instability.

31Eq. (140) of AS74
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respectively. The physical constraint imposed is the separation of those timescales,
τLS�τadj, which defines the AS74 quasi-equilibrium closure, dA/dt≈0. The closure

transformation T (λ) can be constructed32 by applying this constraint to Eq. (49).

6.2 Equivalent AS74 closure for a bulk system?

We now consider whether an equivalent AS74 closure can be developed for the corre-5

sponding bulk model. Summing over all plumes (or equivalently, integrating over all λ),
the kinetic energy equation (Eq. 47) becomes
∂K
∂t

=ABM(zbase)−DIS (50)

where

K =
∫
Kdλ ; DIS=

∫
Ddλ (51)10

AB ≡
∫
M(zbase,λ)A(λ)dλ

M(zbase)
=

zTOP∫
zbase

g

cpT

M
M(zbase)

(
svB−sv

)
dz (52)

We have introduced zTOP=zD(0) to denote the highest detrainment layer (i.e., that for
a non-entraining plume of λ=0), and have made use of the understanding that there
are no contributions to M(z) from plumes characterised by a λ such that z>zD(λ).
AB is a global invariant that is sometimes referred to as the dilute CAPE (e.g. in15

Kain et al., 2003; Kain, 2004). Unlike the cloud work function, its time derivative cannot
be decomposed into normalization-invariant and globally-rescaled parts. For example,
one contribution to the time derivative is

dAB

dt
=
∫ M(zbase,λ)

M(zbase)

dA(λ)

dt
dλ+ ···=

∫
M(zbase,λ)(ȦLS(λ)+ ȦC(λ))dλ

M(zbase)
+ ··· (53)

32In fact, although the constraint can usually be satisfied, it is not always capable of acting as
a generator, as discussed by Lord and Arakawa (1982), Lord et al. (1982).
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The globally-rescaled variable ȦC produces a globally-rescaled contribution to dAB/dt,
associated with timescale τadj. The normalization-invariant variable ȦLS(λ), however,
does not produce normalization-invariant contributions to dAB/dt. For example, ȦLS(λ)
includes a term proportional to changes in mixed-layer moist static-energy hM, and this
leads to contributions to dAB/dt that include5

dAB

dt
=

g
cpM(zbase)

∂hM

∂t

∫
dλM(zbase,λ)

zD(λ)∫
zc(λ)

dz′
1

T (z′)

(
1+γ(z′)ε(z′)δ

1+γ(z′)

)
+ ··· (54)

Although the integral over z′ has a integrand that is normalization invariant, its limits
are functions of λ. Thus, the contribution is globally-invariant, and cannot be evaluated
without knowledge of the full plume spectrum.

The time-derivative of AB can in fact be decomposed into globally-invariant and10

globally-rescaled parts, such that its stationarity could be used to close a bulk param-
eterization given a constraint that τspec�τadj. Such a closure would satisfy condition
(1) from Sect. 6. It is unclear, however, whether AB can be considered to be slowly-
varying in this sense. Certainly, the imposed AS74 physical constraint of dA(λ)/dt≈0
is no guarantee that dAB/dt≈0, and so stationarity of dilute CAPE does not satisfy15

condition (2) for a valid equivalent closure of a bulk parameterization.

6.3 CAPE closure of AS74 system?

We have shown above that dilute CAPE may not be used to close a bulk parameteriza-
tion in a manner that is equivalent to the AS74 quasi-equilibrium closure of a spectral
parameterization. However, there may be multiple ways in which a generator to close20

a spectral parameterization can be reduced to a generator to close a bulk parameteri-
zation. Let us consider the undilute CAPE, or in other words, the cloud work function
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for a non-entraining plume,

CAPE=A(0)=

zTOP∫
zbase

g

cpT

(
svc(0)−sv

)
dz (55)

The kinetic energy of non-entraining plumes is described by Eq. (47) and the de-
composition of dA(0)/dt from Eq. (49) applies. Clearly then a CAPE closure using
dA(0)/dt≈0 is physically based upon τLS�τadj and so would satisfy condition (2) for5

equivalent closure of a bulk parameterization. However, we need to consider also con-
dition (1): whether CAPE closure can act as a generator for a global transformation to
allow determination of M(zbase).

