
ACPD
9, 23719–23753, 2009

Optimal estimation
retrieval of aerosol

properties

D. Wurl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Atmos. Chem. Phys. Discuss., 9, 23719–23753, 2009
www.atmos-chem-phys-discuss.net/9/23719/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics
Discussions

This discussion paper is/has been under review for the journal Atmospheric Chemistry
and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Optimal estimation retrieval of aerosol
microphysical properties from SAGE II
satellite observations in the lower
stratosphere
D. Wurl1, R. G. Grainger2, A. J. McDonald1, and T. Deshler3

1Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand
2Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
3Department of Atmospheric Science, College of Engineering, University of Wyoming,
Laramie, USA

Received: 25 May 2009 – Accepted: 3 September 2009 – Published: 10 November 2009

Correspondence to: D. Wurl (daniela wurl@yahoo.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

23719

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/23719/2009/acpd-9-23719-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/23719/2009/acpd-9-23719-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 23719–23753, 2009

Optimal estimation
retrieval of aerosol

properties

D. Wurl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Abstract

A new retrieval algorithm is presented, which is based on the Optimal Estimation (OE)
approach and aimed to improve current estimates of aerosol microphysical properties
under non-volcanic conditions. The new OE algorithm retrieves log-normal particle size
distribution parameters and associated uncertainties from multi-wavelength aerosol ex-5

tinction data at visible to near infrared wavelengths. The algorithm was tested on syn-
thetic data and then applied to SAGE (Stratospheric Aerosol and Gas Experiment) II
data measured in 1999 in the lower stratosphere between 10 and 35 km.

Model validation based on synthetic data shows that the new algorithm is able to re-
trieve the particle size of typical background aerosols accurately and that the retrieved10

uncertainties are a good estimate of the true errors. Aerosol properties retrieved from
measured SAGE II extinction data (recorded in 1999) using the OE approach were
compared to Principal Component Analysis (PCA) results retrieved from the same
SAGE II data set. The OE surface area and volume densities are observed to be
larger than the PCA values by 20–50% and 10–40% whereas the OE effective radii15

tend to be smaller by about 10–40%. An examination of the OE algorithm biases with
in situ data indicates that the new OE estimates are likely to be more realistic than the
PCA results.

Based on the results of this study we suggest that the new OE retrieval algorithm
provides improved estimates of aerosol properties in the lower stratosphere under low20

aerosol loading conditions.

1 Introduction

Stratospheric aerosols are typically composed of an aqueous solution of sulphuric acid
(H2SO4) and water. Through scattering and absorption of electromagnetic radiation
they influence the atmosphere’s radiative budget and chemical balance in a number25

of ways. For instance, by scattering a large portion of the incoming solar radiation
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directly back into space, sulphuric acid droplets decrease the total energy of the Earth-
atmosphere system, which has a cooling effect. A change in the ultraviolet range of
the electromagnetic spectrum leads to changes in the ozone photolysis rates, which
in turn influence the budget of several trace gases, in particular NOx (SPARC Steering
Group, 2006). Aerosol particles can also act as chemical catalysts serving as sites for5

heterogeneous reactions.
The impact of an aerosol on the different processes is determined by its microphys-

ical properties, namely the particle size distribution, the surface area density (A) and
the volume density (V ).

A good knowledge of these aerosol properties at the natural background level is an10

important reference based on which trends can be estimated and perturbations of the
climate system – such as those that occur for instance in the aftermath of large volcanic
eruptions – can be quantified. Due to the complexity of the retrieval aerosol problem
“significant questions remain regarding the ability to characterize stratospheric aerosol
during volcanically quiescent periods, particularly in the lower stratosphere” (SPARC15

Steering Group, 2006). The difficulty in retrieving background aerosol properties accu-
rately is largely due to the fact that the available aerosol extinction measurements are
not very sensitive to particles with radii less than 0.1 µm, which typically prevail under
background conditions. The accurate determination of the particle size distribution,
surface area density and volume density, however, depends on all particles including20

the smallest. The success of any retrieval method therefore depends strongly on their
ability to fill this “blind spot” in the spectral extinction measurements with suitable infor-
mation about the smallest effectively invisible particles.

In the Optimal Estimation (OE) retrieval approach prior knowledge about non-
volcanic aerosols size distributions is taken into account in a statistical way to make25

up for the missing contributions to the spectral extinction measurements by the small-
est particles. In the retrieval process the probability density functions of background
aerosol size distribution parameters (a priori knowledge) are linked to the measured
information through a statistical theorem (Bayes’ Theorem). As a result the “blind spot”
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of the experiment is filled with contributions from very small particles weighted accord-
ing to their statistical probability of occurrence, and the retrieved solutions comprise
size distribution parameters as well associated uncertainty estimates.

We start by introducing the mathematical description of the aerosol microphysical
properties, the basic radiative transfer equations, the SAGE II satellite experiment and5

the current SAGE II retrieval method (Sect. 2). Then the new OE retrieval algorithm
is presented together with a description of the Bayesian approach which it is based
upon (Sect. 3). The performance of the new algorithm is then evaluated based on syn-
thetic aerosol extinction data; then aerosol properties retrieved from satellite (SAGE II)
measurements are presented (Sect. 4). The OE retrieval results are discussed and10

compared to results reported in the literature (Sect. 5) and the paper closes with a
summary of the main results (Sect. 6).

