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Abstract

During a 4-week run in October–November 2006, a pilot experiment was performed
at the CERN Proton Synchrotron in preparation for the CLOUD1 experiment, whose
aim is to study the possible influence of cosmic rays on clouds. The purpose of the
pilot experiment was firstly to carry out exploratory measurements of the effect of ion-5

ising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to
provide technical input for the CLOUD design. A total of 44 nucleation bursts were pro-
duced and recorded, with formation rates of particles above the 3 nm detection thresh-
old of between 0.1 and 100 cm−3s−1, and growth rates between 2 and 37 nm h−1. The
corresponding H2SO4 concentrations were typically around 106 cm−3 or less. The10

experimentally-measured formation rates and H2SO4 concentrations are comparable
to those found in the atmosphere, supporting the idea that sulphuric acid is involved in
the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to ex-
plain the observed rapid growth rates, which suggests the presence of additional trace
vapours in the aerosol chamber, whose identity is unknown. By analysing the charged15

fraction, a few of the aerosol bursts appear to have a contribution from ion-induced
nucleation and ion-ion recombination to form neutral clusters. Some indications were
also found for the accelerator beam timing and intensity to influence the aerosol particle
formation rate at the highest experimental SO2 concentrations of 6 ppb, although none
was found at lower concentrations. Overall, the exploratory measurements provide20

suggestive evidence for ion-induced nucleation or ion-ion recombination as sources
of aerosol particles. However in order to quantify the conditions under which ion pro-
cesses become significant, improvements are needed in controlling the experimental
variables and in the reproducibility of the experiments. Finally, concerning technical
aspects, the most important lessons for the CLOUD design include the stringent re-25

quirement of internal cleanliness of the aerosol chamber, as well as maintenance of
extremely stable temperatures (variations below 0.1◦C).

1CLOUD is an acronym of Cosmics Leaving OUtdoor Droplets.
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1 Introduction

In its Fourth Assessment Report, 2007, the Intergovernmental Panel on Climate
Change (IPCC) attributes more than 90% of the observed climate warming since
1900 to the rise of anthropogenic greenhouse gases in the atmosphere (IPCC, 2007).
Aerosols and clouds are recognised as representing the largest uncertainty in the cur-5

rent understanding of climate change. The IPCC estimates that changes of solar irra-
diance (direct solar forcing) have made only a small (7%) contribution to the observed
warming. However, large uncertainties remain on other solar-related contributions,
such as the effects of changes of ultra-violet (UV) radiation or galactic cosmic rays on
aerosols and clouds (Svensmark and Friis-Christensen, 1997; Carslaw, Harrison and10

Kirkby, 2002; Lockwood and Fröhlich, 2007; Kirkby, 2007; Enghoff and Svensmark,
2008; Kazil, Harrison and Lovejoy, 2008; Siingh, 2008).

Concerning the effects of cosmic rays on aerosols, early studies (Bricard et al., 1968;
Vohra et al., 1984) have demonstrated ultrafine particle production from ions in the
laboratory, at ion production rates typically found in the lower atmosphere; this has15

also been found in more recent laboratory experiments under conditions closer to those
found in the atmosphere (Svensmark et al., 2007; Enghoff et al., 2008). Observations
of ion-induced nucleation in the atmosphere have also been reported (Eickhorn et al.,
2002; Lee et al., 2003). Laboratory measurements have further quantified the effect
of charge on particle formation (Winkler et al., 2008) and have shown that ions are20

indeed capable, under certain conditions, of suppressing or even removing the barrier
to nucleation in embryonic molecular clusters of water and sulphuric acid at typical
atmospheric concentrations (Lovejoy et al., 2004).

The present results, while suggestive, are insufficient to unambiguously establish an
effect of galactic cosmic rays on cloud condensation nuclei, clouds and climate, or to25

reach reliable quantitative estimates of such effects (Kazil et al., 2006; Yu et al., 2008;
Pierce and Adams, 2009). The uncertainties largely stem from poorly-known aerosol
nucleation and growth rates into cloud condensation nuclei (CCN). Experiments are
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planned for the CLOUD facility at CERN to resolve this deficiency (CLOUD Collabora-
tion, 2000).

The concept of CLOUD is to recreate atmospheric conditions inside a large chamber
in which aerosols, cloud droplets and ice particles can be formed, and to expose the
chamber to a particle beam at CERN, which closely replicates natural cosmic rays.5

The chamber is equipped with a wide range of instrumentation to monitor and analyse
its contents. In contrast with experiments in the atmosphere, CLOUD can compare
processes when the cosmic ray beam is present and when it is not. In this way cosmic
ray-aerosol-cloud microphysics can be studied under carefully controlled laboratory
conditions.10

A pilot CLOUD experiment was performed at the CERN Proton Synchrotron (PS)
during a 4-week run in October–November 2006. The aims were a) to begin ex-
ploratory studies of the effect of ionising particle radiation on aerosol formation from
trace sulphuric acid vapour at typical atmospheric concentrations, and b) to provide
technical input for the CLOUD design. This paper presents the results from the 200615

run. The paper is organised as follows: the experimental apparatus is presented in
Sect. 2, the experimental results in Sect. 3, and the main technical lessons for the
CLOUD design in Sect. 4.

