18021

Atmos. Chem. Phys. Discuss., 9, 18021–18063, 2009 www.atmos-chem-phys-discuss.net/9/18021/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

This discussion paper is/has been under review for the journal *Atmospheric Chemistry and Physics (ACP)*. Please refer to the corresponding final paper in *ACP* if available.

Kinetic double-layer model of aerosol surface chemistry and gas-particle interactions (K2-SURF): degradation of polycyclic aromatic hydrocarbons exposed to O₃, NO₂, H₂O, OH and NO₃

M. Shiraiwa, R. M. Garland, and U. Pöschl

Max Planck Institute for Chemistry, Department of Biogeochemistry, J. J. Becherweg 27/29, 55128 Mainz, Germany

Received: 7 August 2009 - Accepted: 17 August 2009 - Published: 1 September 2009

Correspondence to: M. Shiraiwa (m.shiraiwa@mpic.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

5

We present a kinetic double-layer surface model (K2-SURF) that describes the degradation of polycyclic aromatic hydrocarbons (PAHs) on aerosol particles exposed to ozone, nitrogen dioxide, water vapor, hydroxyl and nitrate radicals. The model is based on multiple experimental studies of PAH degradation and on the PRA framework (Pöschl et al., 2007) for aerosol and cloud surface chemistry and gas-particle interactions.

For a wide range of substrates, including solid and liquid organic and inorganic substances (soot, silica, sodium chloride, octanol/decanol, organic acids, etc.), the concentration- and time-dependence of the heterogeneous reaction between PAHs 10 and O_3 can be efficiently described with a Langmuir-Hinshelwood-type mechanism. Depending on the substrate material, the Langmuir adsorption constants for O₃ vary over three orders of magnitude ($K_{ads,O_3} \approx 10^{-15} - 10^{-13} \text{ cm}^3$), and the second-order rate coefficients for the surface layer reaction of O3 with different PAH vary over two orders of magnitude ($k_{\text{SLR,PAH,O}_3} \approx 10^{-18} - 10^{-17} \text{ cm}^2 \text{ s}^{-1}$). The available data indicate that the 15 Langmuir adsorption constants for NO₂ are similar to those of O₃, while those of H₂O are several orders of magnitude smaller ($K_{ads,H_2O} \approx 10^{-18} - 10^{-17} \text{ cm}^3$). The desorption lifetimes and adsorption enthalpies inferred from the Langmuir adsorption constants suggest chemisorption of NO₂ and O_3 – possibly in the form of O atoms – and physisorption of H_2O . 20

The K2-SURF model enables the calculation of ozone uptake coefficients, γ_{O_3} , and of PAH concentrations in the quasi-static particle surface layer. Competitive adsorption and chemical transformation of the surface (aging) lead to a strong non-linear dependence of γ_{O_3} on time and gas phase composition, with different characteristics ²⁵ under dilute atmospheric and concentrated laboratory conditions. Under typical ambient conditions, γ_{O_3} of PAH-coated aerosol particles are expected to be in the range of $10^{-6}-10^{-5}$.

At ambient temperatures, NO₂ alone does not efficiently degrade PAHs, but it was

ACPD

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

found to accelerate the degradation of PAHs exposed to O_3 . The accelerating effect can be attributed to highly reactive NO₃ radicals formed in the gas phase or on the surface. Estimated second-order rate coefficients for O_3 -NO₂ and PAH-NO₃ surface layer reactions are in the range of 10^{-17} - 10^{-16} cm² s⁻¹ and 10^{-15} - 10^{-12} cm² s⁻¹, respectively.

The chemical half-life of PAH is expected to range from a few minutes on the surface of soot to multiple hours on organic and inorganic solid particles and days on liquid particles. On soot, the degradation of particle-bound PAHs in the atmosphere appears to be dominated by a surface layer reaction with adsorbed ozone. On other substrates, it is likely dominated by gas-surface reactions with OH or NO₃ radicals (Eley-Rideal-type mechanism). To our knowledge, K2-SURF is the first atmospheric process model

- describing multiple types of parallel and sequential surface reactions between multiple gaseous and particle-bound chemical species. It illustrates how the general equations of the PRA framework can be simplified and adapted for specific reaction systems,
- ¹⁵ and we suggest that it may serve as a basis for the development of a general master mechanism of aerosol and cloud surface chemistry.

1 Introduction

5

10

Aerosols are ubiquitous in the atmosphere and have strong effects on climate and public health. Depending on chemical composition and surface properties, aerosol particles can act as condensation nuclei for cloud droplets and ice crystals, and they can influence trace gas concentrations through heterogeneous chemical reactions (Seinfeld and Pandis, 1998; Pöschl, 2005; Fuzzi et al., 2006; Andreae and Rosenfeld, 2008; Hallquist et al., 2009). Polycyclic aromatic hydrocarbons (PAHs) are one of the most prominent groups of toxic air pollutants. They originate from biomass burning and fossil fuel combustion, and they reside to a large extent in fine air particulate matter that can penetrate deep into human lungs (Finlayson-Pitts and Pitts, 2000; Pöschl, 2002; Schauer et al., 2003). Chemical degradation and transformation (oxidation or nitration)

ACPD 9, 18021-18063, 2009 **Kinetic double layer** model (K2-SURF) M. Shiraiwa et al. **Title Page** Abstract Introduction Conclusions References **Figures** Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

can change the surface properties of aerosol particles and the toxicity of PAH (Pitts, 1983; Atkinson and Arey, 1994; Pöschl, 2002; Schauer et al., 2004; Pöschl et al., 2007).

- Moreover, PAH as well as its oxygenated or nitrated derivatives are well defined
 ⁵ model substances for the molecular structure of soot, which is the black solid product of incomplete combustion or pyrolysis of organic matter (Homann, 1998; Messerer et al., 2005; Pöschl, 2005; Sadezky et al., 2005). Soot contributes to regional and global climate change because of its role in direct, indirect and semi-direct radiative forcing (Hansen et al., 1997; Ackerman et al., 2000; Jacobson, 2000). Upon emission
 ¹⁰ from combustion sources, fresh soot is initially hydrophobic and mostly externally mixed with non-refractory compounds (Shiraiwa et al., 2007; Schwarz et al., 2008). However
- with non-refractory compounds (Shiraiwa et al., 2007; Schwarz et al., 2008). However, condensation of semi-volatile compounds and chemical processing by ozone and other oxidants can make soot particles hydrophilic (Mikhailov et al., 2006) and influence their ability to act as cloud condensation nuclei (Kuwata et al., 2007). Furthermore, chemical
- reactions with atmospheric photo-oxidants can lead to substantial degradation, shortterm and seasonal variations, and measurement artefacts in the determination of PAHs (Schauer et al., 2003; Marchand et al., 2004; Schauer et al., 2004; Liu et al., 2006; Lee and Kim, 2007; Lammel et al., 2009).

As detailed below (Sect. 3), several laboratory studies have investigated the hetero-²⁰ geneous reaction of PAHs on various substrates with ozone, nitrogen dioxide, water vapor, hydroxyl and nitrate radicals. So far, however, the experimental results had not yet been compiled in a form that enables efficient modelling of PAH degradation in different types of reaction systems and direct comparison of relevant physicochemical parameters (accommodation, uptake, and reaction rate coefficients; adsorption con-²⁵ stants; etc.).

Recently, Springmann et al. (2009) have demonstrated the applicability and usefulness of the PRA framework (Ammann and Pöschl, 2007; Pöschl et al., 2007) for atmospheric modeling of the degradation of benzo[a]pyrene on soot by ozone and nitrogen dioxide. In this study we show that the PRA model approach can be efficiently extended

to other PAHs and photo-oxidants. Within the European integrated project on aerosol, cloud, climate and air quality interactions (EUCAARI) (Kulmala et al., 2009), we have reviewed and synthesized available literature data to develop a reaction mechanism describing the degradation of PAHs exposed to O₃, NO₂, H₂O, OH and NO₃ radicals in a kinetic double-layer surface model (K2-SURF). PAH degradation and related ozone uptake are simulated over a wide range of conditions, and the atmospheric implications

are discussed.

2 Model description

The K2-SURF model is based on the PRA framework for aerosol and cloud surface chemistry and gas-particle interactions (Pöschl et al., 2007; Ammann and Pöschl, 2007). This framework describes the gas-particle interface by several model compartments and molecular layers in which volatile, semi-volatile and non-volatile species can undergo mass transport and chemical reactions: gas phase, near-surface gas phase, sorption layer, quasi-static surface layer, and (near-surface) bulk of the particle.

As illustrated in Fig. 1, the K2-SURF model does not consider semi-volatile species and processes in the particle bulk, which is just regarded as a substrate that may influence the properties of the quasi-static surface layer.

In describing the degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs) exposed to O_3 , H_2O , NO_2 , OH, and NO_3 , the focus was on the gas phase dif-

fusion, gas-surface mass transport, surface layer reactions, and gas-surface reactions, which are discussed in following sections. We assumed that the effects of surface-bulk mass transport and chemical reactions in the bulk are negligible compared to gas-surface mass transport and chemical reactions at the surface.