We examine first ȦLS(0), the normalization-invariant part of dA(0)/dt. One of the
contributions to this is analogous to the term shown explicitly in Eq. (54) and is specifi-10

cally

ȦLS(0)=
g
cp

∂hM

∂t

zTOP∫
zLCL

dz′
1

T (z′)

(
1+γ(z′)ε(z′)δ

1+γ(z′)

)
+ ··· (56)

The explicit form of terms in dA(0)/dt would not normally be used explicitly in a param-
eterization. However, in order for a CAPE-based closure to satisfy condition (1), then it
must be possible in principle to evaluate all such terms directly using a bulk model. Ex-15

amination of all such terms (not shown) reveals that this is indeed the case for ȦLS(0),
provided that zLCL is known by the bulk model. This is required to evaluate the integral
in Eq. (56) for instance. In Appendix A we demonstrate that zc≥zLCL, and so zLCL is
simply the lowest height for which lB 6=0. This inequality is important and explains why
it is necessary to use CAPE: it would not be valid according to condition (1) to try to20

close a bulk parameterization using the cloud work function for any non-zero value of
λ.
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Consider now ȦC(0), the globally-rescaled part of dA(0)/dt. This can be categorized
into mixed-layer terms, vertical mass-flux terms and detrainment terms.33 The mixed-
layer terms can be evaluated from the environmental sounding and the total updraft-
base mass flux M(zbase), while the vertical mass-flux terms require knowledge of the
full function M(z). The detrainment terms include the following contribution5

ȦC(0)=
gL
cp

zTOP∫
zLCL

dz
1

ρT
D(z)[1− (1+δ)ε] l̂ + ··· (57)

This requires the detrainment profile D(z) and the quantity l̂ . The latter is problematic
for a bulk parameterization, because it should properly be computed by integrating the
budget equations for a single plume (Sect. 3.1). Thus, the stationarity of CAPE does
not satisfy condition (1) for a valid equivalent closure of a bulk parameterization.34 The10

problem can be avoided by invoking again the ansatz of Eq. (20) that was introduced
in Sect. 3.2 in order to formulate detrainment in the bulk-plume budget equations. We
have shown then that the ansatz is required not only to compute the vertical profile
of the bulk-plume but that it is also necessary to permit CAPE closure of a bulk pa-
rameterization. The practical impact of the ansatz on closure calculations is difficult to15

discern: certainly this author is unaware of any attempt in the literature to assess the
impact.

33See Eqs. (141), (144) and (B35) of AS74.
34In a re-derivation of the AS74 model by the present author, some additional terms in ȦC(0)

were obtained that do not appear in AS74. These are proportional to the microphysical quantity
d (z,λ) defined by Eq. (B20) of AS74, and one such term also involves l̂ . However, none of these
terms affect any of the arguments presented on the formal validity of CAPE closure.
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6.4 Other Closures

We have considered in some detail the AS74 quasi-equilibrium closure for spectral
models of entraining plumes. However, many other closures have been proposed for
convective parameterizations, at least in part because any given closure may appear
more or less plausible over different locations and with different grid-box sizes in the5

parent model (e.g. Grell et al., 1991; Grell, 1993). It would neither be practical nor
instructive to consider every one, but some remarks on how other types of closure
might apply to bulk and spectral parameterizations would seem to be in order.

Various authors have suggested various classifications of closure assumptions, but
Grell et al.’s (1991, p. 6) is the most appropriate for our present purposes.35 Clo-10

sures seek to relate the overall convective transport to: (i) a measure of large-scale
instability, by imposing an adjustment of that measure; (ii) a measure of large-scale
advection, typically horizontal mass or moisture convergence; or, (iii) a measure of the
rate of environmental destabilization. The AS74 closure is of class (iii), constraining the
generation of a vertically-integrated instability measure. Other closures with a similar15

basis (e.g. Moorthi and Suarez, 1992; Pan and Randall, 1998; Byun and Hong, 2007)
will also have formal difficulties if applied to a bulk parameterization. The key point of
difficulty for bulk models is the detrainment of condensate, and this will enter into con-
siderations of the rate of change of environmental instability if a vertically-integrated
measure encompasses the detrainment layer of any plume within the ensemble.20

Closures in class (i) are popular particularly in mesoscale models and for mid-latitude
applications (e.g. Frank, 1983). Typically, such a closure aims to remove CAPE, some-
times instantaneously upon convective triggering but more commonly within some “clo-
sure timescale”, which is just the τadj of Sect. 5 (e.g. Fritsch and Chappell, 1980;

35It is not always entirely clear that a particular closure belongs uniquely to a particular class.
For example, McBride (1981) showed that the AS74 closure is actually strongly dependent on
horizontal mass convergence, and its vertical distribution. See also Arakawa (2004). Nonethe-
less, the classification is adequate for our discussion.
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Emanuel, 1993; Zhang and McFarlane, 1995; Gregory, 1997; Willett and Milton, 2006;
Bechtold et al., 2001; Kain, 2004). This method is inspired by observations in which
the triggering of a convective episode does indeed consume preexisting instability (e.g.
Fritsch et al., 1976; Song and Frank, 1983). The removal is described by Eq. (49) for
λ=0, and therefore the issue raised in Sect. 6.3 also applies to such closures. For5

a bulk parameterization, the removal of CAPE is not a well-defined closure unless one
invokes the YEC73 ansatz.