2 Apparatus

2.1 Aerosol chamber, UV system and field cage20

A schematic diagram of the pilot CLOUD experiment is shown in Fig. 1. The ex-
perimental setup is based on the SKY design (Svensmark et al., 2007) and the
CLOUD proposal (CLOUD Collaboration, 2000). The aerosol chamber dimensions
were 2×2×2 m3. It was constructed from passivated AISI 304 stainless steel sheets in
a modular design to allow easy assembly, disassembly and transport. The sides of the25

chamber were sealed against a box frame with silicone O rings.
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One wall of the chamber was replaced with a polytetrafluoroethylene (PTFE) window
to allow the contents to be illuminated by UV light of 254 nm wavelength from a bank of
seven fluorescent tubes (Philips TUV64T5 low pressure mercury vapour lamps, each
150 cm length and 75 W power). An aluminium honeycomb collimator (of 80 mm depth
and 6.35 mm cell size, and painted matt black) was located between the UV lamps and5

the PTFE window to improve the uniformity of illumination within the chamber. With
the honeycomb in place, the maximum UV intensity was 3 mW/m2, integrated over the
narrow emission line at 254 nm. The honeycomb collimator was removed for a few
special tests at higher maximum intensity (80 mW/m2, measured at the far side of the
chamber) but with poorer uniformity. The purpose of the UV light is to photo-dissociate10

ozone in the chamber to generate reactive oxygen and hence – in the presence of
water vapour – also hydroxyl radicals. In turn the hydroxyl radicals oxidise sulphur
dioxide in the chamber to form sulphuric acid.

A field cage provided electric fields of up to 20 kV/m in the chamber. When activated,
the electric field swept small ions from the chamber in about one second. The field15

cage comprised two 1.8×1.8 m2 stainless steel electrodes at voltages of up +20 kV and
−20 kV, respectively. The electrodes were separated by 1.8 m distance and supported
at their corners by polyoxymethylene (Delrin) high voltage standoffs. One of the long
hollow Delrin supports between the two electrodes contained a resistor divider chain
(totalling 9.6 GΩ) to define the voltages on 23 field wires that were evenly spaced20

between the two electrodes and arranged along a 1.8×1.8 m2 perimeter.

2.2 Gas system

In order to suppress contaminants (trace condensable vapours, radon and background
aerosols) in the air supply for the chamber, ultrapure air was obtained from the evap-
oration of cryogenic liquid N2 (99.995%) and liquid O2 (99.998%) (Carbagas), which25

were mixed in the gas volume ratio 79% and 21%, respectively. Water vapour from a
Goretex tube humidifier, and trace amounts of O3 and SO2, were added to the inlet
air. The O3 was generated by exposing a small fraction of the ultrapure air supply in
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a fused quartz tube to UV irradiation below 240 nm. The SO2 was provided from a
pressurised nitrogen gas cylinder containing 500 ppm SO2 (99.9%) (Carbagas); it was
diluted with ultrapure air to 5 ppm before entering the aerosol chamber where it was
further diluted to a few ppb. During the early runs, de-ionised water was used in the
humidifier. However this was later replaced by Milli-Q ultrapure water (Millipore Cor-5

poration) to suppress organic contaminants. With all sampling instruments (Sect. 2.3)
operating, the inlet air flow rate was 50 l/min to maintain a constant chamber pressure
of 1.3 mbar above the ambient atmospheric pressure (965 mbar mean absolute value).

2.3 Analysing instruments

The contents of the chamber were analysed by several instruments attached to sam-10

pling probes arranged along the mid-plane of the chamber, corresponding to zero po-
tential between the HV electrodes.

Aerosol particles were measured with a battery of five condensation particle coun-
ters (two TSI 3025 and three TSI 3010 CPCs) set to different thresholds. The 50%
cutoff values were at about 3, 3, 5, 5.6 and 7.2 nm, respectively. However the cut-15

offs were not sharp (the 70% detection efficiencies occurred at about 1–2.5 nm larger
sizes). The detection efficiencies were calibrated in the laboratory using sulphuric acid
aerosol particles generated with a nebuliser and then size-selected by a nano differ-
ential mobility analyser (DMA) (Hermann et al., 2005). In addition to the fast particle
size measurement provided by the CPC battery, a finer-grained, but slower, particle20

size distribution was provided by a scanning mobility particle sizer (SMPS). However,
due to space constraints, a long sampling line had to be installed for the SMPS and
so transmission losses imposed an effective threshold of about 20 nm. For this reason,
the SMPS measurements have not been used for the results reported here.

Ions and charged aerosols were measured with a Gerdien counter (Gerdien, 1905;25

Aplin and Harrison, 2000), air ion spectrometer (AIS) and electrostatic precipitator
placed in the inlet line of the CPC battery. The precipitator was switched between
two levels (0 and 4 kV) every 40 s to measure the total and uncharged aerosol concen-
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trations, respectively. The AIS (Mirme et al., 2007; Asmi et al., 2009) measured the size
distributions of positively charged and negatively charged particles simultaneously. The
mobility range covered by the instrument is between 2.39 and 0.001 cm2V−1s−1 which
correspond to mobility diameters between 0.8 and 40 nm. Each polarity has its own
Differential Mobility Analyzer (DMA) divided into 21 different isolated electrometers, al-5

lowing all 21 size channels to be measured simultaneously. The measurement cycle
for obtaining one positive and one negative size distribution was just over two minutes.