ACPD 9, 18021–18063, 2009 Kinetic double layer model (K2-SURF) M. Shiraiwa et al. **Title Page** Abstract Introduction Conclusions References **Figures** Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

2.1 Gas phase diffusion and gas-surface mass transport

Based on kinetic theory, the gas kinetic flux of X_i colliding with the surface J_{coll,X_i} can be expressed as

$$J_{\text{coll},X_i} = [X_i]_{\text{qs}} \omega_{X_i} / 4 \tag{1}$$

⁵ where $[X_i]_{gs}$ is near-surface gas phase concentration of X_i and ω_{X_i} is mean thermal velocity given by $\omega_{X_i} = (8RT/(\pi M_{X_i}))^{1/2}$, where M_{X_i} is the molar mass of X_i , R is the gas constant, and T is the absolute temperature. Here we assume that the gas phase concentrations of O_3 , H_2O , and NO_2 are homogeneous throughout gas phase and near-surface gas phase $([X_i]_{qs} = [X_i]_q)$. This assumption is well justified when uptake coefficients are below 10^{-3} (Ammann and Pöschl, 2007). 10

On the other hand, uptake of OH and NO_3 by PAH is reported to be high (>0.1) (Bertram et al., 2001; Gross and Bertram, 2008), therefore, the significant net uptake of OH and NO₃ will lead to local depletion of concentration at near-surface gas phase $([X_i]_{as} < [X_i]_q)$ and gas phase diffusion will influence further uptake. In this case near-surface gas phase concentration should be corrected using a gas phase diffusion correction factor C_{q,X_i} .

$$[\mathbf{X}_i]_{gs} = C_{g, \mathbf{X}_i} [\mathbf{X}_i]_g$$

 C_{q,X_i} can be described as follows based on PRA framework (Pöschl et al., 2007).

$$C_{g,X_{i}} = \frac{1}{1 + \gamma_{X_{i}} \frac{0.75 + 0.28 K n_{X_{i}}}{K n_{X_{i}} (1 + K n_{X_{i}})}}$$

Kn_{Xi} is Knudsen number which can be approximated by gas phase diffusion coefficient 20 $D_{q,X}$ and particle diameter d_p .

$$Kn_{X_i} = \frac{6D_{g,X_i}}{\omega_{X_i}d_p}$$
18026

ACPD 9, 18021–18063, 2009 **Kinetic double layer** model (K2-SURF) M. Shiraiwa et al. **Title Page** Abstract Introduction Conclusions References **Figures** Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

(2)

(3)

(4)

Using the reported value of $D_{g,OH}=163 \text{ Torr cm}^2$, s⁻¹ (Ivanov et al., 2007), $\gamma_{OH}=0.32$ (Bertram et al., 2001), $D_{g,NO_3}=80 \text{ Torr cm}^2 \text{ s}^{-1}$ (Rudich et al., 1996) and $\gamma_{NO_3}=0.13$ (Gross and Bertram, 2008), $C_{g,OH}$ and C_{g,NO_3} were plotted against particle diameter d_p in Fig. 2. Diffusion effect becomes larger at larger d_p .

The flux of adsorption of gas molecules on the quasi-static particle surface can be expressed as

5

$$J_{\text{ads},X_i} = \alpha_{\text{s},X_i} J_{\text{coll},X_i} = k_{\text{a},X_i} [X_i]_{\text{gs}}$$
(5)

where α_{s,X_i} is surface accommodation coefficient and k_{a,X_i} (= $\alpha_{s,X_i} \omega_{X_i}/4$) is a firstorder adsorption rate coefficient. In Langmuir adsorption model, α_{s,X_i} is determined by the surface accommodation coefficient on an adsorbate-free surface $\alpha_{s,0,X_i}$ and the sorption layer coverage θ_s , which is given by the sum of the fractional surface coverage of all competing adsorbate species (i.e. O_3 , H_2O , and NO_2) θ_{s,X_n} .

$$\alpha_{s,X_i} = \alpha_{s,0,X_i}(1-\theta_s) = \alpha_{s,0,X_i}(1-\sum_{i}\theta_{s,X_p})$$
(6)

 θ_{s,X_p} is the ratio of surface concentration of X_p and concentration of surface sorption site $[SS]_{ss}$: $\theta_{s,X_p} = [X_p]_s / [SS]_{ss}$. Surface sorption site $[SS]_{ss}$ is the inverse of the effective molecular cross section of X_p , σ_{s,X_p} . In this study, we assume $[SS]_{ss}$ is independent on adsorbate gas of O_3 , H_2O , and NO_2 (i.e. $\sigma_{s,O_3} = \sigma_{s,H_2O} = \sigma_{s,NO_2}$).

The adsorbed molecules can thermally desorb back to the gas phase. Desorption, the inverse of adsorption, can be described by a first-order rate coefficient k_{d,X_i} , which is assumed to be independent on θ_{s,X_i} . The flux of desorption of gas molecules on the quasi-static particle surface can be expressed as

 $J_{\text{des},X_{i}} = k_{\text{d},X_{i}}[X_{i}]_{\text{s}} = \tau_{\text{d},X_{i}}^{-1}[X_{i}]_{\text{s}}$ (7)

The desorption lifetime τ_{d,X_i} is the mean residence time on the surface in the absence of surface reaction and surface-bulk transport. Since molecules are desorbed ther-

mally, k_{d,X_i} depends strongly on temperature. This can be described by an Arrhenius equation as described below.

$$k_{d,X_i} = A \exp(\Delta H_{ads,X_i}/RT)$$

A pre-exponential factor *A* is typically $\sim 10^{14} \text{ s}^{-1}$ for chemisorbed species, which is approximately the vibrational frequency of a molecule bound to the surface. For physisorbed species, *A* is typically $\sim 10^{12} \text{ s}^{-1}$. Adsorption enthalpy of gaseous X_{*i*}, $\Delta H_{\text{ads},X_i}$ can be estimated roughly by assuming *A*.

The uptake coefficient of gas species X_i can be expressed as a ratio between the net fluxes of X_i from the gas phase to the condensed phase J_{net,X_i} , and J_{coll,X_i} .

10
$$\gamma_{X_i} = \frac{J_{\text{net},X_i}}{J_{\text{coll},X_i}} = \frac{J_{\text{ads},X_i} - J_{\text{des},X_i}}{J_{\text{coll},X_i}}$$

2.2 Surface layer reactions (Langmuir-Hinshelwood-type mechanism)

The surface layer reactions (SLRs) occur within the surface double layer and involve only adsorbed species or components of the quasi-static layer. In this study the PAH-O₃ system is considered to follow a Langmuir-Hinshelwood-type mechanism, in which ¹⁵ ozone first adsorbs to the surface and then reacts with PAH in a quasi-static surface layer (Pöschl et al., 2001; Ammann et al., 2003; Ammann and Pöschl, 2007; Pöschl et al., 2007). Note, however, that traditionally the term "Langmuir-Hinshelwood mechanism" is used for surface catalytic reactions between adsorbed gas species and not to describe reactions that transform the surface (Masel, 1996; IUPAC, 1997). Here we ²⁰ consider three SLRs:

 $\begin{array}{ll} \mathsf{PAH}(\mathsf{ss}) + \mathsf{O}_3(\mathsf{s}) \to \mathsf{o1}\text{-}\mathsf{PAH}(\mathsf{ss}) & (\mathsf{SLR1}) \\ \\ \mathsf{O}_3(\mathsf{s}) + \mathsf{NO}_2(\mathsf{s}) \to \mathsf{NO}_3(\mathsf{s}) & (\mathsf{SLR2}) \\ \\ \mathsf{PAH}(\mathsf{ss}) + \mathsf{NO}_3(\mathsf{s}) \to \mathsf{o2}\text{-}\mathsf{PAH}(\mathsf{ss}) & (\mathsf{SLR3}) \end{array}$

18028

ACPD 9, 18021–18063, 2009 Kinetic double layer model (K2-SURF) M. Shiraiter et al. Title resonance Abstract Introduction Conclusions References Tables Figures

►T.

14

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

(8)

(9)

The products of SLR1 and SLR3, o1-PAH and o2-PAH, are oxidized non-volatile PAHs. The surface reaction of O₃ and NO₂ produces the highly reactive NO₃ radical, which can react with PAH immediately. The degradation rate of PAH ($L_{SLR,PAH}$) can be described using the second-order rate coefficients k_{SLR,PAH,O_3} and k_{SLR,PAH,NO_3} ,

 ${}_{5} L_{\text{SLR,PAH}} = k_{\text{SLR,PAH,O}_3}[\text{PAH}]_{\text{ss}}[\text{O}_3]_{\text{s}} + k_{\text{SLR,PAH,NO}_3}[\text{PAH}]_{\text{ss}}[\text{NO}_3]_{\text{s}} = k_{\text{s,PAH}}[\text{PAH}]_{\text{ss}}$ (10)

where $k_{s,PAH}$ (= $k_{SLR,PAH,O_3}[O_3]_s + k_{SLR,PAH,NO_3}[NO_3]_s$) is an apparent first-order PAH decay rate coefficient.

The loss rate of ozone by SLR1-SLR2 (L_{SLR.O₂}) can be described as

$$L_{\text{SLR,O}_3} = k_{\text{SLR,PAH,O}_3}[\text{PAH}]_{\text{ss}}[\text{O}_3]_{\text{s}} + k_{\text{SLR,O}_3,\text{NO}_2}[\text{O}_3]_{\text{s}}[\text{NO}_2]_{\text{s}} = k_{\text{s,O}_3}[\text{O}_3]_{\text{s}}$$
(11)

where k_{s,O_3} (= k_{SLR,PAH,O_3} [PAH]_{ss}+ k_{SLR,O_3,NO_3} [NO₂]_s) is an apparent first-order ozone loss rate coefficient.

The production rate of NO₃ on the surface, P_{SLR,NO_3} , can be described as

$$P_{\text{SLR,NO}_3} = k_{\text{SLR,O}_3,\text{NO}_2}[\text{O}_3]_{\text{s}}[\text{NO}_2]_{\text{s}} - k_{\text{SLR,PAH,NO}_3}[\text{PAH}]_{\text{ss}}[\text{NO}_3]_{\text{s}}$$
(12)

2.3 Gas-surface reaction (Eley-Rideal-type mechanism)

¹⁵ The gas-surface reaction is a single kinetic step of collision and reaction between gaseous species and surface molecules, which can be regarded as an Eley-Rideal-type mechanism (Ammann and Pöschl, 2007; Pöschl et al., 2007). Note that traditionally the term "Eley-Rideal mechanism" (also named Rideal-Eley or Langmuir-Rideal mechanism) is used for surface catalytic reaction between adsorbed gas species rather than for reactions that transform the surface (Masel, 1996; IUPAC, 1997). Here we con-

sider two GSRs.