2 Aerosol properties and measurements

The size spectrum of stratospheric aerosol is generally continuous and may range from
only a few nanometres up to several hundred micrometres. The most widely used size15

distribution model for stratospheric aerosols is the differential lognormal expression,
given by

dN(r)

dr
=
∑
i

Ni√
2π Si

· 1
r
· exp

[
−1

2

(ln r − lnRi )
2

S2
i

]
(1)

where Ni is the total number of particles per unit volume of air, Ri is the median particle
radius, and Si is the half width or standard deviation of mode i . (S is the equivalent20

of lnσ, which is sometimes used in the literature). Monomodal distributions have only
one mode, whereas multimodal particle size distributions can be described by a super-
position of several modes. dN/d ln r is the number of particles per unit volume of air in
a radius interval between r and r +dr . The total number of particles can be calculated
by summation over all particle radii and is usually given per cm3.25
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The non-volcanic stratospheric background aerosol is usually well described by a
monomodal size distribution, although balloon borne in situ measurements indicate
that a second mode of larger but less abundant particles can coexist (Deshler, 2008).

From the particle size distribution the associated surface area density and volume
density can be derived5

A =
∫ ∞

0
4πr2 ·

dN(r)

dr
dr = 4πNR2 · exp

[
2S2

]
(2)

V =
∫ ∞

0

4
3
πr3 ·

dN(r)

dr
dr =

4
3
πNR3 · exp

[
9
2
S2

]
(3)

where A is usually given in µm2 per cm3 and V in µm3 per cm3. The effective radius or
area-weighted mean radius is given by

Reff =
3V
A

= R · exp
[

5
2
S2

]
. (4)10

The presence of atmospheric aerosols can be detected based on their effect on other
processes in the atmosphere, for instance on the propagation of sunlight. The inten-
sity, I , of electromagnetic radiation transmitted through an inhomogeneous medium is
observed to decrease exponentially with increasing distance, s, as described by the
Beer-Lambert law:15

I = I0 exp
[
−βext · s

]
, (5)

where I0 is the initial intensity, and βext the volume extinction coefficient at a particular
wavelength. The extinction properties of a medium depend on the efficiency with which
light is removed from the beam by absorption and scattering. The volume extinction
coefficient can be thought of as the cross-sectional area per unit volume with which20

the ray interacts. It is the sum of all particle cross-sections multiplied by the extinction
efficiency Qext

βext(λ) = π
∫ ∞

0
r2 ·Qext ·

dN(r)

dr
dr. (6)
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The extinction coefficient is conventionally given in µm2cm−3 or km−1 and hereafter
just called “extinction”. The extinction efficiency Qext is a function of particle size, of
the wavelength of the incident light, and of the refractive index of the substance. It can
be calculated using Mie’s theory of light extinction (Mie, 1908), where extinction is the
sum of scattering and absorption.5

The refractive index of sulphuric acid droplets at 1.06 µm ranges between 1.394 and
1.444 for ambient conditions typically found in the lower stratosphere, that is temper-
atures between 195 K and 240 K, water vapour pressures of 1 · 10−4 to 8 · 10−4 hPa,
and associated acidities between 35 and 85% by weight H2SO4 (Steele et al., 1999).
The imaginary part of the refractive index (describing the absorption) is zero and hence10

extinction is equivalent to scattering.
In this study refractive indices were calculated using a model by Semmler et al.

(2003) which is based on laboratory measurements of the densities and refractive in-
dices of binary or ternary H2SO4, and/or (NH4)2SO4 and water solutions. The model
applies the Lorentz-Lorenz relationship to determine the refractive index at a certain15

temperature from the refractive index at a reference temperature. The aerosol acid-
ity was determined with the help of temperature and pressure observations (from the
National Meteorological Center, NMC) and observed humidity data (SAGE II) and by
linearly interpolating between tabulated values from Steele and Hamill (1981) with ex-
tensions from Russell and Hamill (1984).20

The Mie scattering code used in this study originates from the work of Grainger
(1990) and can be downloaded from www.atm.ox.ac.uk/code/mie.

The Stratospheric Aerosol and Gas Experiment (SAGE) II was launched from the
space shuttle in October 1984. Mounted aboard the Earth Radiation Budget Satellite
(ERBS) it operated continuously until January 2005 and provides the longest continu-25

ous record of space borne measurements of stratospheric aerosol to date.
The SAGE II instrument is a seven-channel sun photometer and measures changes

in received sunlight as the Sun rises or sets as seen from the spacecraft (solar occul-
tation). A typical SAGE II slant path length is 200 km long for a 1-km thick shell at a
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tangent height of about 20 km.
The four wavelengths used for aerosol retrieval are 1.02, 0.525, 0.452, and 0.386 µm.
Each day, SAGE II measures approximately 15 sunrise and 15 sunset events, equally

spaced in longitude along two latitude belts between 80◦ N and 80◦ S. Extremes of lat-
itudes are covered every 4 to 5 weeks. The optical data are recorded at a series of5

discrete altitudes (tangent heights) so that vertical distributions of ozone, nitrogen diox-
ide, water vapour concentration, and aerosol extinction (per km) can be determined.
The inversion algorithm is described by Chu et al. (1989). For a description of the opti-
cal assembly and operation of the SAGE II instrument the interested reader is referred
to McCormick (1987) and McMaster (1986). The SAGE II aerosol extinction data used10

in this study are a subset of the version 6.1 data made available to the public by the
NASA Langley Research Center (LaRC, Hampton, VA, USA).