For part of the run, gas-phase sulphuric acid was measured with a chemical ionisa-
tion mass spectrometer (CIMS) (Möhler and Arnold, 1992; Reiner et al., 1994; Curtius
et al., 1998). The CIMS consists of an ion flow reactor coupled to a quadrupole ion trap10

mass spectrometer. The detection limit for H2SO4 is about 0.02 pptv (5×105 cm−3), for
one minute time resolution. Commercial instruments were used to measure the con-
centrations of O3 (Teledyne 400A) and SO2 (Thermo 43 CTL). The chamber was in-
strumented to measure temperature (3 sensors), relative humidity (3) and pressure (1).
The UV intensity was calibrated during special runs, using three different UV sensors.15

2.4 CERN particle beam

The apparatus was installed on the T11 beamline in the East Hall at the CERN PS.
During selected periods, the chamber was exposed to a 3.5 GeV/c positively-charged
pion (π+) beam from a secondary target. Pions of this energy correspond closely to
the characteristic energies and ionisation densities of cosmic ray muons penetrating20

the lower troposphere. The beam intensity, horizontal profile and vertical profile were
measured by a plastic scintillation counter hodoscope of overall size 140×140 cm2,
comprising 7 vertical counters of 140×20 cm2 followed by 7 horizontal counters of the
same dimensions. The beam optics were adjusted to provide a wide transverse profile;
the beam size in the chamber was about 1 m horizontally by 1.2 m vertically.25

The beam intensity could be adjusted to provide equilibrium ion-pair (i.p.) concen-
trations in the chamber of up to about 10 000 i.p. cm−3 (Sect. 3.1), which is about a
factor 10 higher than typical atmospheric concentrations in the lower troposphere. Any
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intermediate setting between this maximum and the cosmic ray background level could
be reached by adjusting the beam collimators. With no beam and the clearing field
on, the ion-pair concentration could be further reduced, reaching about 1 i.p. cm−3 at
20 kV/m.

3 Results5

3.1 Ion-pair concentration vs. beam intensity

We will provide here a simple estimate of the expected ion-pair concentration in the
chamber as a function of beam intensity, in order to make a comparison with the ex-
perimental measurements. Assuming low aerosol concentrations in the chamber, the
dominant ion loss mechanism is ion-ion recombination. Under these conditions, the10

evolution of the concentration of positive or negative ions, n± [cm−3] is given by Tam-
met et al. (2006)

dn±
dt

=Q − αn2
± (1)

where Q [cm−3s−1] is the ion-pair production rate and α [1.6×10−6 cm3s−1] is the ion-
ion recombination coefficient (Tammet and Kulmala, 2005). At equilibrium, dn±/dt=015

and Eq. (1) becomes

n± =
√
Q/α (2)

Galactic cosmic rays traversing the chamber produce a mean ionisation rate, Qc

[cm−3s−1]. Natural radioactivity, such as 222Rn decay, can produce comparable or
even several times higher ionisation rates at ground level than those from galactic cos-20

mic rays. However the contribution of natural radioactivity in the chamber is negligible
since the air is derived from cryogenic liquids. The mean ionisation rate from galac-
tic cosmic rays at ground level is about 2 i.p. cm−3 s−1 (Tammet et al., 2006; Usoskin
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and Kovaltsov, 2006). Using this value in Eq. (2) results in an expected equilibrium

ion-pair concentration at zero beam intensity, n± =
√

2/1.6×10−6 =1100 cm−3, in the
absence of any losses other than ion-ion recombination. The ion-pair lifetime due to
ion-ion recombination is τ =1/

√
αQ=560 s. Additional ion sinks such as pre-existing

aerosols and the walls of the chamber will reduce the equilibrium ion concentration5

below 1100 cm−3.
When the chamber is exposed to the accelerator beam, there is an additional ioni-

sation rate, Qb [cm−3 s−1], that is directly proportional to the time-averaged beam rate,
Nb [s−1]. Making the simple assumption that the ion pairs created within the limited
(∼1 m) aperture of the beam are uniformly diluted over the entire chamber volume by10

diffusion and air flow,

Qb =Nb I L / V (3)

where I =61 i.p. cm−1 is the mean ionisation per cm for a 3.5 GeV/c π+ in air at
s.t.p. (Smirnov, 2005), L=200 cm is the path length of a beam particle in the cham-
ber, and V =8×106 cm3 is the chamber volume. Equation (3) therefore provides the15

following relationship between mean ion-pair production rate in the chamber and beam
intensity

Qb =1.5×10−3 Nb (4)

The maximum beam rate in the CERN T11 beamline is Nmax
b ∼ 220 kHz, which

indicates a maximum ionisation rate, Qmax
b =330 cm−3s−1. This is about a factor 16020

higher than the ionisation rate from galactic cosmic rays. From Eq. (2), this is expected

to result in an equilibrium ion-pair concentration, n± =
√

330/1.6×10−6 = 14 000 cm−3.
In practice the mean ion concentration in the chamber will be smaller since ion losses
other than ion-ion recombination have been ignored. In particular, diffusive losses of
ions to the walls of the chamber are important, as well as ion scavenging by aerosols.25