$PAH(ss) + OH(gs) \rightarrow o3-PAH(ss)$	(GSR1)
$PAH(ss) + NO_3(gs) \rightarrow o4-PAH(ss)$	(GSR2)

ACPD

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

Heterogeneous loss of PAH on the surface ($L_{GSR,PAH}$) can be described by the following equation (Pöschl et al., 2007).

$$L_{\text{GSR,PAH}} = \sum_{X_i} \gamma_{\text{GSR,X}_i,\text{PAH}} \theta_{\text{SS,PAH}} (1 - \theta_{\text{S}}) J_{\text{coll,X}_i}$$
(13)

Here $\gamma_{\text{GSR},X_i,\text{PAH}}$ is defined as the elementary surface reaction probability that X_i (OH or NO₃) undergoes gas-surface reaction when colliding with PAH on the surface. $\theta_{\text{ss,PAH}}$ is the surface coverage of PAH.

2.4 Steady-state conditions

The surface mass balance and rate equations can be described as below in summary (Pöschl et al., 2007).

$$d[O_3]_s/dt = J_{ads,O_3} - J_{des,O_3} - L_{SLR,O_3}$$
(14)

$$d[H_2O]_s/dt = J_{ads,H_2O} - J_{des,H_2O}$$
(15)

$$d[NO_2]_s/dt = J_{ads,NO_2} - J_{des,NO_2} - L_{SLR,NO_2}$$
(16)
$$d[PAH]_{ss}/dt = -L_{SLR,PAH} - L_{GSR,PAH}$$
(17)

$$d[NO_3]_s/dt = P_{SLR,NO_3} - J_{des,NO_3}$$
(18)

¹⁵ Steady-state conditions are characterized by $d[X_i]_s/dt=0$ ($X_i=O_3$, H_2O , and NO_2). The effective Langmuir adsorption equilibrium constant $K'_{ads X_i}$ can be described as below.

$$\mathcal{K}_{\mathrm{ads},\mathrm{X}_{i}}^{\prime}[\mathrm{X}_{i}]_{\mathrm{gs}} = \frac{\theta_{\mathrm{s},\mathrm{X}_{i}}}{1-\theta_{\mathrm{s}}} \tag{19}$$

$$K'_{\text{ads},X_i} = \sigma_{\text{s},X_i} \frac{k_{\text{a},0,X_i}}{k_{\text{d},X_i} + k_{\text{s},X_i}}$$
(20)

If surface reactions are much slower than desorption $(k_{d,X_j} \gg k_{s,X_i})$, then K'_{ads,X_i} is equal to a Langmuir adsorption equilibrium constant K_{ads,X_i} (= $\sigma_{s,X_i}k_{a,0,X_i}/k_{d,X_i}$). Under these 18030

ACPD

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

conditions the desorption lifetime τ_{d,X_i} and first-order rate coefficient k_{d,X_i} are given by

$$k_{\mathrm{d},\mathrm{X}_{i}} = \frac{1}{\tau_{\mathrm{d},\mathrm{X}_{i}}} \approx \sigma_{\mathrm{s},\mathrm{X}_{i}} \frac{k_{\mathrm{a},\mathrm{0},\mathrm{X}_{i}}}{K_{\mathrm{ads},\mathrm{X}_{i}}'} = \frac{\alpha_{\mathrm{s},\mathrm{0},\mathrm{X}_{i}}\omega_{\mathrm{X}_{i}}\sigma_{\mathrm{s},\mathrm{X}_{i}}}{4K_{\mathrm{ads},\mathrm{X}_{i}}'}$$
(21)

The surface concentration of X_i can be expressed as

$$[X_i]_s = [SS]_{ss}\theta_{s,X_i} = [SS]_{ss}\frac{\mathcal{K}'_{ads,X_i}[X_i]_{gs}}{1 + \sum \mathcal{K}'_{ads,X_i}[X_i]_{gs}}$$
(22)

⁵ An apparent first order rate coefficient $k_{s,PAH}$ can be described as

$$k_{\rm s,PAH} = k_{\rm s,PAH,max} \frac{K'_{\rm ads,X_i}[X_i]_{\rm gs}}{1 + \sum_{\rho} K'_{\rm ads,X_{\rho}}[X_{\rho}]_{\rm gs}}$$
(23)

where $k_{s,PAH,max}$ is a maximum pseudo-first order rate coefficient of PAH. The uptake coefficient of ozone (γ_{O_3}) can be calculated as

$$\gamma_{O_3} = \frac{L_{SLR,O_3}}{J_{coll,O_3}} = \frac{4k_{s,PAH}}{\sigma_{PAH}\omega_{O_3}[O_3]_{gs}}$$
(24)

¹⁰ The initial concentration of PAH is considered to be the inverse of the effective molecular cross section σ_{PAH} and is estimated assuming one aromatic ring has 0.2 nm². For example, σ_{BaP} is assumed to be 1 nm² because BaP consists of five aromatic rings (Pöschl et al., 2001).

3 Experimental data analysis and steady-state condition

15 3.1 PAH-O₃-H₂O system

The kinetics of the heterogeneous reaction between PAHs bound on a substrate and gas phase ozone were investigated in various laboratory studies (Wu et al., 1984;

Alebic-Juretic et al., 1990; Pöschl et al., 2001; Ammann et al., 2003; Mmereki and Donaldson, 2003; Kwamena et al., 2004, 2006, 2007; Mmereki et al., 2004; Donaldson et al., 2005; Kahan et al., 2006). The investigated PAHs in this current study are benzo[a]pyrene (BaP), anthracene, naphthalene, pyrene, phenanthrene, benzo[a]anthracene (BaA), perylene, and fluoranthene. Degradation kinetics of a self-assembled monolayer (SAM) of alkenes and cypermethrin were also analyzed as references (Dubowski et al., 2004; Segal-Rosenheimer and Dubowski, 2008), as they were also observed to follow a Langmuir-Hinshelwood-type mechanism. The heterogeneous reactions between PAH with ozone were investigated for a wide range of substrates, including aerosols of soot, azelaic acid and phenylsiloxane oil, and solid and liquid of glass, ZnSe, non-activated silica gel, fused silica, and water, octanol, decanol, stearic aicd, octanoic acid, and hexanoic acid, respectively.

3.1.1 Basic physicochemical parameters

A pseudo-first order rate PAH decay coefficient $(k_{s,PAH})$ was reported by laboratory studies as a function of gas phase ozone concentration as shown in Fig. 3. They showed nonlinear relationship with a shape that is consistent with the Langmuir-Hinshelwood-type mechanism. This is in contrast to Eley-Rideal-type mechanism, which would display a linear dependence of $k_{s,PAH}$ on gas phase ozone concentration.

A non-linear least-square fit to the experimental data pairs of $k_{s,PAH}$ and $[O_3]_{gs}$ for 20 each substrate is displayed in Fig. 3. In PAH-O₃-H₂O system Eq. (23) can be simplified to

$$k_{s,PAH} = k_{s,PAH,max} \frac{K'_{ads,O_3}[O_3]_{gs}}{1 + K'_{ads,O_3}[O_3]_{gs} + K'_{ads,H_2O}[H_2O]_{gs}}$$
(25)

The fit parameters of $k_{s,PAH,max}$ and K'_{ads,O_3} are obtained by fitting to data using Eq. (25) and summarized in Table 1. Pöschl et al. (2001) measured the surface concentration of ozone, $[O_3]_s$, as a function of gas phase ozone concentration, which can be fitted by

following equation.

lower reaction rate.

$$[O_3]_s = [SS]_{ss} \frac{K'_{ads,O_3}[O_3]_{gs}}{1 + K'_{ads,O_3}[O_3]_{gs} + K'_{ads,H_2O}[H_2O]_{gs}}$$
(26)

A non-linear square fit of these data leads to $[SS]_{ss}=5.8 \times 10^{14} \text{ cm}^{-2}$ ($\sigma_{s,O_3}=0.17 \text{ nm}^2$). We assumed this value for the other studies as well because as Pöschl et al. (2001) is the only study that measured $[O_3]_s$. A second-order rate coefficient (k_{SLR,PAH,O_3}) can be calculated using the relation $k_{s,PAH,max}=k_{SLR,PAH,O_3}[SS]_{ss}$. The desorption lifetime of O_3 on the surface (τ_{d,O_3}) and desorption rate coefficients (k_{d,O_3}) were estimated using Eq. (21), assuming the surface accommodation coefficient on an adsorbate-free surface ($\alpha_{s,0,O_3}$) of 1.0×10^{-3} (Rogaski et al., 1997).

The τ_{d,O3} was calculated to be in the range of 10 ms-10 s depending on substrate materials. The relatively longer desorption lifetime and the fact that the experimental data can be described by Langmuir adsorption suggest chemisorption of O₃ - possibly in the form of O atom - rather than physisorption. The adsorption enthalpy ΔH_{ads,O3} was roughly estimated using Eq. (8), assuming a pre-exponential factor (*A*)
of 10¹⁴ s⁻¹. We calculated ΔH_{ads,O3} with A=10¹²-10¹⁵ s⁻¹, this leads to an uncertainty of ±6 kJ mol⁻¹ in ΔH_{ads,O3}. K'_{ads,O3} is approximated to K_{ads,O3}, as k_{d,O3} is one to three orders of magnitude larger than k_{s,O3}. K_{ads,O3} are one to three orders of magnitude larger than k_{s,O3}. (≈-(70-90) kJ mol⁻¹) on a solid substrate. Additionally, k_{s,PAH,max} and k_{SLR,PAH,O3} are factor of 10 larger on a solid substrate compared to a liquid one. Note that self-assembled monolayer of alkenes showed significant

The surface kinetics were also investigated at a relative humidity of 25% (Pöschl et al., 2001) and 72% (Kwamena et al., 2004), respectively. The K_{ads,H_2O} for these conditions are summarized in Table 2. The K_{ads,H_2O} values are on the order of 10^{-17} cm⁻³, 18033

ACPD

9, 18021-18063, 2009

Kinetic double layer model (K2-SURF)

which are 2–4 orders of magnitude smaller than K_{ads,O_3} . $\alpha_{s,0,H_2O}$ of 6.0×10^{-4} (Rogaski et al., 1997) was assumed in order to estimate τ_{d,H_2O} and k_{d,H_2O} . The desorption lifetime of H₂O (τ_{d,H_2O}) was ca. 50 ms, indicating the physisorption of H₂O. The adsorption enthalpy $\Delta H_{ads,H_2O}$ was estimated to be $-36(\pm 9)$ kJ mol⁻¹ assuming a range of pre-exponential factor values ($10^8 - 10^{12}$ s⁻¹).