The operational algorithm used by the NASA LaRC to retrieve integrated aerosol
properties from SAGE II aerosol extinction is based on the Principal Component Anal-
ysis (PCA) method described by Thomason et al. (1997) and Steele et al. (1999). In15

the PCA approach, the kernel function in the aerosol extinction equation (Eq. 6) is ex-
panded in terms of a set of orthogonal basis functions. Integral properties such as
surface area density and volume density can then be evaluated from a linear com-
bination of the spectral extinction measurements β(λi ) multiplied by a factor which is
dependent on particle composition (through the aerosol refractive index), on the inte-20

gration limits employed in the calculation of the eigenvectors and eigenvalues of the
covariance matrix, and on the number of principal components retained. The propa-
gation of experimental error can be reduced by narrowing the integration interval and
by limiting the number of principal components. This introduces a systematic bias
error (Steele et al., 1999). Observations show that during low aerosol loading peri-25

ods the operational SAGE II retrieval algorithm tends to underestimate surface area
densities derived from in situ data measured by optical particle counters (e.g. Deshler
et al., 2003; SPARC Steering Group, 2006). As a result of a recent sensitivity study
Thomason et al. (2008) found that during background periods the surface area den-
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sity operational product has an uncertainty of at least a factor of 2. They ascribe this
uncertainty to the lack of sensitivity to particles with radii less than 100 nm, the same
conclusion arrived at by Deshler et al. (2003).

3 Optimal Estimation retrieval algorithm

The complexity of the aerosol retrieval problem arises to a large part from experimental5

uncertainty. Because of experimental error a point in state space will map into a region
of measurement space. Conversely, a measurement could be the results of a mapping
from anywhere in a region of state space rather than from a single point. The Optimal
Estimation (OE) retrieval approach (Rodgers, 2000) is based on Bayesian statistics,
which provide a formalism (Bayes’ theorem) that translates uncertainty in measurement10

space into uncertainty in state space. Bayes’ Theorem relates a set of measurements,
y, to the a priori knowledge about the required state, described by a vector x. If all
state vector elements are described by probability density functions (pdf) of their natural
occurrence Bayes’ Theorem allows us to determine the pdf of a retrieved solution state.
It states that the desired posterior pdf can be obtained by updating the prior pdf of the15

state with the conditional pdf of a measurement:

P (x|y) =
P (x)

P (y)
P (y|x), (7)

where P (x|y) is the posterior conditional pdf of x which describes the probability that
the state lies in the interval (x, x + dx) when y has a given value; P (x) is the prior pdf
of the state x expressing quantitatively our knowledge of x before a measurement is20

taken; P (y|x) is the conditional pdf of a measurement y, which describes the proba-
bility that the measurement vector lies in the interval (y, y + dy) given a certain state
x; and P (y) describes the knowledge about the measurement before it is taken which
is in practice only a normalizing factor (Rodgers, 2000). This means that all possible
states that are consistent with the measured information can be identified and char-25
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acterized by probability density functions if the following information is given: (a) a
measurement together with a description of its error statistics, (b) a forward model de-
scribing the relation between a state and the resulting measurement vector and (c) any
prior information about the unknown state. By considering all possible states and by
weighting them according to their natural probability of occurrence, the Bayesian solu-5

tion includes also the smallest and effectively invisible aerosol particles, weighted by
their natural probability of occurrence. The most likely value of each solution pdf (one
for each size distribution parameter) is taken to be “the” Optimal Estimation solution
and the width of each solution pdf is the associated (one-sigma) uncertainty.

With the help of Bayes’ Theorem and the general expression of the probability func-10

tion of a vector y, the following expression for the general form of the Bayesian solution
can be derived (see Rodgers, 2000):

− 2 ln P (x|y) = [y − F (x)]TSε
−1[y − F (x)] +

[x − xa]TSa
−1[x − xa] + c, (8)

where F (x) is the forward model expressing spectral aerosol extinction in terms of the15

size distribution parameters, Sε is the measurement error covariance matrix, xa and Sa
are the a priori mean state and covariance matrix, and c is a constant. The quadratic
form in x implies that it must be possible to express ln P (x|y) as a function of a new
state x̂ (retrieval solution) and an associated error covariance Ŝ:

− 2 ln P (x|y) = [x − x̂]TŜ−1[x − x̂]. (9)20

An explicit expression for Ŝ can be derived when assuming that within a small particle
size range the forward model can be approximated by a linearised forward model of the
form F (x)=∇xF (x0)(x − x0)=y0 +K0 (x − x0), where x0 is an arbitrary linearisation
point and K0 is the Jacobian matrix of derivatives at x0. This approach is appropriate
as the problem is no more than moderately non-linear (Rodgers, 2000), meaning that25

the difference between the forward model and a linearised version of the forward model
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remains within the solution error covariance. Equating terms that are quadratic in x

then leads to an expression for the inverse covariance matrix

Ŝ−1 = KTS−1
ε K + S−1

a , (10)

where K is the Jacobian or weighting function matrix containing the derivative of F (x)
with respect to the state vector elements.5