The experimental measurements are shown in Fig. 2 for the Gerdien counter. These
data were recorded under low aerosol background conditions (2–60 cm−3, in a size
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range near the 3 nm detection threshold). The AIS measurements of positive ions
were consistent with the Gerdien measurements, within experimental errors, but the
AIS negative ion concentrations were measured at about half these values. This origin
of this difference is not understood but it may have been due to an instrumental effect
during the AIS setup period, when these data were recorded. During the remainder5

of the run, the mean positive and negative ion concentrations measured by the AIS
generally differed by less than 15%. The simple estimates above are in good agree-
ment with the Gerdien experimental data, namely ion-pair concentrations ranging from
about 1500 cm−3 at zero beam to about 12 000 cm−3 at the maximum, and a square
root dependence on beam intensity.10

3.2 Nucleation events

3.2.1 Determination of nucleation and growth rates

We used the size distribution from the AIS to calculate the formation and growth rates
of charged particles. The AIS measures ions in the mobility diameter range 0.8–40 nm,
so we are able to detect the appearance of the newly formed particles at around 2 nm15

size (corresponding to near the critical size) and monitor their subsequent growth. An
example of the AIS spectra is shown in the middle and upper panels of Fig. 3. Here
the population of newly formed particles is taken to be those in the size range 2–3 nm.
The formation rate of charged aerosol particles at 2 nm size threshold, J±

2 [cm−3s−1],
is given by (Kulmala et al., 2007)20

J±
2 =

dN±
2−3

dt
+ CS2×N±

2−3 +
GR

1nm
N±

2−3 + αN±
2−3N

∓
<3 − βN2−3N

∓
<3 (5)

where the superscript ± refers to positively and negatively charged particles, respec-
tively, the subscript <3 indicates particles below 3 nm diameter, N2−3 [cm−3] is the
particle concentration in the 2–3 nm range, CS2 [s−1] is the coagulation sink rate for
2-nm particles (Kulmala et al., 2001), GR [nm s−1] is the particle growth rate, α is the25
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ion-ion recombination coefficient (Eq. 1), and β [cm3s−1] is the ion-neutral attachment
coefficient.

Particle growth rates were determined from the AIS size spectra by finding the peak
position in each channel of the AIS in the 2–5 nm region as a function of time, and then
fitting a linear equation to these points. Further details of this method can be found in5

Hirsikko et al. (2005).
In the case of all aerosol particles (charged plus neutral), the formation rate of 3 nm

particles, J3 [cm−3s−1], is (Kulmala et al., 2007)

J3 =
dN3−4

dt
+ CS3×N3−4 +

GR
1 nm

N3−4 (6)

Here, particle growth rates were determined from the CPCs. We assume that the10

coagulation sink losses with larger-sized particles are negligible since their concentra-
tions were relatively low. Also, typical coagulation rates between 3 nm and, for example,
10 nm particles are around 10−8 s−1 and thus negligible. Therefore, the formation rate
is simply

J3 =
dN>3

dt
15

3.2.2 Overview of nucleation events

During the 4-week run, 44 nucleation bursts were produced and recorded, with for-
mation rates of particles above the 3 nm detection threshold of between 0.1 and
100 cm−3s−1, and growth rates between 2 and 37 nm h−1. These values are similar
to those observed in the atmosphere (Kulmala et al., 2004), e.g. growth rates of 1–20

2 nm h−1 in the boreal forest (Dal Maso et al., 2005), and 40 nm h−1 in Mexico City (Iida
et al., 2008).

However the measured H2SO4 concentrations of around 106 cm−3 or less were in-
sufficient to support growth rates above 0.1 nm h−1, and so additional condensable
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vapours must have been present in the chamber. Although their identity is unknown,
organic vapours are suspected since the early runs showed strong nucleation bursts
in association with high O3 concentrations, in the absence of UV light (see Sect. 4.1).
This indicates the presence of organic vapours which are directly reacting with O3.
Later runs under similar conditions produced no nucleation burst, indicating that the5

organic backgrounds had been substantially reduced. The cleaner conditions resulted
from two improvements: 1) additional chamber flushing and cleaning and, perhaps
more importantly, 2) replacing the de-ionised water in the humidifier with higher-purity
water (Millipore Corporation). Although not directly measured, on the assumption that
organic vapour contaminants were indeed responsible for the observed aerosol growth10

rates, we can estimate that their mixing ratios would need to be in the approximate
range 1–20 pptv or larger (Joutsensaari et al., 2007).

The contribution of ion-induced nucleation to the aerosol bursts can be revealed in
two independent ways: 1) the presence of a high fraction of charged aerosols in the
event, and 2) association of a change of the beam intensity immediately followed by a15

change of formation rate, and a dependence of the formation rate on beam intensity.
Each of these is discussed below.