Conceptually, the closures in class (ii) (e.g. Kuo, 1974; Tiedtke, 1989; Frank and
Cohen, 1987; Brown, 1979) use empirical relationships between M(zbase) and various
measures of large-scale advection. Thus, they generate global transformations that10

can in principle be applied freely to bulk and spectral parameterizations alike. Not
seeking to revisit such debates here, we simply note that closures from this class have
become markedly less popular over recent years, not least as a result of attacks on
their conceptual basis from Emanuel (1994); Raymond and Emanuel (1993); Arakawa
(2004) and others.15

Our discussion has focussed on the formal validity (or otherwise) of the generators
of global transformations for bulk parameterizations. It is important, however, that the
reader should not be left with an impression that closure of a spectral parameterization
is a simpler matter than closure of a bulk parameterization. A physical constraint that
can act as a global transformation generator is sufficient to close a bulk parameteriza-20

tion, but would provide none of the necessary information to a spectral parameteriza-
tion about the spectral distribution of mass flux. Some spectral parameterizations apply
constraints to generate explicitly a suitable normalization transformation (Arakawa and
Schubert, 1974; Nober and Graf, 2005), while others combine instead a global trans-
formation with some additional constraints to set the spectral distribution, whether by25

appeal to observations (e.g. Donner et al., 1993), or theory (e.g. Plant and Craig, 2008),
or even “mainly for the sake of simplicity” (e.g. Zhang and McFarlane, 1995, p. 412).
Regardless of the approach taken, setting the spectral distribution is not a trivial matter.
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7 Conclusions

Key aspects of climate models, for example the moisture structure in the tropics (e.g.
Gregory, 1997), are highly sensitive to the formulation of entrainment in the convection
parameterization (e.g. Knight et al., 2007). In a spectral model of plumes simple treat-
ments are generally used for the entrainment into a single plume, but these become5

translated into overall E (z) and D(z) that are complicated functions of the environment.
Such functions would be difficult to specify directly, and AS74 claim in effect that this
makes a spectral formulation the natural choice. In a bulk model, E (z) and D(z) are
chosen by the modeller,36 often with some switching of the functional forms between
“types” (e.g. Gregory, 1997) according to the large-scale regime. Thus, a bulk param-10

eterization offers the modeller more direct control over its behaviour. Whether this is
considered to be a good or a bad point is to some extent an issue of the modelling
philosophy.

The differences between bulk and spectral parameterizations are perhaps most of-
ten thought about in terms of the specification of entrainment and detrainment, but15

there are also differences in the underlying theoretical structure. The theoretical differ-
ences have been the subject of this article. Budget equations for individual and for bulk
plumes can be cast into very similar forms (Sect. 4) provided that an ansatz is made for
the detrainment of condensate from the bulk plume. The ansatz is that lDi=lB (Eq. 20)
and is the price paid for the simplification to a single bulk plume. Moreover, similarity20

between the equation sets requires a very simple representation of the microphysics.
The use of more complicated microphysics in bulk convective parameterizations lacks

36Relatively sophisticated treatments of entrainment and detrainment have been used in
some bulk parameterizations (e.g. Kain and Fritsch, 1990; Emanuel, 1993), based on the
“buoyancy-sorting” concept of Raymond and Blyth (1986). Such treatments do not regard the
bulk plume as homogeneous but rather as being composed of air parcels that have undergone
different degrees of mixing with the environment. Conceptually then, they could be viewed as
attempts to use a spectral mode of thinking in order to construct complicated E (z) and D(z)
on-the-fly.
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a sound theoretical basis.
While Yanai et al. (1973) are clear about the arbitrary, but convenient, nature of their

ansatz, that is not always the case in later works. For example, one issue for convec-
tive parameterization is the coupling to stratiform cloud. Motivated by considerations
of mesoscale organization, some authors (e.g. Frank and Cohen, 1987; Kain, 2004;5

Kreitzberg and Perkey, 1976) have taken a so-called “hybrid approach” (Molinari and
Dudek, 1992), in which (a fraction of) the detrained condensate is acted upon by the
parent model’s large-scale cloud equations, allowing it to act as a source term for prog-
nostic respresentations of stratiform cloud (e.g. Fowler et al., 1996; Tiedtke, 1993).
Such treatments can have significant effects: for example, on cirrus and on the hydro-10

logical cycle in the tropics (e.g. Tiedtke, 1993; Liu et al., 2001). In the opinion of this
author, however, much of the relevant literature does not seem to appreciate fully, or
sometimes even to recognize, Yanai et al.’s (1973) ansatz: while the detrained con-
densate is predicted by a spectral parameterization, the values obtained from a bulk
parameterization are by construction not intended to be reliable.15

Another consequence of Yanai et al.’s (1973) ansatz is that virtual temperature ef-
fects must be approximated or even ignored in determining the bulk plume top (Sect. 3).
Moreover, there is not necessarily an equivalence between closure constraints applied
to spectral and bulk parameterizations.