3.1.2 Uptake of ozone

The γ_{O_3} values of the PAH-O₃-H₂O system were calculated using Eq. (24) and are shown in Fig. 4. The γ_{O_3} values showed a strong $[O_3]_{gs}$ dependence over five orders of magnitude ($[O_3]_{as} \approx 10 - 10^6$ ppb). The curves are modeled using K2-SURF assuming three cases; 1) $\tau_{d,O_2} = 10$ s, $k_{SLR,PAH,O_2} = 2.7 \times 10^{-17}$, on a soot surface (Fig. 4, red solid line), 2) $\tau_{d,O_3} = 1$ s, $k_{SLR,PAH,O_3} = 2.7 \times 10^{-17}$, on a solid organic surface (red dotted line), 3) $\tau_{d,O_2} = 0.1 \text{ s}$, $k_{\text{SLR,PAH},O_2} = 5.0 \times 10^{-18}$, on a liquid surface (black solid line). Systems on a solid substrate such as soot, glass and solid organic substrate are explained very well by the red lines in Fig. 4, over five orders of magnitude. As can be seen in Fig. 4, most experimental data are obtained at high $[O_3]_{gs}$ range. The γ_{O_3} can be extrapolated to atmospheric condition ($[O_3]_{gs}$ <150 ppb) by the modeled lines. The γ_{O_3} of PAH on 15 a soot surface is estimated to be $(1-3) \times 10^{-5}$ and $\sim 10^{-6}$ on a solid organic surface. The γ_{O_3} on a liquid octanol surface (triangle markers in Fig. 4) showed significantly lower values compared to the γ_{O_3} on a solid surface. One possible explanation is that some PAH was dissolved into the octanol so the actual PAH concentration on 20 the surface was decreased leading to the reduction of γ_{O_3} based on Eq. (24). The transport of PAH from quasi-static layer to bulk can be modelled using surface-bulk mass transport fluxes $J_{ss,b}$, which is beyond the present study. Still, these data are well fitted by black solid line ($\tau_{d,O_3}=0.1 \text{ s}, k_{SLR,PAH,O_3}=5.0 \times 10^{-18}$), which suggests γ_{O_3} at atmospheric condition in the order of 10^{-8} .

ACPD 9, 18021–18063, 2009 Kinetic double layer model (K2-SURF) M. Shiraiwa et al. **Title Page** Abstract Introduction Conclusions References Tables Figures Þ١ Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

3.2 PAH-O₃-H₂O-NO₂ system

5

The oxidation of PAH upon interactions with O_3 , H_2O and NO_2 were investigated using data from Schauer (2004). A pseudo-first order PAH decay rate coefficient ($k_{s,PAH}$) and the surface concentration of ozone, $[O_3]_s$, were measured as a function of gas phase ozone concentration as shown in Fig. 5, which can be fitted by following equations.

$$[O_{3}]_{s} = [SS]_{ss} \frac{K'_{ads,O_{3}}[O_{3}]_{gs}}{1 + K'_{ads,O_{3}}[O_{3}]_{gs} + K'_{ads,H_{2}O}[H_{2}O]_{gs} + K'_{ads,NO_{2}}[NO_{2}]_{gs}}$$
(27)
$$k_{s,PAH} = k_{s,PAH,max} \frac{K'_{ads,O_{3}}[O_{3}]_{gs}}{1 + K'_{ads,O_{2}}[O_{3}]_{gs} + K'_{ads,H_{2}O}[H_{2}O]_{gs} + K'_{ads,NO_{2}}[NO_{2}]_{gs}}$$
(28)

Using these equations of the non-linear fit, the K'_{ads,NO_2} was estimated, which are summarized in Table 3. The K'_{ads,NO_2} values are on the order of 10^{-14} cm^3 , which are comparable to K_{ads,O_3} . The τ_{d,NO_2} values were estimated to be ca. 50 ms, indicating 10 the chemisorption of NO₂. The adsorption enthalpy $\Delta H_{ads,NO_2}$ was estimated to be $-67(\pm 6)$ kJ mol⁻¹ assuming a range of pre-exponential factors ($A \approx 10^{12} - 10^{14}$ s⁻¹). Table 4 shows the basic physicochemical parameters of O_3 in this system. The sorption sites decrease systematically as NO₂ concentration increases, which implies that the effective molecular cross section of ozone (or O atom) is smaller than that of NO₂ 15 $(\sigma_{s,O_3}(\sigma_{s,O}) < \sigma_{s,NO_2})$. The apparent k_{SLR,PAH,O_3} was estimated assuming $k_{SLR,O_3,NO_2} = 0$. It is interesting to note that $k_{s,PAH,max}$ and k_{SLR,PAH,O_3} increase systematically as NO_2 concentration increase. For example, $k_{\text{SLR,PAH,O}}$ increases from 2.66×10⁻¹⁷ cm² s⁻¹ to 5.70×10^{-17} cm² s⁻¹, when NO₂ increases from 0 to 500 ppb, which indicates the acceleration of PAH degradation. The PAH degradation was not observed when PAHs 20 are exposed to only NO₂ with concentrations of up to 1 ppm, which means NO₂ alone does not efficiently degrade PAHs (Schauer et al., 2003). Therefore, the accelerating effect of NO₂ can be attributed to the formation of the highly reactive NO₃ radicals

Interactive Discussion

formed in gas phase or on the surface, or other reactive nitrogen species like N_2O_5 or HNO_3 . The reactive uptake coefficients of N_2O_5 or HNO_3 are reported to be below $\sim 10^{-5}$, therefore they are unlikely to react with PAHs at ambient conditions (Gross and Bertram, 2008).

5 4 Numerical modeling of transient conditions

Here we model the temporal evolution of surface composition and uptake coefficients of ozone over timescales from microseconds to days under standard conditions (298 K, 1013 hPa). The simulations were performed by solving the rate equations (Eqs. 14–18) numerically with a Matlab program.

- ¹⁰ The initial concentration of PAH is set to be 1×10^{14} cm⁻², and the initial surface concentration of gas species (O₃, H₂O, NO₂, and NO₃) is 0. For the exemplary model simulations, we consider PAH degradation both on soot and organics surface. The basic physicochemical parameters required in the simulations are the surface accommodation coefficient on the free substrate ($\alpha_{s,0}$), the mean thermal velocity of gases (ω), the
- ¹⁵ desorption lifetime of species (τ_d), and the second-order rate coefficient (k_{SLR,PAH,O_3}), which are summarized in Table 5. The $\alpha_{s,0}$ values were taken from previous studies (Tabor et al., 1994; Rogaski et al., 1997). The τ_d and k_{SLR,PAH,O_3} were determined based on Sect. 3. The gas phase O₃ concentration is set to be 100 ppb, which is typical ozone concentration in polluted air mass. The chemical half-life of PAH on the surface ($t_{1/2}$) is estimated, which is defined as the time when the PAH concentration reaches half of the initial concentration.

4.1 PAH-O₃-H₂O system

Here we modeled PAH degradation upon interactions with O_3 and H_2O . Figure 6 shows the surface concentrations of all involved chemical species and the uptake coefficient of O_3 (γ_{O_3}). We modeled PAH degradation on soot surface under dry (0% RH) and wet

ACPD 9, 18021-18063, 2009 **Kinetic double layer** model (K2-SURF) M. Shiraiwa et al. **Title Page** Abstract Introduction Conclusions References **Figures** Þ١ Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

conditions (25% RH). Figure 6a shows the results at 25% RH. The initial plateau of γ_{O_3} is equal to $\alpha_{s,0,O_3}$ (=10⁻³) up to 1 s, which can be explained as adsorption of O₃ onto an adsorbate free surface. The second plateau of γ_{O_3} at ~10⁻⁵ is due to chemical reaction of O₃ with PAH. The temporal evolutions of surface species at 25% RH are analogous under dry conditions (not shown in figure), except that the competitive adsorption of H₂O has the following consequences: (a) the surface coverage of O₃ becomes lower at 25% RH due to competitive adsorption of O₃ and H₂O, (b) the PAH chemical half-life increased from 168 s (dry) to 188 s (25% RH).

When PAH is on the organics surface with τ_{d,O_3} of 0.1 s, the dominant species on the surface is H₂O and the maximum surface coverage of O₃ reaches only 0.1% in a short time (ca. 0.1 s) as shown in Fig. 6b. Consequently, the second plateau of γ_{O_3} is largely extended to ~10⁴ s due to slow PAH degradation. Additionally, the second plateau value of γ_{O_3} is lower on the organics ($\gamma_{O_3} \sim 10^{-7}$) than on the soot ($\gamma_{O_3} \sim 10^{-5}$).

4.2 PAH-O₃-H₂O-OH system

¹⁵ We modeled PAH degradation by O₃, H₂O, and OH. Here we assume that the reported γ_{OH} of 0.32 (Bertram et al., 2001) is equal to elementary surface reaction probabilities $\gamma_{GSR,OH,PAH}$. OH radicals colliding with PAH are assumed to react immediately due to the OH radical's high reactivity. The near-surface gas phase concentration of OH was corrected using a gas phase diffusion correction factor ($C_{g,OH}$) of 0.87 and assuming a particle diameter of 200 nm. The two dotted lines in Fig. 6a and b correspond to two different OH concentrations: a globally averaged ambient concentration ($[OH]_g = 1 \times 10^6 \text{ cm}^{-3}$) (Prinn et al., 1992) and an approximate upper limits in polluted air ($[OH]_a = 1 \times 10^7 \text{ cm}^{-3}$).

Figure 6a shows that OH does not affect PAH degradation on soot significantly. In this case O₃ plays the dominant role in the PAH degradation. On the other hand, OH largely accelerates PAH degradation on an organic surface as shown in Fig. 6b. As a consequence, the plateau of γ_{O_3} is an order of magnitude shorten depending on OH

concentration. Therefore OH plays a main role in PAH degradation on an organics surface.