3.2.3 Events with a higher charged fraction

The presence or absence of ion-induced nucleation can, in principle, be determined
by measuring the charged vs. neutral fractions of the aerosol population as a function20

of size. Even in the absence of ion-induced nucleation, a finite charged fraction is ex-
pected due to diffusion charging of neutral aerosols by small ions. A characteristic of
diffusion charging is that smaller aerosols have a lower charged fraction. For example,
the Fuchs charging distribution predicts equilibrium charged fractions (both signs in-
cluded) of 2.4, 4.1, and 19.7% for aerosols of diameter 3, 5, and 20 nm, respectively, in25

a bipolar ion atmosphere (Keefe, Nolan and Rich, 1959; Wiedensohler, 1988; Willeke
and Baron, 1993). Therefore the appearance of an “overcharged” aerosol distribution
in the CPC battery – in which the charged aerosol fraction at 3 nm threshold is larger
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than at 7.2 nm threshold – is a fairly robust signature of ion-induced nucleation (Laakso
et al., 2007). On the other hand, the absence of overcharging does not exclude con-
tributions from ion-induced nucleation, since it may indicate either that the contribution
is too small to be detected or else that the initially-charged aerosols have been partly
neutralised by ion-aerosol attachment before reaching the 3 nm size threshold for mea-5

surement.
The electrostatic precipitator (Sect. 2.3) on the inlet l ine of the CPC battery allowed

the charged fractions to be compared at 3 nm and 7.2 nm, respectively. Of the 44
nucleation events analysed in the complete campaign, 6 were identified as overcharged
– but the amount of overcharging was small in all cases. An example (run 15) is shown10

in Fig. 3. During this event, the total formation rate of 3-nm particles is 3.1 cm−3s−1,
and the charged aerosol growth rate at the start of the burst is 5.8 nm h−1. The CPC
battery measured a charged fraction of 6% for particles between 3 nm and 5 nm, to be
compared with an equilibrium charged fraction of below 4.1% (Wiedensohler, 1988).
The latter figure is an over-estimate of the actual diffusion charge since the half time for15

diffusion charging under the conditions of this run is 12 min (Flanagan and O’Connor,
1961). In conclusion, direct measurements of the charged aerosol fraction suggest a
small but finite contribution of ion-induced nucleation in some of the nucleation events.

3.2.4 Beam-correlated nucleation events

The second way to investigate the presence of ion-induced nucleation is to keep all20

conditions in the chamber constant except for a change of pion beam intensity, and
to observe a change of formation rate such as the onset of an aerosol burst. This of
course requires the absence – or at least a low rate – of “spontaneous” aerosol bursts in
the chamber. As will be described in Sect. 4.2, spurious aerosol bursts were found to be
generated by small temperature increases (of order 0.1◦C) of the chamber walls. This25

observation excludes from analysis all bursts observed in association with switching
on the UV lights, since this transition always produced a substantial increase of wall
temperatures (by up to 1◦C). For this reason, all the nucleation measurements reported
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here involve steady illumination with UV light (2.4 mW/m2 at the 254 nm emission line).
(For completeness, we remark that the pion beam has a negligible heating effect; at
peak beam intensity the total thermal load on the chamber is of order 0.1 µW.)

The clearest example of an apparent time-association of beam transitions with
aerosol nucleation events was obtained in the final run of the campaign (run 35). The5

time evolution of various parameters for this run is shown in Fig. 4. During the entire
run 35 there were stable conditions for the following parameters: [O3] (28 ppb), relative
humidity (24%), and UV intensity (2.1 mW m−2). Initially the particle concentration was
low (< 25 cm−3) but, as [SO2] was raised from 0.6 ppb to 6 ppb a strong nucleation
event occurred, producing several thousand particles per cm3. Since the clearing field10

was on during this interval (as can be inferred from the near-absence of small ions in
the AIS data in Fig. 4), the initial aerosol burst involved only neutral nucleation. At the
time when the clearing field was turned off, the particle concentration was 3600 cm−3.
The beam was then immediately turned on for 2.4 h and the particle concentration in-
creased to 4300 cm−3. (Again, the presence of beam can be inferred from the high15

concentration of small ions in the AIS data in Fig. 4.) The beam was then alternately
turned off or on for periods of an hour or two, until the end of the run. The measured
formation rates, J3, are summarised in Table 1 and show a fair correlation with the
beam intensity for regions 2 to 6, when conditions were most stable (i.e. [SO2] constant
and temperature not increasing). The modulation pattern in Fig. 4 suggests a contribu-20

tion at around the 10% level from ion-induced nucleation, in addition to the dominant
neutral nucleation.

The detailed time evolution of each instrument in the CPC battery during this run is
shown in Fig. 5. The 3-nm CPCs respond rapidly to beam transitions whereas the 5,
5.6 and 7.2-nm CPCs show a progressively delayed response, as would be expected25

if the formation rate of new aerosol particles were being alternately decreased and
increased. The final transition to beam-off (region 8) occurred during an increase of
temperature of the chamber and so is subject to spurious nucleations. With the ex-
clusion of this last transition, there is a good time-correlation of beam changes with
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formation-rate changes.
Although run 35 shows a time-correlation that suggests the presence of ion-induced

nucleation, there is no evidence for this from the measurements of charged fraction. As
described in Sect. 3.2.3, this does not rule out the possibility of ion-induced nucleation,
but neither does it add support. In addition, ion-ion recombination rates at the highest5

beam intensities are above 200 cm−3s−1 and so recombination is also a candidate
mechanism for new particle formation, provided that the neutral clusters formed by the
recombination exceed the critical size.