Closures based on CAPE, or a cloud-work function, assume a timescale separation20

between the slow mechanisms of atmospheric destablization and the relatively fast
mechanisms of the convective response. The definition and interpretation of the slow
and fast timescales has been much debated. In Sect. 5 we introduced a normalization
transformation, and argued that the behaviour of a variable under such a transformation
is sufficient to associate that variable with a well-defined timescale. We were then able25

to show that the quasi-equilibrium closure for spectral parameterizations introduced
by Arakawa and Schubert (1974) does not correspond in any straightforward way to
a suitable closure constraint for bulk parameterizations. The natural bulk-model ana-
logue to the Arakawa and Schubert (1974) closure is the stationarity of the bulk cloud
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work function (or the dilute CAPE) AB, but the evolution of this variable is governed by
timescales τspec and τadj (Sect. 6.2), rather than the timescales τLS and τadj governing
the evolution of the cloud work function A(λ) (Sect. 6.1). Thus, the timescale sepa-
rations for stationarity of AB and A(λ) would encapsulate distinct physical constraints.
τspec and τLS do not seem to have been clearly distinguished before now, let alone5

studied in any systematic way.
The timescales governing the evolution of undilute CAPE (i.e., that for a non-

entraining plume) are τLS and τadj. Thus, the timescale issue above can be avoided if
one closes a bulk parameterization using either the removal of CAPE by the plume en-
semble or a quasi-equilibrium constraint of dCAPE/dt≈0. It should be noted, however,10

that a computation of dCAPE/dt involves the detraining condensate from each plume,
and so cannot be performed by a bulk model, unless the Yanai et al. (1973) ansatz
is used. Thus, the ansatz is a necessary ingredient in such a closure (Sect. 6.3).
Whether this has a practical impact on the closure of bulk parameterizations has not
been examined in the literature.15

In comparing a “full” and a “simplified” physical model, there is always a danger of
confusing complexity with sophistication. Most convective parameterizations in use
today are of the bulk form, and this is undoubtedly a convenient simplification that
should not be discarded lightly. It is obtained by invoking Yanai et al.’s (1973) ansatz
and has implications for: the microphysics of convective and associated layer cloud; the20

calculation of cloud top; and, the validity of closure methods for bulk parameterization.
Some of those implications were previously known, but perhaps obscure, whereas
others have been raised here. The extent to which such theoretical issues with the
structure of bulk parameterizations may affect their actual performance in practice is not
well studied, but systematic investigations are required if modellers are to make well-25

informed judgements about the continued use of bulk parameterizations. The question
to be continually asked is not so much is a bulk or a spectral method to be preferred?
but rather is the bulk framework conceptually “good enough” for our present and future
purposes?
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Appendix A

Cloud base level

The purpose of this Appendix is to demonstate that zc≥zLCL, as stated in Sect. 6.3: i.e.,
that cloud base for any entraining plume lies above that for a non-entraining plume.5

Cloud base is defined in AS74 to be the lowest height at which Eq. (8) is satisfied,
describing the saturation of in-plume air. It is convenient to restate that equation here,

sc−s≈ 1
1+γ

(
hc−h

∗)
for z≥ zc(λ) (A1)

in which sc and hc are obtained by integrating the plume budget equations upwards
from the updraft base with initial conditions37 taken from the mixed-layer properties,10

sc(zbase)=sM and hc(zbase)=hM. For a non-entraining plume sc and hc retain their initial
values and so zLCL is defined by the lowest height which satisfies

sM−s≈ 1
1+γ

(
hM−h

∗)
for z≥ zLCL (A2)

Now, given two equations g1(z1)=0 and g2(z2)=0 then if g2≈g1, a simple Taylor
series expansion of g2 about z1 yields15

z1−z2 =
g2(z1)−g1(z1)

g′
2(z1)

(A3)

the dash here denoting a vertical derivative. Applying this to the above equations
defining cloud base, we have

zc−zLCL =
γ(sc−sM)−L(qc−qM)

gγ+sγ′

∣∣∣∣∣
zc

(A4)

37Eqs. (129) and (131) of AS74
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where we have used the definitions of γ and s to simplify the denominator. For water
vapour both γ and γ′ are positive, and so the denominator must be positive. Thus, if
the numerator is also positive, then zc≥zLCL as required.