4.2.1 PAH chemical half-life on the surface and atmospheric implications

We have estimated the chemical half-life of PAH ($t_{1/2}$) on soot, organic and liquid surfaces, when exposed to ambient concentrations of O₃ and OH and with a RH=25%.

Figure 7 displays the results of these calculations. The black line is the $t_{1/2}$ of PAH on a soot surface at 25% RH, which showed $t_{1/2}$ of ~10 min at typical atmospheric O₃ concentration of 30 ppb. We calculated $t_{1/2}$ under dry conditions as well, which resulted in a $t_{1/2}$ value of ~5 min at 30 ppb O₃. Therefore, the competitive adsorption of O₃ and H₂O leads to a significant increase in $t_{1/2}$. However, the $t_{1/2}$ values showed only a slight change with increasing [OH]_g. This is because PAH degradation on soot is dominated by the surface layer reaction of PAH with O₃.

The $t_{1/2}$ values on a solid organic surface (Fig. 7, red and blue line) are estimated to be 2–15 h at 30 ppb O₃ when the OH concentration is 0. The $t_{1/2}$ value on a liquid organic surface like octanol (green line) is estimated to be a few days. As shown in Fig. 7, τ_{d,O_3} is a critical factor in estimating the chemical half-life of PAH on the surface. OH plays a critical role in these cases. It accelerates the PAH degradation by one to two orders of magnitude depending on OH concentration.

In summary, the PAH chemical half-life on the surface $(t_{1/2})$ ranges from ~10 min on soot, to 1–5 h on solid organics and 6 h on liquid particles under typical ambient conditions (30 ppb O₃, 25% RH, 10⁶ cm⁻³ OH). The relative importance of PAH degradation by O₃ and OH depends on the substrate of PAH.

4.3 PAH-O₃-H₂O-NO₂-NO₃ system

5

Here we modeled PAH degradation on soot upon interactions with O₃, H₂O, NO₂, and

²⁵ NO₃. As discussed in Sect. 4.1, if other gas species (i.e. H₂O) coexist with ozone in the system, competitive adsorption leads to slower degradation. Therefore, if we con-

sider neither the surface reaction of O_3 with NO₂ nor gas-surface reaction of NO₃, then competitive adsorption of NO₂ leads to slower PAH degradation. This is inconsistent with experimental results (Table 4), which shows that NO2 accelerates PAH degradation. For example, the apparent $k_{\text{SLR,PAH,O}_3}$ is increased from $2.7 \times 10^{-17} \text{ cm}^2 \text{ s}^{-1}$ to

5 $5.7 \times 10^{-17} \text{ cm}^2 \text{ s}^{-1}$ (Table 4) under 500 ppb NO₂, leading to a reduction of $t_{1/2}$ from 188 s to 170 s at 100 ppb O₃ and 25% RH. Here we considered two possible explanations for the acceleration of PAH degradation: (1) surface reaction of O₃ with NO₂ (Langmuir-Hinshelwood-type mechanism) and (2) gas-surface reaction between PAH and gas phase NO₃ radical (Eley-Rideal-type mechanism).

4.3.1 Surface reaction of O₃ with NO₂ 10

We modeled the PAH-O₃-H₂O-NO₂-soot system considering a surface reaction of O₃ with NO₂ (SLR2) and the subsequent reaction of NO₃ with PAH (SLR3). We tested $k_{\text{SLR,O}_3,\text{NO}_2}$ and $k_{\text{SLR,PAH,NO}_3}$ values in the range of $10^{-18} - 10^{-11} \text{ cm}^2 \text{ s}^{-1}$. The desorption lifetime of NO₃ (τ_{d,NO_2}) was assumed to be 10 and 0.01 s. The concentrations of O₃ and NO₂ at 25% RH are set at 100 and 500 ppb, respectively. The resulting PAH chemical half-lifes $(t_{1/2})$ are summarized in Table 6.

The $t_{1/2}$ value should be ~170 s considering the acceleration of PAH degradation. Moreover, the fact that the PAH-O₃-H₂O-NO₂ system is well described by Langmuir-Hinshelwood-type mechanism (Fig. 5) indicates $L_{SLR,O_3} \ll J_{des,O_3}$, leading to

 k_{s,O_3} (= k_{SLR,PAH,O_3} [PAH]_{ss}+ k_{SLR,O_3,NO_2} [NO₂]_s) $\ll k_{d,O_3}$. Considering k_{d,O_3} is ~10⁻¹ and 20 $[NO_2]_s$ and $[PAH]_{ss}$ is ~10¹⁴, then k_{SLR,O_2,NO_2} should be <10⁻¹⁶.

Based on these criteria, $k_{\text{SLR},O_3,\text{NO}_2}$ should be on the order of $10^{-17} - 10^{-16} \text{ cm}^2 \text{ s}^{-1}$, whereas $k_{\text{SLR,PAH,NO}_3}$ is on the order of $10^{-15} - 10^{-12} \text{ cm}^2 \text{ s}^{-1}$. This is reasonable because k_{SLR,O_3,NO_2} is on the same order of k_{SLR,PAH,O_3} and the NO₃ radical is expected to have high reactivity. The possible combination of rate coefficients are 1) τ_{d,NO_3} = 10 s, 25 $k_{\text{SLR,O}_3,\text{NO}_2} = 10^{-17} - 10^{-16} \text{ cm}^2 \text{ s}^{-1}, k_{\text{SLR,PAH,NO}_3} = 10^{-15} - 10^{-14} \text{ cm}^2 \text{ s}^{-1}$

ACPD 9, 18021–18063, 2009 Kinetic double layer model (K2-SURF) M. Shiraiwa et al. **Title Page** Abstract Introduction Conclusions References Tables Figures Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

and 2) $\tau_{d,NO_3} = 0.01 \text{ s}$, $k_{SLR,O_3,NO_2} = 10^{-17} - 10^{-16} \text{ cm}^2 \text{ s}^{-1}$, $k_{SLR,PAH,NO_3} = 10^{-13} - 10^{-12} \text{ cm}^2 \text{ s}^{-1}$.

Figure 8a shows the exemplary simulation of this system using $\tau_{d,NO_3}=10$ s, $k_{SLR,O3,NO2}=10^{-17}$ cm² s⁻¹, and $k_{SLR,PAH,NO3}=10^{-14}$ cm² s⁻¹. Temporal evolution is similar to Fig. 6a, but the PAH degradation was accelerated by formation of NO₃ radical, whose concentration reaches ~10¹² cm⁻². The uptake coefficient of O₃ (γ_{O_3}) stayed 10⁻⁵ because of continuous surface reaction of O₃ with NO₂.

4.3.2 Gas-surface reaction with NO₃

Gas-surface reaction between gas phase NO_3 and PAH is another possible explanation for the acceleration of PAH degradation. This system corresponds to a possible nighttime chemistry of PAH degradation, as NO_3 is the dominant oxidant at nighttime. The degradation of PAHs on a soot surface when exposed to O_3 , H_2O , NO_2 , and gas phase NO_3 was modeled in Fig. 8b. Note that the surface reaction of O_3 with NO_2 is not considered in this simulation. The NO_3 reactive uptake coefficient by PAH is re-

¹⁵ ported to be 0.13 (Rudich et al., 1996). We assumed this is equal to the elementary surface reaction probability $\gamma_{\text{GSR,NO}_3,\text{PAH}}$. The near-surface gas phase concentration of NO₃ was corrected by the gas phase diffusion correction factor (C_{g,NO_3}) of 0.94 and assuming a particle diameter of 200 nm (Fig. 2). The concentration of O₃ and NO₂ at 25% RH are set to be 100 ppb and 500 ppb, respectively. Four NO₃ concentrations that cover the range of ambient concentrations (1, 10, 20, and 100 ppt) were assumed (Finlayson-Pitts and Pitts, 2000).

When the NO₃ concentration is 1 ppt, the presence of NO₃ does not impact the degradation of PAHs significantly, but rather ozone plays a dominant role in PAH degradation. The NO₃ radicals compensate the competitive adsorption of NO₂ when NO₃ concentration is 10 ppt with $t_{1/2}$ of 186 s. The $t_{1/2}$ is 144 s when the NO₃ concentration

is 20 ppt. And for 100 ppt NO₃ concentration, the $t_{1/2}$ is calculated to be 38 s, which means the PAH degradation is dominated by the NO₃ radical at this condition.

4.3.3 PAH chemical half-life on the surface and atmospheric implications

The chemical half-life $(t_{1/2})$ of PAH on the surface (soot, organics, and liquid) was estimated upon interactions with O₃, H₂O, NO₂, and NO₃ at ambient concentration level (<150 ppb O₃, 25% RH, 100 ppb NO₂, 1–10 ppt NO₃). Figure 9 displays the results of calculations. Neither the surface reaction of O₃ with NO₂ nor gas-surface reaction of NO₃ was considered for the thick solid line. NO₃ accelerates the PAH degradation by one to three orders of magnitude depending on NO₃ concentration (Fig. 9, dotted and dashed line). The surface reaction of O₃ and NO₂ decreases the $t_{1/2}$ by ca. 40% on every surface (Fig. 9, solid line).

¹⁰ In summary, under typical ambient conditions at night time (i.e. 30 ppb O₃, 100 ppb NO₂, 25% RH, 1 ppt NO₃), the PAH chemical half-life on the surface ($t_{1/2}$) ranges from ~10 min on soot, to 30–60 min on solid organics and liquid particles. The NO₃ radical can degrade PAH and $t_{1/2}$ depends largely on NO₃ concentration.

5 Conclusions

- ¹⁵ We have developed and applied a kinetic double-layer surface model (K2-SURF) and chemical reaction mechanism to describe the degradation of polycyclic aromatic hydrocarbons (PAHs) on aerosol particles interacting with ozone, nitrogen dioxide, water vapor, hydroxyl and nitrate radicals. Basic physicochemical parameters have been derived from experimental data and used to simulate PAH degradation and ozone uptake ²⁰ by aerosol particles under a wide range of conditions. The main conclusions are:
 - The heterogeneous reaction between particle-bound PAHs and ozone can be well described by Langmuir-Hinshelwood-type mechanism and rate equations with effective Langmuir adsorption constants and surface reaction rate coefficients depending on the substrate material.
- 25 2. Competitive and reversible adsorption and chemical transformation of the surface

- (aging) lead to a strong non-linear dependence of the ozone uptake coefficients on time and gas phase composition with different characteristic features under dilute atmospheric and concentrated laboratory conditions. Under typical ambient conditions the ozone uptake coefficients of PAH-coated aerosol particles are likely in the range of 10^{-6} – 10^{-5} .
- 3. Nitrogen dioxide undergoes competitive co-adsorption with ozone. At ambient temperatures NO₂ alone does not efficiently degrade PAHs, but it can accelerate PAH degradation by ozone. The accelerating effect of NO₂ can be explained by the formation of highly reactive NO₃ radicals in the gas phase and on the surface.