We can rule out the possibility that the beam-related nucleation seen in Figs. 4 and
5 is due to radical chemistry caused by the particle beam. The estimated production10

of radicals by the particle beam is 2 OHx molecules per ion pair (Solomon et al., 1981)
and 1.0 NOx molecule per ion pair (Nicolet, 1975). The highest intensity beam rate
(220 kHz) produces a mean ionisation rate, 330 cm−3s−1 (Sect. 3.1). The correspond-
ing production rates of OHx and NOx are therefore 660 cm−3s−1 and 330 cm−3s−1,
respectively. These rates are negligible in comparison with the estimated 105 cm−3s−1

15

production rate of OH from O3 photolysis (2.2 mW/m2 at the 254 nm emission line).
Other runs taken under conditions similar to run 35 show either weak or even con-

tradictory evidence for ion-induced nucleation. An example of the latter is presented
in Fig. 6, which shows the time evolution of run 28. At 2h12 the beam was turned on
at 100 kHz rate, which, from Eq. 4, produces in the chamber a mean ionisation rate,20

Qb =150 cm−3s−1. However, only a mild increase was observed in the particle con-
centration: 40 cm−3 over a two-hour period, corresponding to a formation rate of about
0.01 cm−3s−1. These figures place quite a strong limit against ion-induced nucleation
in this event.

Figure 7 summarises the measurements of formation rate versus beam intensity25

for all runs taken under similar clean-chamber conditions during the last week of the
campaign. Most of these measurements show no correlation with beam intensity, but
do show a strong dependence of formation rate on [SO2], indicating that sulphuric
species are a dominant component of the observed nucleation. The measurements
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taken at 6 ppb [SO2] may indicate some dependence of formation rate on beam in-
tensity (Fig. 8). However, even at these relatively high SO2 concentrations, the for-
mation rate was well below 1 cm−3s−1 at beam ionisation rates (Eq. 4) in the range
70–240 i.p. cm−3s−1. So the 6 ppb [SO2] measurements all show a very low ratio of
formation rate per ion pair created in the chamber (roughly 10−3). There are two pos-5

sible reasons for this: either ion nucleation effects are simply unimportant or else –
even at 6 ppb [SO2] – the experimental H2SO4 concentration was still too low to allow
significant ion-induced nucleation to occur.

Unfortunately, since the CIMS was not present for these final days of data, no
simultaneous [H2SO4] measurements are available. However, by scaling the early10

CIMS measurements, we estimate that the 6 ppb [SO2] data correspond to [H2SO4]
∼106 cm−3, with a large estimated uncertainty of a factor 3. Our results are there-
fore consistent with previous atmospheric and laboratory nucleation measurements of
SO2 photonucleation, which is observed to occur in the H2SO4 concentration range,
105–107 cm−3 (see Fig. 2 in Laaksonen et al., 2008).15

In conclusion, therefore, the experimental variables were not well enough controlled
to exclude the presence of ion-induced nucleation on the basis of Fig. 7; it merely does
not support the presence of strong contributions from this source. Indeed, at 6 ppb
[SO2], there are some indications of a dependence of formation rate on beam inten-
sity. In addition to poorly-defined H2SO4 concentrations, among the most important20

uncertainties is the influence of background organic vapours, as described in the next
section.

4 Technical lessons for the cloud design

4.1 Chamber cleanliness

In the early part of the 4-week experimental run, the aerosol bursts were charac-25

terised by large peak concentrations (>10 000 cm−3), relatively high formation rates
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(>10 cm−3s−1) and rapid growth (>10 nm h−1). As the run progressed and the cham-
ber became cleaner, the aerosol bursts were significantly less intense.

The chamber was progressively cleaned by two methods: 1) continual flushing with
humidified ultrapure air, and 2) cleaning cycles involving temporarily high ozone con-
centrations in the presence of UV light. Throughout the experiment, the air flow rate5

was maintained near 50 l/min. This corresponds to 9 chamber volumes per day, which
is equivalent to a dilution of gaseous impurities in the chamber by a factor of about
e9 =104 per day. In practice, since contaminants were continually desorbing from the
inner surfaces of the chamber, the rate of decrease of chamber contaminants is ex-
pected to be much slower than this. Sources of contaminants include the stainless10

steel walls and field cage electrodes, and organic materials such as the field cage
insulators, the silicone O ring seals, the PTFE window and its sealing tape. Neverthe-
less, a steady reduction of contaminants was inferred from the gradually decreasing
intensity of the nucleation bursts and the very low levels of background particles that
were eventually achieved (well below 1 cm−3).15

The improving cleanliness of the chamber was also directly inferred from the ozone
cleaning cycles. At the beginning of the run, 5 tests were made with [O3] in the range
100–450 ppb and with the UV lights off. Each of these elevated ozone levels caused
large nucleation bursts, with peak formation rates of 10 cm−3s−1 and peak concentra-
tions in the range 1,000–17,000 cm−3. No correlation was observed between the peak20

aerosol concentration and [O3]. These observations suggest the presence of condens-
able organic vapours in the chamber. In contrast, later in the cycle, a similar test was
performed with 440 ppb [O3] – a factor of 15 higher than the nominal O3 concentra-
tion – and no nucleation was observed. This implies a substantial reduction of organic
contaminants.25