Consider the two bracketed terms in the numerator. Assuming that s increases
monotonically with height between zbase and zc (i.e., that the lapse rate is no stronger5

than dry adiabatic), then the entrainment process must produce values of sc that are
larger than sM. Similarly a monotonic decrease of q within the environment must pro-
duce qc(zc)<qM and thus the numerator is indeed positive.

Acknowledgements. A conversation with P. Siebesma and J.-I. Yano at the Workshop on Con-
cepts for Convective Parameterizations in Large-Scale Models first inspired me to delve into10

these issues.

References

Arakawa, A.: Closure assumptions in the cumulus parameterization problem, in: The Rep-
resentation of Cumulus Convection in Numerical Models, edited by: Emanuel, K. A. and
Raymond, D. J., vol. 24 of Meteorological Monographs, chap. 1, pp. 1–16, American Meteo-15

rological Society, 1993. 24966
Arakawa, A.: The cumulus parameterization problem: past, present and future, J. Clim., 17,

2493–2525, 2004. 24946, 24971, 24972
Arakawa, A. and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the large-scale

environment. Part I, J. Atmos. Sci., 31, 674–701, 1974. 24946, 24948, 24949, 24950, 24951,20

24952, 24953, 24954, 24955, 24956, 24957, 24958, 24959, 24960, 24961, 24962, 24964,
24965, 24966, 24967, 24968, 24970, 24971, 24972, 24973, 24974, 24976

Bechtold, P., Bazile, E., Guichard, F., and Richard, E.: A mass-flux convection scheme for
regional and global models, Q. J. Roy. Meteor. Soc., 127, 869–886, 2001. 24972

Betts, A. K. and Miller, M. J.: A new convective adjustment scheme. Part II: single column tests25

using GATE wave, BOMEX, ATEX and arctic air-mass data sets, Q. J. Roy. Meteor. Soc.,
112, 793–709, 1986. 24947

Bougeault, P.: A simple parameterization of the large-scale effects of cumulus convection, Mon.
Weather Rev., 113, 2108–2121, 1985. 24948

24977

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 24945–24984, 2009

The basis for bulk
mass flux

parameterization

R. S. Plant

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Brown, J. M.: Mesoscale unsaturated downdrafts driven by rainfall evaporation: a numerical
study, J. Atmos. Sci., 36, 313–338, 1979. 24972

Byun, Y.-H. and Hong, S.-Y.: Improvements in the subgrid-scale representation of moist con-
vection in a cumulus parameterization scheme: the single-column test and its impact on
seasonal prediction, Mon. Weather Rev., 135, 2135–2154, 2007. 249715

Cho, H.-R.: Contributions of cumulus cloud life-cycle effects to the large-scale heat and mois-
ture budget equations, J. Atmos. Sci., 34, 87–97, 1977. 24952

Cohen, B. G. and Craig, G. C.: The response time of a convective cloud ensemble to a change
in forcing, Q. J. Roy. Meteor. Soc., 130, 933–944, 2004. 24964

Donner, L. J., Seman, C. J., and Hemler, R. S.: A cumulus parameterization including mass10

fluxes, vertical momentum dynamics, and mesoscale effects, J. Atmos. Sci., 50, 889–906,
1993. 24972

Emanuel, K. A.: A cumulus representation based on the episodic mixing model: the impor-
tance of mixing and microphysics in predicting humidity, in: The Representation of Cumulus
Convection in Numerical Models, edited by: Emanuel, K. A. and Raymond, D. J., vol. 2415

of Meteorological Monographs, chap. 19, 185–192, American Meteorological Society, 1993.
24972, 24973

Emanuel, K. A.: Atmospheric Convection, Oxford University Press, 1994. 24972
Esbensen, S.: Bulk thermodynamic effects and properties of small tropical cumuli, J. Atmos.