5

20

- 4. The chemical half-life of PAH is expected to range from a few minutes on the surface of soot, to multiple hours on solid organics and days on liquid particles. On soot, PAH degradation appears to be dominated by a surface layer reaction with adsorbed O₃ (Langmuir-Hinshelwood-type mechanism). On other substrates, it seems to be dominated by gas-surface reaction with OH and NO₃ radicals (Eley-Rideal-type mechanism).
 - 5. To our knowledge, K2-SURF is the first atmospheric process model describing multiple types of parallel and sequential surface reactions between multiple gaseous and particle-bound chemical species. We suggest that it may serve as a basis for the development of a general master mechanism of aerosol and cloud surface chemistry, and we intend to pursue this development in follow-up studies including other organic aerosol components.

Acknowledgement. This work was funded by the Max Planck Society (MPG) and the European integrated project on cloud climate and air quality interactions (No 036833-2, EUCAARI). MS is supported by the International Max Planck Research School (IMPRS) for Atmospheric Chemistry and Physics, and the Ministry of Education, Culture, Sports, Science and Technology – Japan (MEXT). We thank J. Crowley, M. Ammann, N. Donahue, M. Rossi, T. Mentel, Y. Dubowski, Y. Iinuma and C. Pfrang for stimulating discussions, and H. Su for support in model development.

ACPD

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

The service charges for this open access publication have been covered by the Max Planck Society.

References

25

- Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V., and Welton, E. J.: Reduction of tropical cloudiness by soot, Science, 288(5468), 1042–1047, 2000.
 Alebic-Juretic, A., Cvitas, T., and Klasinc, L.: Heterogeneous polycyclic aromatic hydrocarbon degradation with ozone on silica-gel carrier, Environ. Sci. Technol., 24(1), 62–66, 1990.
 Ammann, M. and Pöschl, U.: Kinetic model framework for aerosol and cloud surface chem-
- istry and gas-particle interactions Part 2: Exemplary practical applications and numerical simulations, Atmos. Chem. Phys., 7(23), 6025–6045, 2007.
 - Ammann, M., Pöschl, U., and Rudich, Y.: Effects of reversible adsorption and Langmuir-Hinshelwood surface reactions on gas uptake by atmospheric particles, Phys. Chem. Chem. Phys., 5, 351–356, 2003.
- ¹⁵ Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89(1–2), 13–41, 2008.
 - Atkinson, R. and Arey, J.: Atmospheric chemistry of gas-phase polycyclic aromatichydrocarbons – formation of atmospheric mutagens, Environ. Health Persp., 102, 117–126, 1994.
- Bertram, A. K., Ivanov, A. V., Hunter, M., Molina, L. T., and Molina, M. J.: The reaction probability of OH on organic surfaces of tropospheric interest, J. Phys. Chem. A, 105(41), 9415–9421, 2001.

Donaldson, D. J., Mmereki, B. T., Chaudhuri, S. R., Handley, S., and Oh, M.: Uptake and reaction of atmospheric organic vapours on organic films, Faraday Discuss., 130, 227–239, 2005.

- Dubowski, Y., Vieceli, J., Tobias, D. J., Gomez, A., Lin, A., Nizkorodov, S. A., McIntire, T. M., and Finlayson-Pitts, B. J.: Interaction of gas-phase ozone at 296 K with unsaturated self-assembled monolayers: A new look at an old system, J. Phys. Chem. A, 108(47), 10473–10485, 2004.
- ³⁰ Finlayson-Pitts, B. J. and Pitts, J. N. (Eds.): Chemistry of the Upper and Lower Atmosphere, Academic Press, San Diego, 2000.

ACPD

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

- Fuzzi, S., Andreae, M. O., Huebert, B. J., Kulmala, M., Bond, T. C., Boy, M., Doherty, S. J., Guenther, A., Kanakidou, M., Kawamura, K., Kerminen, V. M., Lohmann, U., Russell, L. M., and Pöschl, U.: Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic accosols in the atmosphere, climate, and
- 5 global change, Atmos. Chem. Phys., 6, 2017–2038, 2006, http://www.atmos-chem-phys.net/6/2017/2006/.

Gross, S. and Bertram, A. K.: Reactive uptake of NO₃, N₂O₅, NO₂, HNO₃, and O₃ on three types of polycyclic aromatic hydrocarbon surfaces, J. Phys. Chem. A, 112(14), 3104–3113, 2008.

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic

- aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5235, 2009, http://www.atmos-chem-phys.net/9/5155/2009/.
 - Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response, J. Geophys. Res.-Atmos., 102(D6), 6831–6864, 1997.

Homann, K. H.: Fullerenes and soot formation - new pathways to large particles in flames,

²⁰ Angew. Chem. Int. Edit., 37(18), 2435–2451, 1998.

IUPAC (Ed.): Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"), Blackwell Scientific Publications, Oxford, 1997.

Ivanov, A. V., Trakhtenberg, S., Bertram, A. K., Gershenzon, Y. M., and Molina, M. J.: OH, HO₂, and ozone gaseous diffusion coefficients, J. Phys. Chem. A, 111(9), 1632–1637, 2007.

- Jacobson, M. Z.: A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols, Geophys. Res. Lett., 27(2), 217–220, 2000.
 - Kahan, T. F., Kwamena, N. O. A., and Donaldson, D. J.: Heterogeneous ozonation kinetics of polycyclic aromatic hydrocarbons on organic films, Atmos. Environ., 40(19), 3448–3459, 2006.
- ³⁰ Kulmala, M., Asmi, A., Lappalainen, H. K., Carslaw, K. S., Pöschl, U., Baltensperger, U., Hov, Ø., Brenquier, J.-L., Pandis, S. N., Facchini, M. C., Hansson, H.-C., Wiedensohler, A., and O'Dowd, C. D.: Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales,

AC	ACPD					
9, 18021–1	8063, 2009					
Kinetic do model (K	ouble layer (2-SURF)					
M. Shira	iwa et al.					
TH	Dest					
litle	Page					
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	۶I					
•	•					
Back	Back Close					
Full Screen / Esc						
Printer-friendly Version						
Interactive	Discussion					

Atmos. Chem. Phys., 9, 2825–2841, 2009,

http://www.atmos-chem-phys.net/9/2825/2009/.

- Kuwata, M., Kondo, Y., Mochida, M., Takegawa, N., and Kawamura, K.: Dependence of CCN activity of less volatile particles on the amount of coating observed in Tokyo, J. Geophys.
- ⁵ Res., 112, D11207, doi:10.1029/2006JD007758, 2007.
- Kwamena, N. O. A., Earp, M. E., Young, C. J., and Abbatt, J. P. D.: Kinetic and product yield study of the heterogeneous gas-surface reaction of anthracene and ozone, J. Phys. Chem. A, 110(10), 3638–3646, 2006.

Kwamena, N. O. A., Staikova, M. G., Donaldson, D. J., George, I. J., and Abbatt, J. P. D.: Role

- of the aerosol substrate in the heterogeneous ozonation reactions of surface-bound PAHs, J. Phys. Chem. A, 111, 11050–11058, 2007.
 - Kwamena, N. O. A., Thornton, J. A., and Abbatt, J. P. D.: Kinetics of surface-bound benzo[a]pyrene and ozone on solid organic and salt aerosols, J. Phys. Chem. A, 108(52), 11626–11634, 2004.
- Lammel, G., Sehili, A. M., Bond, T. C., Feichter, J., and Grassl, H.: Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons – a modelling approach, Chemosphere, 76(1), 98–106, 2009.
 - Lee, J. Y. and Kim, Y. P.: Source apportionment of the particulate PAHs at Seoul, Korea: impact of long range transport to a megacity, Atmos. Chem. Phys., 7, 3587–3596, 2007,
- ²⁰ http://www.atmos-chem-phys.net/7/3587/2007/.

30

- Liu, Y., Sklorz, M., Schnelle-Kreis, J., Orasche, J., Ferge, T., Kettrup, A., and Zimmermann, R.: Oxidant denuder sampling for analysis of polycyclic aromatic hydrocarbons and their oxygenated derivates in ambient aerosol: Evaluation of sampling artefact, Chemosphere, 62(11), 1889–1898, 2006.
- Marchand, N., Besombes, J. L., Chevron, N., Masclet, P., Aymoz, G., and Jaffrezo, J. L.: Polycyclic aromatic hydrocarbons (PAHs) in the atmospheres of two French alpine valleys: sources and temporal patterns, Atmos. Chem. Phys., 4, 1167–1181, 2004, http://www.atmos-chem-phys.net/4/1167/2004/.
 - Masel, R. I.: Principles of Adsorption and Reaction on Solid Surfaces, John Wiley & Sons, New York, 1996.
 - Messerer, A., Rothe, D., Niessner, R., and Pöschl, U.: Kinetic observations and model calculations on continuous regeneration of NFZ diesel carbon particle precipitation systems, Chem.-Ing.-Tech., 77(7), 881–886, 2005.