The expected retrieval state is situated where the posterior pdf takes a maximum.
This is equivalent to finding the minimum on a multidimensional surface which is given
by the right hand side of Eq. (8). This leads to the following implicit expression for x̂

−K̂TS−1
ε [y − F̂ ] + S−1

a [x̂ − xa] = 0, (11)

where K̂ is the Jacobian matrix of derivatives at the solution state. Application of the10

Levenberg-Marquardt root-finding method (Press et al., 1992) and dropping the second
derivative of the forward model leads to the following iterative equation for the solution
state

xi+1 = xi + (S−1
a + KT

i S−1
ε Ki + γS−1

a )−1 ·
(KT

i S−1
ε [y − F (xi)] − S−1

a [xi − xa]), (12)15

where γ is chosen at each step to minimise the right hand side of Eq. (8) and such that
the new value of x remains within the linear range of the previous estimate.

The measurement vector, y, consists of a set of four volume extinction coefficients,
one for each of the four SAGE II aerosol spectral channels. The state vector is a
three element vector containing the natural logarithms of the three monomodal size20

distribution parameters, x= ln[N,R, S]. This form is particularly suitable because in
log-space (a) the size distribution parameters are approximately normally distributed,
(b) the different orders of magnitude of N (1–100 particles per cm3), R (0.001–1.0 µm)
and S (0.1–1 in log radius) are merged to a similar scale, and (c) the solution space is
positive definite and hence constrained to physically sensible solutions.25
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The forward model Fλ(x) expresses the aerosol extinction at a particular wavelength
λ in terms of the monomodal log-normal size distribution parameters

Fλ(x) =
ln rb∑
ln ra

πr2 ·Qext(r, λ,RI) ·
dN(r)

d ln r
∆ ln r, (13)

where r is the particle radius at which the function is evaluated, ra and rb are finite
integration limits between which the integrand is non-negligible, ∆ ln r is the width of5

the particle size interval, and RI is the aerosol refractive index at wavelength λ.
The a priori information used in this study consists of 30 vertical profiles of number

density, median particle radius and lognormal distribution width originating from in situ
balloon borne size resolved concentration measurements collected by the University of
Wyoming (Deshler et al., 2003) near 41◦ N, 105◦ W at altitudes between 20 and 35 km,10

between May 1991 and October 1997.
In the absence of more detailed prior information the a priori mean state can be con-

sidered a good first guess to initialize a retrieval process. Aerosol properties retrieved
at height k are used as a first guess state at height k +1.

Whether or not a retrieval process has converged to sufficient precision is decided15

based on the size and rate of change of the retrieval cost (right hand side of Eq. 8), on
the differences (between two consecutive iterations) in the retrieved signal and in the
retrieved state vector elements, and on the number of iterations performed.

The computational efficiency and accuracy of the forward model are optimized by
adapting the number of grid points to the smoothness of the integrand and by individ-20

ually estimating suitable integration limits for each measurement vector. As a result
solutions are found quickly and mostly solutions are obtained in less than 5 iterations.
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4 Results

4.1 Validation with synthetic data

To assess the performance of the new retrieval algorithm synthetic extinction coeffi-
cients were calculated for a 75% (by weight) sulphuric acid solution at 300 K (refrac-
tive indices by Palmer and Williams, 1975) at four spectral wavelengths (0.385, 0.452,5

0.525 and 1.020 µm) and based on 264 monomodal aerosol size distributions originat-
ing from in situ measurements by Deshler et al. (2003). Two test beds were generated
by adding two different noise components: (a) the Minimum Noise Scenario (minNS) is
characterised by a 1% Gaussian distributed random noise component added onto each
of the four spectral extinction data; (b) the Maximum Noise Scenario (maxNS) is char-10

acterised by [60, 45, 30, 25]% Gaussian distributed random noise on the respective
spectral channels [0.385, 0.452, 0.525, 1.020] µm.

These numbers describe the range of experimental SAGE II extinction uncertainties.
The majority of all measured (SAGE II) data have errors that are between the two ex-
tremes. To discard spurious retrieval solutions an ad hoc quality filter was developed15

based on several retrieval diagnostics. This filter achieves a good balance between
maximizing the correlation between the retrieved and the correct solutions and mini-
mizing data loss through rejection. In both noise scenarios approximately 88% of all
retrieved solutions pass the screening.

Figure 1 (minNS) and Fig. 2 (maxNS) display the retrieved aerosol properties ver-20

sus the true values. It can be observed that the integrated aerosol properties (frames
d–f) are closer to the correct solutions than the retrieved size distribution parameters
(frames a–c) from which they were derived. This is reflected in the correlation coeffi-
cients of N, R and S being smaller than those of A, V , and Reff (listed in Table 1). This
can be explained by the lower sensitivity of A, V and Reff to errors in the number size25

distribution arising from the low sensitivity of SAGE II to particles much smaller than
0.1 µm.

Table 2 lists the ensemble mean errors of all six variables in both noise scenarios.
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The observation that the uncertainty in N is highest indicates that number density is
harder to retrieve than the other five aerosol properties.