Sci., 35, 826–837, 1978. 2494720

Fowler, L. D., Randall, D. A., and Rutledge, S. A.: Liquid and ice cloud microphysics in the CSU
general circulation model. Part 1: model description and simulated microphysical processes,
J. Clim., 9, 489–529, 1996. 24974

Frank, W. M.: The cumulus parameterization problem, Mon. Wea. Rev., 111, 1859–1871, 1983.
2497125

Frank, W. M. and Cohen, C.: Simulation of tropical convective systems. Part I: a cumulus
parameterization, J. Atmos. Sci., 44, 3787–3799, 1987. 24949, 24972, 24974

Fritsch, J. M. and Chappell, C. F.: Numerical prediction of convectively driven mesoscale pres-
sure systems. Part I: convective parameterization, J. Atmos. Sci., 37, 1722–1733, 1980.
24949, 2497130

Fritsch, J. M. and Kain, J. S.: Convective parameterization for mesoscale models: the Fritsch–
Chappell scheme, in: The Representation of Cumulus Convection in Numerical Models,
edited by: Emanuel, K. A. and Raymond, D. J., vol. 24 of Meteorological Monographs,

24978

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 24945–24984, 2009

The basis for bulk
mass flux

parameterization

R. S. Plant

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

chap. 15, 159–164, American Meteorological Society, 1993. 24949
Fritsch, J. M., Chappell, C. F., and Hoxit, L. R.: The use of large-scale budgets for convective

parameterization, Mon. Weather Rev., 104, 1408–1418, 1976. 24972
Garner, S. T., Frierson, D. M. W., Held, I. M., Pauluius, O., and Vallis, G. K.: Resolving convec-

tion in a global hypohydrostatic model, J. Atmos. Sci., 64, 2061–2075, 2007. 249485

Gerard, L. and Geleyn, J.-F.: Evolution of a subgrid deep convection parameterization in
a limited-area model with increasing resolution, Q. J. Roy. Meteorol. Soc., 131, 2293–2312,
2005. 24948

Gregory, D.: The mass flux approach to the parameterization of deep convection, in: The
Physics and Parameterization of Moist Atmospheric Convection, edited by: Smith, R. K.,10

297–319, Kluwer Academic Publishers, 1997. 24948, 24949, 24972, 24973
Gregory, D. and Rowntree, P. R.: A mass flux convection scheme with representation of cloud

ensemble characteristics and stability-dependent closure, Mon. Weather Rev., 118, 1483–
1506, 1990. 24948, 24949

Grell, G. A.: Prognostic evaluation of assumptions used by cumulus parameterizations, Mon.15

Weather Rev., 121, 764–787, 1993. 24971
Grell, G. A., Kuo, Y.-H., and Pasch, R. J.: Semiprognostic tests of cumulus parameterization

schemes in the middle latitudes, Mon. Weather Rev., 119, 5–31, 1991. 24952, 24971
Hack, J. J., Schubert, W. H., and Dias, P. L. S.: A spectral cumulus parameterization for use

in numerical models of the tropical atmosphere, Mon. Weather Rev., 112, 704–716, 1984.20

24960
Johnson, R. H.: The role of convective-scale precipitation downdrafts in cumulus and synoptic-

scale interactions, J. Atmos. Sci., 33, 1890–1910, 1976. 24951, 24956, 24961
Johnson, R. H.: The effects of cloud detrainment on the diagnosed properties of cumulus

populations, J. Atmos. Sci., 34, 359–366, 1977. 2495125

Johnson, R. H. and Young, G. S.: Heat and moisture budgets of tropical mesoscale anvil clouds,
J. Atmos. Sci., 40, 2138–2147, 1983. 24951

Jordan, C. L.: Mean soundings for the West Indies area, J. Meteor., 15, 91–97, 1958. 24956,
24984

Kain, J. S.: The Kain–Fritsch convective parameterization: an update, J. Appl. Meteorol., 43,30

170–181, 2004. 24967, 24972, 24974
Kain, J. S. and Fritsch, J. M.: A one-dimensional entraining/detraining plume model and its

application in convective parameterization, J. Atmos. Sci., 47, 2784–2802, 1990. 24973

24979

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 24945–24984, 2009

The basis for bulk
mass flux

parameterization

R. S. Plant

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Kain, J. S., Fritsch, J. M., and Weiss, S. J.: Parameterized updraft mass flux as a predictor of
convective intensity, Wea. Forecasting, 18, 106–116, 2003. 24967

Khairoutdinov, M., Randall, D., and DeMott, C.: Simulations of the atmospheric general circu-
lation using a cloud-resolving model as a superparameterization of physical processes, J.
Atmos. Sci., 62, 2136–2154, 2005. 249485

Knight, C. G., Knight, S. H. E., Massey, N., Aina, T., Christensen, C., Frame, D. J., Kettle-
borough, J. A., Martin, A., Pascoe, S., Sanderson, B., Stainforth, D. A., and Allen, M. R.:
Association of parameter, software, and hardware variation with large-scale behavior across
57 000 climate models, Proc. Natl. Acad. Sci., 104, 12259–12264, 2007. 24973

Kreitzberg, C. W. and Perkey, D. J.: Release of potential instability: Part I. A sequential plume10

model within a hydrostatic primitive equation model, J. Atmos. Sci., 33, 456–475, 1976.
24974