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

- Mikhailov, E. F., Vlasenko, S. S., Podgorny, I. A., and Ramanathan, V.: Optical properties of soot-water drop agglomerates: An experimental study, J. Geophys. Res.-Atmos., 111(D7), 16, doi:10.1029/2005jd006389, 2006.
- Mmereki, B. T. and Donaldson, D. J.: Direct observation of the kinetics of an atmospherically important reaction at the air-aqueous interface, J. Phys. Chem. A, 107(50), 11038–11042, 2003.
 - Mmereki, B. T., Donaldson, D. J., Gilman, J. B., Eliason, T. L., and Vaida, V.: Kinetics and products of the reaction of gas-phase ozone with anthracene adsorbed at the air-aqueous interface, Atmos. Environ., 38(36), 6091–6103, 2004.
- ¹⁰ Pitts, J. N.: Formation and fate of gaseous and particulate mutagens and carcinogens in real and simulated atmospheres, Environ. Health Persp., 47(Jan.), 115–140, 1983.
 - Pöschl, U.: Formation and decomposition of hazardous chemical components contained in atmospheric aerosol particles, J. Aerosol. Med., 15(2), 203–212, 2002.

Pöschl, U.: Atmospheric aerosols: Composition, transformation, climate and health effects,

- Angew. Chem. Int. Edit., 44(46), 7520–7540, 2005.
 Pöschl, U., Letzel, T., Schauer, C., and Niessner, R.: Interaction of ozone and water vapor with
- spark discharge soot aerosol particles coated with benzo[a]pyrene: O_3 and H_2O adsorption, benzo[a]pyrene degradation, and atmospheric implications, J. Phys. Chem. A, 105(16), 4029–4041, 2001.
- Pöschl, U., Rudich, Y., and Ammann, M.: Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions – Part 1: General equations, parameters, and terminology, J. Phys. Chem. A, 7(23), 5989–6023, 2007.
 - Prinn, R., Cunnold, D., Simmonds, P., Alyea, F., Boldi, R., Crawford, A., Fraser, P., Gutzler, D., Hartley, D., Rosen, R., and Rasmussen, R.: Global average concentration and trend for hy-
- droxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978– 1990, J. Geophys. Res.-Atmos., 97(D2), 2445–2461, 1992.
 - Rogaski, C. A., Golden, D. M., and Williams, L. R.: Reactive uptake and hydration experiments on amorphous carbon treated with NO₂, SO₂, O₃, HNO₃, and H₂SO₄, Geophys. Res. Lett., 24(4), 381–384, 1997.
- ³⁰ Rudich, Y., Talukdar, R. K., Imamura, T., Fox, R. W., and Ravishankara, A. R.: Uptake of NO₃ on KI solutions: rate coefficient for the NO₃+l⁻ reaction and gas-phase diffusion coefficients for NO₃, Chem. Phys. Lett. 261(4–5), 467–473, 1996.

Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Pöschl, U.: Raman microspec-

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

troscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon, 43(8), 1731–1742, 2005.

- Schauer, C.: Analysis and reactivity of polycyclic aromatic hydrocarbon in aerosol, Technical University of Munich, 2004.
- ⁵ Schauer, C., Niessner, R., and Pöschl, U.: Polycyclic aromatic hydrocarbons in urban air particulate matter: Decadal and seasonal trends, chemical degradation, and sampling artifacts, Environ. Sci. Technol., 37(13), 2861–2868, 2003.
 - Schauer, C., Niessner, R., and Pöschl, U.: Analysis of nitrated polycyclic aromatic hydrocarbons by liquid chromatography with fluorescence and mass spectrometry detection: air particulate
- matter, soot, and reaction product studies, Anal. Bioanal. Chem., 378(3), 725–736, 2004. Schwarz, J. P., Gao, R. S., Spackman, J. R., Watts, L. A., Thomson, D. S., Fahey, D. W., Ryerson, T. B., Peischl, J., Holloway, J. S., Trainer, M., Frost, G. J., Baynard, T., Lack, D. A., de Gouw, J. A., Warneke, C., and Del Negro, L. A.: Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions,
- ¹⁵ Geophys. Res. Lett., 35(13), L13810, doi:10.1029/2008gl033968, 2008.

20

Segal-Rosenheimer, M. and Dubowski, Y.: Photolysis of thin films of cypermethrin using in situ FTIR monitoring: Products, rates and quantum yields, J. Photochem. Photobiol. A Chem., 200(2–3), 262–269, 2008.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics – From Air Pollution to Climate Change, John Wiley & Sons, Inc., New York, 1998.

Shiraiwa, M., Kondo, Y., Moteki, N., Takegawa, N., Miyazaki, Y., and Blake, D. R.: Evolution of mixing state of black carbon in polluted air from Tokyo, Geophys. Res. Lett. 34(16), L16803, doi:10.1029/2007gl029819, 2007.

Springmann, M., Knopf, D. A., and Riemer, N.: Detailed heterogeneous chemistry in an ur-

- ban plume box model: reversible co-adsorption of O₃, NO₂, and H₂O on soot coated with benzo[a]pyrene, Atmos. Chem. Phys. Discuss., 9, 10055–10099, 2009, http://www.atmos-chem-phys-discuss.net/9/10055/2009/.
 - Tabor, K., Gutzwiller, L., and Rossi, M. J.: Heterogeneous chemical-kinetics of NO₂ on amorphous-carbon at ambient temperature, J. Phys. Chem., 98(24), 6172–6186, 1994.
- Wu, C. H., Salmeen, I., and Niki, H.: Fluorescence spectroscopic study of reactions between gaseous ozone and surface-adsorbed polycyclic aromatic-hydrocarbons, Environ. Sci. Technol., 18(8), 603–607, 1984.

ACPD					
9, 18021–1	8063, 2009				
Kinetic double layer model (K2-SURF) M. Shiraiwa et al.					
Title	Title Page				
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
14	۶I				
•	•				
Back	Close				
Full Screen / Esc					
Printer-friendly Version					

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

Table 1.	Basic physicochemical	parameters	of O_3	in the	PAH-O ₃ -H ₂ O	system	with	different
PAHs and	l substrates.							

PAH	Substrate	RH(%)	K_{ads,O_3} (10 ⁻¹⁵ cm ³)	$k_{s,PAH,max}$ (s ⁻¹)	$k_{\rm SLR, PAH, O_3}$ (10 ⁻¹⁷ cm ² s ⁻¹)	k _{d,O3} (s ⁻¹)	τ _{d,O3} (s)	$\Delta H_{\rm ads,O_3}$ (kJ mol ⁻¹)	Reference
BaP	Soot	25	255	0.0155	3.37	0.08	13.0	-86	Pöschl et al. (2001)
BaP	Azelaic acid	72	4.39	0.0600	10.4	3.56	0.28	-76	Kwamena et al. (2004)
BaP	Soot	0	255	0.0154	2.66	0.06	16.3	-86	Pöschl et al. (2001)
BaP	Azelaic acid	0	1.18	0.0480	8.30	13.2	0.08	-73	Kwamena et al. (2004)
BaP	NaCl	0	0.12	0.0320	5.54	130	0.01	-67	Kwamena et al. (2004)
BaP	Fused silica	0	27.1	0.0325	5.62	0.58	1.74	-81	Wu et al. (1984)
BaP	Silica gel	0	9.4	0.0325	5.62	1.67	0.60	-78	Alebic-Juretic et al. (1990)
Anthracene	Glass	0	2.85	0.0060	1.04	5.48	0.18	-75	Kwamena et al. (2006)
Anthracene	Azelaic acid	0	2.24	0.0550	9.52	6.97	0.14	-75	Kwamena et al. (2007)
BaA	Silica gel	0	38.6	0.004	0.69	0.40	2.47	-82	Alebic-Juretic et al. (1990)
Pyrene	Silica gel	0	86.0	0.001	0.17	0.18	5.51	-84	Alebic-Juretic et al. (1990)
Perylene	Silica gel	0	67.9	0.004	0.69	0.23	4.35	-83	Alebic-Juretic et al. (1990)
Perylene	Fused silica	0	4.4	0.004	0.69	3.55	0.28	-76	Wu et al. (1984)
Fluoranthene	Silica gel	0	65.0	0.0001	0.02	0.24	4.17	-83	Alebic-Juretic et al. (1990)
BaP	Octanol	0	0.35	0.0055	0.94	45.0	0.02	-70	Kahan et al. (2006)
Anthracene	Phenylsiloxane oil	0	104	0.0100	1.73	0.15	6.66	-84	Kwamena et al. (2007)
Anthracene	Octanol/decanol	0	0.56	0.0026	0.44	28.0	0.04	-71	Kahan et al. (2006)
Anthracene	Octanol	0	1.83	0.0026	0.45	8.53	0.12	-74	Mmereki et al. (2003)
Anthracene	Water	0	0.45	0.0026	0.45	34.7	0.03	-71	Mmereki et al. (2003)
Anthracene	Stearic aicd	0	0.47	0.0024	0.41	33.4	0.03	-71	Mmereki et al. (2004)
Anthracene	Octanoic acid	0	0.94	0.0013	0.22	16.7	0.06	-72	Mmereki et al. (2004)
Anthracene	Hexanoic acid	0	1.2	0.0004	0.07	13.0	0.08	-73	Mmereki et al. (2004)
Naphthalene	Octanol	0	0.97	0.0009	0.15	16.1	0.06	-72	Kahan et al. (2006)
Pyrene	Octanol	0	0.32	0.0007	0.12	48.8	0.02	-70	Kahan et al. (2006)
Pyrene	Water	0	0.86	0.0012	0.20	18.2	0.06	-72	Donaldson et al. (2005)
Pyrene	Octanol/water	0	1.66	0.0015	0.26	9.41	0.11	-74	Donaldson et al. (2005)
Phenanthrene	Octanol	0	0.16	0.0006	0.10	97.6	0.01	-68	Kahan et al. (2006)
SAM C3&C8	ZnSe	0	25	0.0060	1.04	0.62	1.60	-80	Dubowski et al. (2004)
Cypermethrin	ZnSe	0	0.47	0.0007	0.12	33.2	0.03	-71	Segal-Rosenheimer
									and Dubowski (2007)

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

M. Shiraiwa et al.

Title Page					
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
	►I				
•	•				
Back	Close				
Full Scre	en / Esc				
Printer-frien	Printer-friendly Version				
Interactive	Discussion				

Table 2. Basic physicochemical parameters of H_2O in the BaP-O₃-NO₂-H₂O system on soot and azelaic acid.