As might be expected the retrieved uncertainties are generally larger in the case of
large experimental noise (Fig. 2) than in the case of little experimental error (Fig. 1).

4.2 Retrieval from SAGE II measurements5

The new Optimal Estimation retrieval algorithm was then applied to SAGE II satellite
measurements of aerosol extinction recorded in December 1999. As this period is
part of the longest volcanically quiescent period in the SAGE II record (which began
around 1997, Deshler et al., 2006), the particle size distributions are assumed to be
predominantly monomodal size distributions of sulphuric acid particles. Retrieval was10

performed on all measurements having uncertainties smaller than 99%. Approximately
90% of all 19 700 retrieved results pass the ad hoc quality screening.

Figure 3 presents the retrieved state vector elements in the form of histograms. It
can be observed that the majority of all results are within one standard deviation of the
a priori mean. The mean retrieved size distribution parameters of the December 199915

data are larger than the a priori means, which can also be seen in the mean values
listed in Table 3.

The uncertainties in N, R, and S are presented in Fig. 4. A comparison with the
model validation results (see Table 2) shows that, as expected, the OE uncertainties
retrieved from SAGE II measurements are larger than those in the minimunm noise20

scenario and smaller than those achieved in the maximum noise scenario.
Table 4 lists the mean integrated aerosol properties and the associated uncertainties

derived from the retrieved number size distributions. It can be observed that the mean
retrieved errors are smaller than the a priori mean standard deviations. This means that
through analysing the measurements our knowledge about the aerosols microphysical25

properties was increased (relative to the a priori knowledge).
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4.3 Error Analysis

The retrieved uncertainties result from the propagation of measurement error and from
the influence of the a priori constraint (Eq. 10). In the case of synthetic data the re-
trieved errors can be compared with the true error (difference between the retrieved
and the correct value). This comparison indicates that the retrieved errors are gen-5

erally a good representation of the true errors even though slightly overestimating the
true errors in the maximum noise scenario (Wurl, 2008). In the case of measured
data additional uncertainties have to be considered. There could be contributions from
forward model error, from forward model parameter errors, and from bimodal errors.

The forward model error is the difference between the exact physics and the math-10

ematical model. There are basically three sources of uncertainty: (a) deviations from
Mie theory, (b) deviations from the lognormal particle size distribution model, and (c)
numerical errors. Mie theory is valid for homogeneous spherical particles. Since strato-
spheric background aerosol, at temperatures above the frost point, are tiny sulphuric
acid and water droplets (Rosen, 1971; Steele and Hamill, 1981) they are both spher-15

ical and homogeneous. Thus Mie solutions will be exact. Measured size distributions
appear to be well approximated by lognormal distributions and thus deviations from
this theoretical model are assumed to be small (Deshler et al., 2003). The remaining
numerical forward model errors arise from discretisation of the model equations and
from truncation of the integration integral. The joint contributions are estimated to be20

smaller than 1% in aerosol extinction (Wurl, 2008). This is clearly smaller than the 10–
60% measurement noise typically observed at 0.368 µm, but not necessarily negligible
compared to the 1–10% measurement noise typically observed at 1.020 µm.

The forward model parameter error arises from uncertainties in parameters that are
not part of the state vector but nevertheless influence the measurements. In this re-25

trieval model these are the atmospheric temperature and water vapour partial pres-
sure, sulphuric acid concentration and refractive index. A common approach to es-
timate the forward model parameter error is to use best-guess values and a random
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deviation of the “true” atmosphere about this guess. When size distribution parame-
ters were retrieved from spectral extinction data simulated for a medium sized aerosol
(N=4.7 cm−3, R=0.04 µm and S =0.48) at two reference states (220 K / 70%; 200 K /
65%) and two fluctuation scenarios (±1 K / ±1%; ±5 K / ±5%), the forward model error
was found to be always less than 3% in N, R, and S. This is generally over an order5

of magnitude smaller than the retrieved uncertainties (Table 2) which indicates that the
forward model parameter error tends to be negligible compared to the retrieved OE
uncertainties.

Bimodal errors arise when the extinction measurements are assumed to originate
from monomodal aerosol whereas in reality they originate from bimodal aerosol. Com-10

parisons between the integrated monomodal aerosol properties retrieved from bimodal
extinction data and the correct bimodal values indicate that uncertainties in the re-
trieved surface area and volume densities due to bimodal error tend to be negligible
(Wurl, 2008). This agrees with results by Steele and Turco (1997) who found that
it is possible for bimodal size distributions to account for extinctions generated from15

monomodal distributions and vice versa.
In summary, with the above additional error contributions tending to be small and

with the retrieved uncertainties tending to slightly overestimate the true errors, these
results suggest that the OE uncertainties retrieved from measured aerosol extinction
data are likely to be a realistic estimate of the true errors.20

5 Discussion

The new Optimal Estimation retrieval results can be compared to aerosol properties
estimated through different retrieval techniques and with correlative in situ data.