Sulphur dioxide was added to the chamber only in the final days of the run. Prior
to the addition of SO2, the concentration in the chamber was measured to be steady
between 0.1 and 0.2 ppb. The source of the SO2 was not determined, but is likely
to be desorption from the inner walls of the chamber, which had been exposed to
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atmospheric air prior to assembly. Some evidence to support this was provided by
observations early in the run of increases of [SO2] by 0.1–0.2 ppb in coincidence with
wall temperature increases. No correlation was observed between the intensity of the
nucleation bursts and [SO2] in the range 0.1–0.2 ppb. However, when [SO2] was raised
in the final days of the run, a strong correlation was observed (Fig. 7), but was not well5

characterised due to lack of time. The final data of the run were taken at 6 ppb [SO2].
There are several lessons from these observations for the CLOUD design. Firstly,

the control and measurement of organic vapours is crucial for these experiments –
not only as a potential source of backgrounds but also as a participant in the aerosol
nucleation and growth processes. Secondly, the chamber components must be care-10

fully designed and prepared to stringent standards of cleanliness, following procedures
developed for ultra high vacuum equipment. This has implications both on the selec-
tion of any material exposed to the chamber volume and also on the preparation and
cleaning of the inner surfaces of the chamber and gas system. In addition, a cleaning
procedure is required for the chamber between runs, including, for example, a heating15

and high-flush-rate cycle in the presence of UV and ozone to evaporate, oxidise and
exhaust volatile surface contaminants. Concerning the generation of ultrapure air from
cryogenic liquids, no contaminants were detected and so this system will be retained
in the CLOUD design. This observation is, however, qualified by the limited instrumen-
tation available for the 2006 experiment. Nevertheless, it is reassuring that – despite20

the relatively crude levels of cleanliness of the 2006 chamber – extremely clean exper-
imental conditions were eventually achieved in terms of background aerosol particles
(N3 � 1 cm−3) and [H2SO4] (�106 cm−3).

4.2 Temperature stability

During the first half of the experimental run, there was no temperature control of the25

aerosol chamber. The chamber therefore followed the ambient temperature of the ex-
perimental hall, and the wall temperature varied in the range 20–28◦C. In the second
half of the run, a simple air-conditioned insulated housing was installed. This consider-
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ably improved the temperature stability, but diurnal variations of about ±1◦C remained
about a mean value near 25◦C.

An important observation was made from these environmentally-induced tempera-
ture changes of the chamber: a small rise of wall temperature over a short time in-
terval almost always gave rise to a spontaneous burst of freshly-nucleated particles.5

Two examples, during runs 32 and 33, are shown in Fig. 9. Bursts were observed for
temperature increases as small as 0.1◦C over a 15 min period. On the other hand,
temperature decreases did not give rise to aerosol bursts. The bursts could be unam-
biguously associated with wall temperature increases since no other parameters of the
experiment were changed at the time of their occurrence.10

Although the underlying cause of these spurious aerosol bursts was not unambigu-
ously determined, the most likely candidate is that the temperature rise caused trace
vapours (sulphur dioxide, sulphuric acid and/or organic compounds) to be released
from the walls of the chamber and then nucleation occurred in the resultant relatively
high vapour concentrations created in the boundary layer adjacent to the walls. Mea-15

surements during the early stage of the run – when the chamber was less clean – did
indeed show evidence of increases of [SO2] during temperature increases.

An important consequence of this observation concerns the UV burst data,
i.e. measurements of aerosol production following a brief exposure of UV light for a
few minutes. The UV bursts are designed to generate a brief and limited production of20

H2SO4 in the chamber, to allow nucleation bursts to be studied under steady-state con-
ditions of other parameters, such as ionisation rate. For practical UV intensities, these
brief exposures of UV light always produced a temperature increase of the chamber
wall, with a gradient of about 0.1◦C per 10 min. Since stable temperature conditions
were not met for UV bursts during the pre-CLOUD experiment, we have not used UV25

burst data for quantitative studies presented in this work, to avoid spuriously-generated
nucleations.

The lesson from these observations for the CLOUD design is that a UV system is
required that provides a negligible thermal load on the chamber. The bank of UV lights
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for the pilot CLOUD chamber generated a thermal output of 525 W to provide a UV
power of less than 300 mW in the chamber, so there is room for a large improvement.
A new UV fibre optic system has been designed which delivers a higher UV power to
the CLOUD chamber, with no parasitic thermal load.

5 Conclusions5

Initial measurements have been made with a pilot CLOUD experiment at the CERN
Proton Synchrotron. The accelerator beam generated equilibrium ion-pair concentra-
tions in the aerosol chamber of between one and ten times the atmospheric values
at ground level, which corresponds to between one and almost a hundred times the
intensity of galactic cosmic rays. Experimental measurements in the presence of low10

aerosol backgrounds confirmed a dependence of equilibrium ion-pair concentrations
on the square root of the beam intensity, as expected when the dominant loss mecha-
nism is ion-ion recombination.

During the 4-week run, around 50 nucleation bursts were produced and recorded,
with typical formation rates of particles above the 3 nm detection threshold of about15

1–10 cm−3s−1, and growth rates of 5–20 nm h−1. Concentrations of H2SO4 were ex-
perimentally measured with a chemical ionisation mass spectrometer to be around
106 cm−3 or less. The large observed growth rates indicate the presence of addi-
tional trace vapours in the aerosol chamber, whose identity is unknown but for which
there is indirect evidence of background organic vapours. The presence of background20

vapours is also inferred from the observation that small (of order 0.1◦C) increases of
temperature invariably trigger nucleation bursts, which is attributed to the release of
unknown vapours from the chamber walls.