Kuang, Z. and Bretherton, C. S.: A mass-flux scheme view of a high-resolution simulation of
a transition from shallow to deep convection, J. Atmos. Sci., 63, 1895–1909, 2006. 24947

Kuo, H.-L.: Further studies of the parameterization of the influence of cumulus convection on15

large-scale flow, J. Atmos. Sci., 31, 1232–1240, 1974. 24972
Lawrence, M. G. and Rasch, P. J.: Tracer transport in deep convective updrafts: plume ensem-

ble versus bulk formulations, J. Atmos. Sci., 62, 2880–2894, 2005. 24949
Lin, C.: Some bulk properties of cumulus ensembles simulated by a cloud-resolving model.

Part II: entrainment profiles, J. Atmos. Sci., 56, 3736–3748, 1999. 2494720

Lin, C. and Arakawa, A.: The macroscopic entrainment processes of simulated cumulus en-
semble. Part II: testing the entraining-plume model, J. Atmos. Sci., 54, 1044–1053, 1997.
24947

Liu, C., Moncrieff, M. W., and Grabowski, W. W.: Explicit and parameterized realizations of
convective cloud systems in TOGA COARE, Mon. Weather Rev., 121, 1689–1703, 2001.25

24974
Lord, S. J. and Arakawa, A.: Interaction of a cumulus cloud ensemble with the large-scale envi-

ronment. Part III: semi-prognostic tests of the Arakawa–Schubert cumulus parameterization,
J. Atmos. Sci., 39, 88–103, 1982. 24967

Lord, S. J., Chao, W. C., and Arakawa, A.: Interaction of a cumulus cloud ensemble with the30

large-scale environment. Part IV: the discrete model, J. Atmos. Sci., 39, 104–113, 1982.
24967

Mapes, B. E.: Equilibrium vs. activation control of large-scale variations of tropical deep con-

24980

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 24945–24984, 2009

The basis for bulk
mass flux

parameterization

R. S. Plant

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

vection, in: The Physics and Parameterization of Moist Atmospheric Convection, edited by:
Smith, R. K., 321–358, Kluwer Academic Publishers, 1997. 24948, 24966

McBride, J. L.: An analysis of diagnostic cloud mass flux models, J. Atmos. Sci., 38, 1977–
1990, 1981. 24951, 24961, 24971

Molinari, J. and Dudek, M.: Parameterization of convective precipitation in mesoscale numerical5

models: a critical review, Mon. Weather Rev., 120, 326–344, 1992. 24974
Moorthi, S. and Suarez, M. J.: Relaxed Arakawa–Schubert: a parameterization of moist con-

vection for general circulation models, Mon. Weather Rev., 120, 978–1002, 1992. 24971
Nitta, T.: Observational determination of cloud mass flux distributions, J. Atmos. Sci., 32, 73–

91, 1975. 2496210

Nitta, T.: Response of cumulus updraft and downdraft to GATE A/B-scale motion systems, J.
Atmos. Sci., 34, 1163–1186, 1977. 24961

Nober, F. J. and Graf, H. F.: A new convective cloud field model based upon principles of self-
organization, Atmos. Chem. Phys., 5, 2749–2759, 2005,
http://www.atmos-chem-phys.net/5/2749/2005/. 24948, 2497215

Nordeng, T. E.: Extended versions of the convective parameterization scheme at ECMWF
and their impact on the mean and transient activity of the model in the tropics, Technical
Memorandum 206, ECMWF, 1994. 24951, 24956, 24957

Pan, D.-M. and Randall, D. A.: A cumulus parameterization with prognostic closure, Q. J. Roy.
Meteor. Soc., 124, 949–981, 1998. 2497120

Plant, R. S. and Craig, G. C.: A shocastic parameterization for deep convection based on
equilibrium statistics, J. Atmos. Sci., 65, 87–105, 2008. 24949, 24972

Randall, D. A., Pan, D.-M., Ding, P., and Cripe, D. G.: Quasi-Equilibrium, in: The Physics and
Parameterization of Moist Atmospheric Convection, edited by: Smith, R. K., 359–385, Kluwer
Academic Publishers, 1997. 2496625

Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A.,
Shukla, J., Srinivasan, J., Stouffer, R. J., Sumi, A., and Taylor, K. E.: Climate models and their
evaluation, in: Climate Change 2007: The Physical Basis. Contribution of Working Group I
to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and30

Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.
24946

Raymond, D. J. and Blyth, A. M.: A stochastic mixing model for nonprecipitating cumulus