The NASA Langley Research Center retrieves surface area density and effective
radius from SAGE II aerosol extinction data using the Principal Component Analysis25

(PCA) technique (Sect. 2). The associated volume densities can be derived using
Eq. (4).
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Figure 5 shows the PCA solutions versus the Optimal Estimation results, all retrieved
from the same SAGE II extinction data set. Generally, it can be observed that the PCA
and the OE solutions are correlated but with a systematic bias. The OE surface areas
and volumes tend to be larger whereas the effective radii are generally smaller than
the PCA results.5

In Fig. 6, which presents the relative differences (with respect to the OE values) be-
tween the two method results, the great majority of the OE surface areas are observed
to be 20 to 50% larger than the PCA surface areas, and the OE volumes tend to be
larger by 10 to 40%, whereas the OE effective radii tend to be 10 to 40% smaller than
the respective PCA values.10

Similar biases have also been observed by other researchers. In particular, Steele
et al. (1999) found that retrieved surface areas for background aerosol can be underes-
timated by up to 50% and volume densities by up to 30% through Principal Component
Analysis. Deshler et al. (2003) observed that for background aerosol conditions the
SAGE II estimates of surface area density retrieved through Principal Component Anal-15

ysis are about 40% lower than correlative in situ measurements. This suggests that the
OE algorithm may have improved the accuracy of the retrieved aerosol properties. To
test this hypothesis we compare retrieved values with in situ data.

Figure 7 shows a comparison between vertical profiles of PCA and in situ surface
area densities. The temporal and spatial differences between any two correlative pro-20

files are up to approximately 6 days time wise, 2 degrees in latitude, and 5 degrees in
longitude, (these were the closest matches available in 1999). The relative difference
between any two values at a particular altitude is given in % of the in situ value, and the
profile mean difference is the arithmetic mean of all differences (absolute numbers) in
the profile. It can be observed that the PCA surface area densities tend to be smaller25

than the in situ values, with increasing deviations at lower altitudes. The PCA error
bars are very small so that in this respect the PCA and the in situ profiles agree only
at a few altitudes. With respect to the larger in situ uncertainties (Fig. 7b, d, f, h) there
are more matches. Below approximately 19 km, the PCA surface areas are observed
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to be about 40–50% smaller than the in situ values.
Figure 8 displays the profiles of surface area density as derived from the retrieved

OE size distribution parameters. It can be observed that the retrieved and the in situ
surface area densities are similar in their orders of magnitude and that agreement
(between the OE and in situ profiles) within the retrieved OE errors and/or the in situ5

uncertainties is widely observed.
Cross-comparisons between the OE profiles (Fig. 8), the PCA profiles (Fig. 7) and

the in situ values show that the PCA and the OE surface area densities are similar
in their vertical structure even though the PCA surface area densities are generally
smaller than the OE values. It can also be observed that the OE surface areas tend to10

match the in situ values better.
Bingen et al. (2004a,b) retrieved particle number density and median particle size

from SAGE II aerosol extinction measured between 1984 and 2000 using a regularized
inversion retrieval technique. Compared to the OE results the particle radii retrieved
by Bingen et al. (2004a) are about three times as large. For instance, at an altitude of15

17.5 km at mid-latitude (40 to 70◦ N/S) in 1999, the retrieved radii range between 0.25
and 0.33 µm (NH) or 0.27 and 0.37 µm (SH), whereas the OE results are on the order
of 0.08 µm.

Simultaneously, the number densities retrieved by Bingen et al. (2004b), which they
found to be low compared to coincident in situ Optical Particle Counter measurements20

(Bingen et al., 2004b), are smaller than the OE number densities. This suggests that
the OE number densities are more realistic.

Table 5 provides a list of uncertainties on aerosol properties retrieved under similar
conditions (non-volcanic SAGE data) but using different retrieval techniques.

Generally, it can be observed that in surface area, volume density and effective ra-25

dius the OE uncertainty estimates are of a similar size to those values reported in the
literature. For the number size distribution parameters there are less values to compare
and larger differences between the data sets.

In number density, the uncertainties reported by Bingen et al. (2004b) are larger
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than the OE error estimates, whereas those estimated by Wang et al. (1989) are con-
siderably smaller. The 11% reported by Wang et al. (1989), however, account only for
particles greater than 0.15 µm although the great majority of the retrieved OE sizes are
smaller than that (Fig. 3). This means that the OE error estimates are likely to be a
more realistic estimate of the total retrieval error. Similarly, uncertainties in median par-5

ticle radius estimated by Wang et al. (1989) are smaller than those reported by Bingen
et al. (2004b) and smaller than those achieved through Optimal Estimation, but their
error estimates apply only to radii between 0.1 and 0.7 µm.

Although particles smaller than 0.1 µm contribute little to the total aerosol extinction
(at visible wavelengths), their contribution is nevertheless important to get accurate10

estimates of the retrieved aerosol properties (Sect. 1).
The OE uncertainties in distribution width are an order of magnitude smaller than

those estimated by Bingen et al. (2004) which implies that the OE results are more
precise.

6 Summary and conclusions15

We have introduced a new Optimal Estimation algorithm which retrieves number size
distribution parameters and associated uncertainties from spectral aerosol extinction
measured at visible to near infrared wavelengths under non-volcanic conditions. The
particular challenge of this aerosol retrieval problem arises from a lack of sensitivity of
the available aerosol extinction measurements to particles smaller than 0.1 µm. The20

Optimal Estimation algorithm fills this “blind spot” in the aerosol extinction experiments
with the help of Bayes’ Theorem by taking into account contributions from very small
particles which are weighted according to their natural probability of occurrence. A par-
ticular asset of the new OE retrieval algorithm is that it produces uncertainty estimates
as part of the retrieved solution. We found:25

– Aerosol properties retrieved from synthetic extinction data are well correlated with
the true solutions in both noise scenarios, that is with little and with much noise.
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– The retrieved uncertainties were found to be a good estimate of the true errors.
Additional uncertainties due to forward model error, forward model parameter er-
ror or bimodal errors tend to be negligible (Wurl, 2008).