Interestingly we were able to observe different kinds of new particle formation events.
A few of the events appear to be related to ion-induced nucleation or ion-ion recombi-25

nation to form stable neutral clusters. In these cases, a small but significant fraction
of new particle formation could be explained by ion processes. However, during most
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nucleation events, the contribution of ion processes appeared to be minor. The ac-
celerator beam was also used to search for time-correlated nucleation bursts in the
chambers. These revealed some evidence for a dependence of particle formation on
beam intensity at the highest SO2 concentrations of 6 ppb, although no evidence was
found at lower concentrations.5

In summary, the exploratory measurements made with a pilot CLOUD experiment
at the CERN Proton Synchrotron have validated the basic concept of the experiment,
provided valuable technical input for the CLOUD design and instrumentation, and pro-
vided, in some of the experiments, suggestive evidence for ion-induced nucleation or
ion-ion recombination as sources of aerosol particles from trace sulphuric acid vapour10

at typical atmospheric concentrations.
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Table 1. Particle formation rates for run 35 (the positive values are plotted in Fig. 8). The region
numbers are shown in Figs. 4 and 5. The formation rates, J3, correspond to the 3 nm threshold
TSI 3025 CPC with a short sampling probe (magenta curve in Fig. 5). Negative values of J3
signify a net sink of 3 nm particles.

Region no. Start time Beam intensity Formation rate, J3

[h] [kHz] [cm−3 s−1]

1 −06:30 h 0 0.064±0.002
2 00:00 h 58 0.083±0.004
3 02:20 h 0 −0.571±0.005
4 05:09 h 158 0.223±0.006
5 07:34 h 0 −0.163±0.009
6 09:12 h 116 0.400±0.030
7 09:30 h 50 0.133±0.046
8 10:39 h 0 0.076±0.015
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Fig. 1. Schematic diagram of the 2006 pilot CLOUD experiment.

18262

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/18235/2009/acpd-9-18235-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/18235/2009/acpd-9-18235-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 18235–18270, 2009

Results from the
CERN pilot CLOUD

experiment

J. Duplissy et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

12

10

8

6

4

2

0

20016012080400

Io
n 

co
nc

en
tra

tio
n 

[x1
03

 c
m

-3
]

14

Beam intensity [kHz]
240

positive ions

negative ions

Fig. 2. Ion concentration in the chamber, measured with the Gerdien counter, as a function of beam intensity

for i) positive ions (black circles and dashed curve) and ii) negative ions (red triangles and solid curve). The

fitted curves are of the form n± = k1

√
Nb + k0, where Nb is the time-averaged beam intensity and ki are free

parameters. The finite ion concentrations at zero beam intensity are due to galactic cosmic rays.

20

Fig. 2. Ion concentration in the chamber, measured with the Gerdien counter, as a function
of beam intensity for i) positive ions (black circles and dashed curve) and ii) negative ions (red
triangles and solid curve). The fitted curves are of the form n± =k1

√
Nb + k0, where Nb is the

time-averaged beam intensity and ki are free parameters. The finite ion concentrations at zero
beam intensity are due to galactic cosmic rays.
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Fig. 3. An example (during run 15) of a nucleation burst in which ion processes are substantial.
The time evolution is shown for particle size spectra measured by the CPC battery (bottom
panel) and AIS (upper and middle panels for the negatively and positively charged particles,
respectively). The CPCs record all neutral and charged aerosol particles, whereas the AIS
records only charged aerosols and small ions. The upper histograms show size spectra of the
negative (left) and positive (right) charged particles at 07h00. The aerosol size distributions are
bi-modal, showing small ions and newly-formed particles below about 6 nm, and aged particles
from the nucleation burst at larger sizes.
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Fig. 4. Time evolution of run 35 (the final run of the campaign). A neutral nucleation burst
begins about 7 h before the beam is first turned on at 00h00. Subsequently, the correlation
of the beam hodoscope counts (grey curve) and the aerosol particle concentrations (magenta
and blue CPC curves) suggests an additional component from ion-induced nucleation. A zoom
of the measurements from the individual instruments in the CPC battery is shown in Fig. 5.
The numbered regions correspond to the aerosol formation rate measurements summarised in
Table 1.
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Fig. 5. Detailed time evolution of each instrument in the CPC battery during the run shown in
Fig. 4 (lower panel). The aerosol concentrations appear to respond to the changes of beam
intensity (upper panel), with the expected delayed response for the higher-threshold CPCs.
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Fig. 6. Time evolution of run 28. At 02:12 h the π+ beam was turned on at 100 kHz rate (grey
curve). However only a mild increase was observed in the particle concentration (magenta
and cyan curves in the centre panel), indicating negligible ion-induced nucleation. The other
chamber conditions (including UV intensity, which is not shown) remained steady throughout
this run.
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the basis of this plot.
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listed in Table 1 (“negative” formation rates – corresponding to aerosol particle sinks – are not
plotted).
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the top panel) caused by small increases of the wall temperature of the aerosol chamber (black
curve in centre panel).
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