24981

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys.net/5/2749/2005/


ACPD
9, 24945–24984, 2009

The basis for bulk
mass flux

parameterization

R. S. Plant

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

clouds, J. Atmos. Sci, 43, 2708–2718, 1986. 24973
Raymond, D. J. and Emanuel, K. A.: The Kuo cumulus parameterization, in: The Representa-

tion of Cumulus Convection in Numerical Models, edited by: Emanuel, K. A. and Raymond,
D. J., vol. 24 of Meteorological Monographs, chap. 10, 145–147, American Meteorological
Society, 1993. 249725

Shutts, G. and Allen, T.: Sub-gridscale parametrization from the perspective of a computer
games animator, Atmos. Sci. Lett., 8, 85–92, 2007. 24948

Song, J.-L. and Frank, W. M.: Relationship between deep convection and large-scale processes
during GATE, Mon. Weather Rev., 111, 2145–2160, 1983. 24972

Swann, H.: Evaluation of the mass-flux approach to parametrizing deep convection, Q. J. Roy.10

Meteor. Soc., 127, 1239–1260, 2001. 24951
Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in large-scale

models, Mon. Weather Rev., 117, 1779–1800, 1989. 24948, 24955, 24972
Tiedtke, M.: Representation of clouds in large-scale models, Mon. Weather Rev., 121, 3040–

3061, 1993. 2497415

Willett, M. R. and Milton, S. F.: The tropical behaviour of the convective parameterization in
aquaplanet simulations and the sensitivity to timestep, Forecasting Research Technical Re-
port 482, Met Office, UK, 2006. 24972

Xu, K.-M. and Randall, D. A.: Influence of large-scale advective colling and moistening effects
on the quasi-equilibrium behavior of explicitly simulated cumulus ensembles, J. Atmos. Sci.,20

55, 896–909, 1998. 24964
Yanai, M. and Johnson, R. H.: Impacts of cumulus convection on thermodynamic fields, in: The

Representation of Cumulus Convection in Numerical Models, edited by: Emanuel, K. A. and
Raymond, D. J., vol. 24 of Meteorological Monographs, chap. 4, 39–62, American Meteoro-
logical Society, 1993. 2495125

Yanai, M., Esbensen, S., and Chu, J.-H.: Determination of bulk properties of tropical cloud
clusters from large-scale heat and moisture budgets, J. Atmos. Sci., 30, 611–627, 1973.
24946, 24949, 24950, 24951, 24952, 24953, 24955, 24956, 24957, 24958, 24959, 24960,
24961, 24962, 24972, 24974, 24975

Yanai, M., Chu, J.-H., Starx, T. E., and Nitta, T.: Response of deep and shallow tropical maritime30

cumuli to large-scale processes, J. Atmos. Sci., 33, 976–991, 1976. 24955, 24956
Yano, J.-I., Grabowski, W. W., Roff, G. L., and Mapes, B. E.: Asymptotic approaches to convec-

tive quasi-equilibrium, Q. J. Roy. Meteor. Soc., 126, 1861–1887, 2000. 24948

24982

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 24945–24984, 2009

The basis for bulk
mass flux

parameterization

R. S. Plant

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Yano, J.-I., Guichard, F., Lafore, J.-P., Redelsperger, J.-L., and Bechtold, P.: Estimations of
mass fluxes for cumulus parameterizations from high-resolution spatial data, J. Atmos. Sci.,
61, 829–842, 2004. 24951

Zhang, G. J. and McFarlane, N. A.: Sensitivity of climate simulations to the parameterization
of cumulus convection in the Canadian climate centre general circulation model, Atmos.-5

Ocean, 33, 407–446, 1995. 24972

24983

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/24945/2009/acpd-9-24945-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 24945–24984, 2009

The basis for bulk
mass flux

parameterization

R. S. Plant

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

 200

 300

 400

 500

 600

 700

 800

 900
 336  338  340  342  344  346  348  350

P
re

ss
ur

e 
(m

b)

Moist static energy (kJ/kg)

^

h*
~

a)

h*

 200

 300

 400

 500

 600

 700

 800

 900
 0  20  40  60  80  100  120  140

P
re

ss
ur

e 
(m

b)

Estimated z correction (m)^

b)

Fig. 1. (a) Vertical profiles of̃h∗ (blue line) and̂h∗ (green line; Eq. 11) for the Jordan (1958) sounding.
(b) Error in the calculation of̂z, as discussed in the main text and estimated from Eq. 23.

13

Fig. 1. (a) Vertical profiles of h̃∗ (blue line) and ĥ∗ (green line; Eq. 11) for the Jordan (1958)
sounding. (b) Error in the calculation of ẑ, as discussed in the main text and estimated from
Eq. (23).
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