– The OE surface area densities are larger by about 20–50% and hence tend to
be more realistic than the PCA surface area densites (retrieved from the same5

SAGE II measurements) which are known to underestimate correlative in situ
data by about 40% (Deshler et al., 2003).

– The OE volume densities are generally larger by 10 to 40% and hence likely to
be more realistic than the PCA volume densities which tend to underestimate
coincident in situ data by an estimated 30% (Steele et al., 1999).10

– The OE number densities are larger and the median radii are smaller than the
number densities and median radii retrieved by Bingen et al. (2004a) from SAGE II
extinction data using a regularized inversion technique. As the latter were ob-
served to underestimate correlative in situ data of N and to overestimate correla-
tive in situ values of R (Bingen et al., 2004a), the OE results are likely to be more15

realistic. The retrieved OE errors are considerably smaller than those associated
with the results by Bingen et al. (2004a).

– The retrieved OE uncertainties are of the order of 69% for number concentration,
33% for median radius, 14% for the lognormal distribution width, 23% for surface
area density, 12% for volume density, and 13% for effective radius. Compared20

to retrieval errors reported by other researchers the OE uncertainties are smaller
(for number density, median radius and distribution width) or of the same order of
magnitude (for surface area density, volume density, and effective radius).

Based on these results we conclude that the new Optimal Estimation retrieval al-
gorithm is able to successfully retrieve aerosol microphysical properties from spectral25

extinction typically observed under aerosol background conditions. The OE results are
observed to improve current estimates of the particle size distribution parameters and
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the associated integrated aerosol properties. A SAGE II climatology of monomodal
aerosol properties generated by Steven Marsh using the new OE aerosol retrieval al-
gorithm can be downloaded from http://www.atm.ox.ac.uk/project/PARTS/.

For future use the algorithm can be adapted to other solar occultation instruments,
e.g. SAGE III. As SAGE III has three additional aerosol channels the algorithm could5

be expanded to retrieve aerosol properties from bimodal particle size distributions, and
consequently from volcanically enhanced aerosols.
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Table 1. Model validation: Correlation coefficients, cc, describing the linear correlation between
all accepted (“good”) and the associated correct aerosol properties. Given the large number of
measurements (≈230) these correlation coefficients are all significant.

Retrieved vs True cc (minNS) cc (maxNS)

lnN 0.56 0.52
lnR 0.86 0.80
lnS 0.85 0.70
lnA 0.98 0.94
ln V 1.00 0.98
lnReff 0.93 0.90
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Table 2. Ensemble mean retrieved uncertainties (in %) in number density, median radius, dis-
tribution width, surface area density, volume density, and effective radius for both the minimum
noise scenario (minNS) and the maximum noise scenario (maxNS).

Ens. Mean (%) minNS maxNS

σN , σR , σS 62, 24, 14 75, 37, 26
σA, σV , σReff 22, 11, 11 45, 34, 15
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Table 3. Ensemble mean retrieved size distribution parameters (SAGE II data, December 1999)
with associated uncertainties (in %). Number density is given in cm−3, median radius in µm,
and lognormal distribution (half) width in log of µm.

SAGE II, Dec 1999

N, R, S
Ensemble Mean : 9.0, 0.069, 0.57
A priori: 4.7, 0.046, 0.48

σN , σR , σS (%)
Ensemble Mean : 69, 33, 14
A priori: 93, 61, 31
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Table 4. Ensemble mean retrieved surface area density, volume density, and effective radius
(SAGE II data, December 1999) with associated uncertainties (in %). Surface area density is
given in µm2cm−3, volume density in µm3cm−3, and effective radius in µm.

SAGE II, Dec 1999

A, V , Reff
Ensemble Mean : 1.00, 0.05, 0.16
A priori: 0.20, 0.005, 0.075

σA, σV , σReff (%)
Ensemble Mean : 23, 12, 13
A priori: 146, 179, 40
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Table 5. Overview of uncertainties (in %) on aerosol properties retrieved under similar condi-
tions (background aerosol, SAGE data) but using different retrieval techniques. The “+” indi-
cates that the value is an estimate of partial errors only and that the total error is expected to be
higher due to other disregarded uncertainty components. The uncertainties in A as reported by
Steele et al. (1999) and Steele and Turco (1997), for instance, account for propagated random
errors only. The total errors are expected to be higher due to disregarded systematic (method
bias) errors and contributions from particles smaller than 0.1 µm. The methods and the con-
ditions under which these uncertainties were achieved are described in: (1) Wurl (2008), (2)
Steele et al. (1999), (3) Thomason and Poole (1993), (4) Steele and Turco (1997), (5) Anderson
et al. (2000), (6) Bingen et al. (2004b), and (7) Wang et al. (1989). The acronyms stand for Prin-
cipal Component Analysis (PCA), Constrained Linear Inversion (CLI), Randomized Minimiza-
tion Search Technique (RMST), Regularized Inversion Method (RIM) and Nonlinear Iterative
Method (NIM).

Source/Method σN σR σS σA σV σReff

(1)/OE 60–75 30–40 10–20 20–30 5–20 10–15
(2)/PCA (15–20)+50
(3)/PCA 30 12–25
(4)/CLI 25+ 15+ 15+
(5)/RMST 8–50 5–25 6–36
(6)/RIM 50–200 35–50 100–250
(7)/NIM <11 5–28
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Figures

Fig. 1. Minimum Noise Scenario: True versus retrieved values of (a)particle number densityN , (b) median

radiusR, (c) distribution widthS, and (d) associated surface area densityA, (e) volume densityV , and (f)

effective radiusReff , with their respective uncertainties. All values are givenin log10. The broken line marks

where the retrieved and true values are identical.

Fig. 2. As Fig. 1 but for the Maximum Noise Scenario.

19

Fig. 1. Minimum Noise Scenario: True versus retrieved values of (a) particle number density
N, (b) median radius R, (c) distribution width S, and (d) associated surface area density A, (e)
volume density V , and (f) effective radius Reff, with their respective uncertainties. All values are
given in log10. The broken line marks where the retrieved and true values are identical.
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effective radiusReff , with their respective uncertainties. All values are givenin log10. The broken line marks

where the retrieved and true values are identical.
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Fig. 2. As Fig. 1 but for the Maximum Noise Scenario.
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Fig. 3. Histograms of number density (a), median radius (b), distribution width (c) as retrieved from SAGE II

measurements of aerosol extinction in December 1999. The vertical lines indicate thea priori state (solid), and

thea priori state plus or minus one standard deviation (dash-dot).

Fig. 4. SAGE II, 12/1999: Histograms of the retrieved uncertainties (in %) in number densityN, median particle

radiusR, and distribution widthS.

20

Fig. 3. Histograms of number density (a), median radius (b), distribution width (c) as retrieved
from SAGE II measurements of aerosol extinction in December 1999. The vertical lines indicate
the a priori state (solid), and the a priori state plus or minus one standard deviation (dash-dot).
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Fig. 3. Histograms of number density (a), median radius (b), distribution width (c) as retrieved from SAGE II

measurements of aerosol extinction in December 1999. The vertical lines indicate thea priori state (solid), and

thea priori state plus or minus one standard deviation (dash-dot).

Fig. 4. SAGE II, 12/1999: Histograms of the retrieved uncertainties (in %) in number densityN, median particle

radiusR, and distribution widthS.

20

Fig. 4. SAGE II, 12/1999: Histograms of the retrieved uncertainties (in %) in number density
N, median particle radius R, and distribution width S.
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Fig. 5. SAGE II measurements (December 1999): Principal Component Analysis (PCA) re-
trieval results of surface area density in µm2 cm−3, effective radius Reff in µm (courtesy of NASA
LaRC) and the associated volume density in µm3 cm−3, compared to the Optimal Estimation
retrieval results. The diagonal line marks x= y where both results would be identical.
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Fig. 6. Difference (in %) – with respect to the Optimal Estimation (OE) results – between
the retrieved Optimal Estimation surface area densities (A), volume densities (V ), and effective
radii (Reff) and the Principal Component Analysis (PCA) results. Frames (a–c): Difference as a
function of A, V , Reff. Frames (d–f): Cumulative histograms of the differences.
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Fig. 7. Vertical profiles of surface area density. Frames a/c/e/g: Surface areas as retrieved by the NASA LaRC

using the PCA approach (diamonds with error bars, measured on June 22 (a), June 23 (c), December 14 (e)

and December 16 (g), 1999) and correlative in situ measurements (without error bars, measured on June 23

and December 10, 1999); the vertical dashed line marks the a priori mean, and the short horizontal dotted line

marks the tropopause level (NMC data) at the time of the SAGE II measurements. Frames b/d/f/h: Associated

relative differences. The long vertical lines mark the zero(solid) and the profile mean difference (dotted). The

a priori uncertainty of 40 % (Deshler et al., 2003) is marked by the dash-dotted line.

22

Fig. 7. Vertical profiles of surface area density. Frames (a)/(c)/(e)/(g): Surface areas as
retrieved by the NASA LaRC using the PCA approach (diamonds with error bars, measured on
22 June (a), 23 June (c), 14 December (e) and 16 December 1999 (g)) and correlative in situ
measurements (without error bars, measured on 23 June and 10 December 1999); the vertical
dashed line marks the a priori mean, and the short horizontal dotted line marks the tropopause
level (NMC data) at the time of the SAGE II measurements. Frames (b)/(d)/(f)/(h): Associated
relative differences. The long vertical lines mark the zero (solid) and the profile mean difference
(dotted). The a priori uncertainty of 40% (Deshler et al., 2003) is marked by the dash-dotted
line.
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Fig. 8. As Fig. 7 but for surface area density as derived from the retrieved Optimal Estimation size distribution

parameters.

23

Fig. 8. As Fig. 7 but for surface area density as derived from the retrieved Optimal Estimation
size distribution parameters.

23753

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/23719/2009/acpd-9-23719-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/23719/2009/acpd-9-23719-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/