Substrate	RH (%)	$K_{\rm ads,H_2O}$ (10 ⁻¹⁷ cm ³)	$[SS]_{ss}$ (10 ¹⁴ cm ⁻²)	τ _{d,H2} Ο (s)	k _{d,H2} 0 (s ⁻¹)	$\Delta H_{ads,H_2O}$ (kJ mol ⁻¹)		
Soot	25	0.17	4.60	1.33×10^{-4}	7.54×10 ³	-35±9	Pöschl et al. (2001)	[O ₃] _s vs. [O ₃] _{as}
Soot	25	0.15	2.24	5.69×10^{-5}	1.76×10 ⁴	-33±9	Schauer et al. (2003)	[O ₃] _s vs. [O ₃] _{gs}
Soot	25	1.02	-	7.95×10^{-4}	1.26×10 ³	-39±9	Pöschl et al. (2001)	k _{s,BaP} vs. [O ₃] _{gs}
Soot	25	1.18	-	4.48×10^{-4}	2.23×10 ³	-38±9	Schauer et al. (2003)	k _{s,BaP} vs. [O ₃] _{gs}
Azelaic acid	72	0.10	-	9.80×10 ⁻⁵	1.02×10^4	-34±9	Kwamena et al. (2004)	$k_{s,BaP}$ vs. $[O_3]_{gs}$

RH (%)	NO ₂ (ppb)	$K_{\rm ads, NO_2}$ (10 ⁻¹⁵ cm ³)	$[SS]_{ss}$ (10 ¹⁴ cm ⁻²)	k _{d,NO2} (s ⁻¹)	τ _{d,NO2} (s)	$\Delta H_{ads,NO_2}$ (kJ mol ⁻¹)	
0	100	82	4.50	16.0	0.062	-70	[O ₃] _s vs. [O ₃] _{as}
0	500	34	3.50	49.6	0.020	-67	[O ₃] _s vs. [O ₃] _{as}
0	1000	53	3.00	37.1	0.027	-68	[O ₃] _s vs. [O ₃] _{as}
25	1000	10	2.24	263	0.004	-63	$[O_3]_s$ vs. $[O_3]_{gs}$
0	100	69	_	19.0	0.053	-69	$k_{\rm s,BaP}$ vs. $[O_3]_{\rm qs}$
0	250	54	-	27.3	0.037	-68	$k_{\rm s,BaP}$ vs. $[O_3]_{\rm qs}$
25	250	86	-	17.2	0.058	-70	$k_{\rm s,BaP}$ vs. $[O_3]_{\rm qs}$
0	500	71	-	23.8	0.042	-69	$k_{\rm s,BaP}$ vs. $[O_3]_{\rm qs}$
0	750	17	-	99.2	0.010	-65	$k_{s,BaP}$ vs. $[O_3]_{gs}$

Table 3. Basic physicochemical parameters of NO₂ in the BaP-O₃-NO₂-H₂O system on soot (Schauer, 2004).

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

Title Page						
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
	P1					
•	•					
Back	Close					
Full Scre	en / Esc					
Printer-friendly Version						
Interactive Discussion						

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

M. Shiraiwa et al.

Title Page						
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	•1					
•	•					
Back	Close					
Full Scre	en / Esc					
Printer-friendly Version						
Interactive Discussion						

Table 4. Basic physicochemical parameters of O_3 in the BaP- O_3 - NO_2 - H_2O system on soot (Schauer, 2004).

RH	NO_2	$K_{\rm ads,O_3}$	k _{s,PAH,max}	[SS] _{ss}	k _{SLR,PAH,O3}	k_{d,O_3}	τ_{d,O_3}	$\Delta H_{ads,O_3}$
(%)	(ppb)	$(10^{-15} \mathrm{cm}^3)$	(s ⁻¹)	$(10^{14} \mathrm{cm}^{-2})$	$(10^{-17} \mathrm{cm}^2 \mathrm{s}^{-1})$	(s ⁻¹)	(s)	(kJ mol ⁻¹)
0	0	255	0.015	5.80	2.66	0.06	16.3	-86
0	100	331	0.013	4.50	2.89	0.06	16.5	-86
0	250	369	0.015	4.00	3.75	0.06	16.4	-86
25	250	332	0.021	4.00	5.25	0.07	14.7	-86
0	500	347	0.020	3.50	5.71	0.07	13.5	-86
0	750	296	0.020	3.25	6.15	0.09	10.7	-85

The values in bold are interpolated values.

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

M. Shiraiwa et al.

Title Page				
Abstract	Introduction			
Conclusions	References			
Tables	Figures			
14	►I			
Back	Close			
Full Scre	en / Esc			
Printer-friendly Version				
Interactive Discussion				

Table 5. Basic physicochemical parameters of O_3 , H_2O , and NO_2 used in the numerical simulations of transient conditions.

	Substrate	K _{ads}	k _{SLR,PAH,O3}	$ au_{d}$	$\alpha_{\rm s,0}$	Ŵ
		$(10^{-15} \mathrm{cm}^3)$	$(10^{-17} \mathrm{cm}^2 \mathrm{s}^{-1})$	(s)		$(cm s^{-1})$
O ₃	Soot	160	2.7	10	10 ⁻³	3.60×10 ⁴
	Organics	1.6–16	2.7	0.1–1	10^{-3}	3.60×10^4
	Liquid	0.16–1.6	0.5	0.01–0.1	10^{-3}	3.60×10^4
H ₂ O		10 ⁻³	-	10^{-4}	4.0×10^{-4}	5.90×10^4
NO ₂		50	-	0.05	0.064	3.69×10^4

$\tau_{d,NO_3} = 10 s$		$k_{\text{SLR,PAH,NO}_3} (\text{cm}^2\text{s}^{-1})$			
	t _{1/2} (s)	10 ⁻¹⁷	10 ⁻¹⁶	10 ⁻¹⁴	10 ⁻¹¹
k _{SLR,O3,NO2}	10 ⁻¹⁸	263	262	245	242
$(cm^2 s^{-1})^{-1}$	10 ⁻¹⁷	265	253	154	145
	10 ⁻¹⁶	287	197	41	36
$\tau_{d,NO_3} = 0.01 s$		k _s	lr,pah,no	, (cm ² s ⁻	⁻¹)
	t _{1/2} (s)	10 ⁻¹⁷	10 ⁻¹⁶	10 ⁻¹⁴	10 ⁻¹¹
k _{SLR,O3,NO2}	10 ⁻¹⁸	263	263	263	244
(cm ² s ⁻¹)	10 ⁻¹⁷	266	266	264	153
	10 ⁻¹⁶	297	297	280	40

Table 6. Chemical half-life of PAHs in the PAH-O₃-NO₂-H₂O system assuming different values for the O₃-NO₂ and PAH-NO₃ surface layer reaction rate coefficients (k_{SLR,O_3,NO_2} , k_{SLR,PAH,NO_3}).

ACPD

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

Table A1. Frequently used symbols.

Symbol	Meaning	
γ_{X_i}	Uptake coefficient of X _i	
$ au_{d,X_i}$	Desorption lifetime of X _i	
ω _X	Mean thermal velocity of X_i in the gas phase	
C_{g,X_i}	Gas phase diffusion correction factor of X_i	
d_{p}	Particle diameter	Δ
\dot{k}_{d,X_i}	First-order desorption rate coefficient of X _i	~
$k_{\text{SLR}v, X_p, X_q},$	Second-order rate coefficients for surface layer reactions of X_p	Cor
$k_{\text{SLR}v, X_p, Y_q}$	with X_q , X_p with Y_q , respectively	
K _{ads X}	Adsorption equilibrium constant of X_i	
$K'_{\rm ads,X}$	Effective adsorption equilibrium constant of X_i	
$\alpha_{s,0,X_i}$	Surface accommodation coefficient of X _i on an adsorbate-free surface	
$t_{1/2}$	Chemical half-life of PAHs on the surface	
[SS] _{ss}	Sorption site surface concentration	
$[X_i]_q$	Gas phase concentration of X_i	
$[X_i]_{gs}$	Near-surface gas phase concentration of X_i	
$[X_i]_s$	Surface concentration of X_i (sorption layer)	
$[Y_j]_{ss}$	Surface concentration of Y_j (quasi-static layer)	

ACPD

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

Title Page					
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
◀	►I				
•	•				
Back	Close				
Full Screen / Esc					
Printer-friendly Version					
Interactive Discussion					

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

M. Shiraiwa et al.

Fig. 1. Schematic illustration of the kinetic double-layer surface model (K2-SURF). Compartments and transport fluxes for volatile species (O_3 , H_2O , NO_2 , OH and NO_3) and non-volatile species (PAHs).

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

Fig. 3. Pseudo-first-order PAH decay rate coefficients ($k_{s,PAH}$) as a function of gas phase ozone concentration ($[O_3]_{gs}$) under dry conditions: BaP on soot aerosol (Pöschl et al., 2001), BaP on azelaic acid aerosol (Kwamena et al., 2004), Anthracene on octanol (Kahan et al., 2006), and cypermethrin on ZnSe (Segal-Rosenheimer and Dubowski, 2008).

ACPD

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

9, 18021–18063, 2009

Fig. 4. Ozone uptake coefficients (γ_{O_3}) for different PAHs and substrates. Symbols represent literature data (Table 1). Lines show model results assuming the following parameters: 1) τ_{d,O_3} =10s and k_{SLR,PAH,O_3} =2.7×10⁻¹⁷ for soot surfaces (red solid line), 2) τ_{d,O_3} =1s and k_{SLR,PAH,O_3} =2.7×10⁻¹⁷ for solid organic surfaces (red dotted line), 3) τ_{d,O_3} =0.1s and k_{SLR,PAH,O_3} =5.0×10⁻¹⁸ for liquid surfaces (black solid line).

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

M. Shiraiwa et al.

Fig. 5. Experimental data and fit lines for the BaP-O₃-NO₂-H₂O system (Schauer, 2004). (a) Pseudo-first-order BaP decay coefficients ($k_{s,BaP}$) as a function of gas phase ozone concentration ($[O_3]_{gs}$) under dry and wet (RH 25%) conditions with 250 ppb NO₂. (b) The surface concentration of ozone ($[O_3]_s$) as a function of $[O_3]_{gs}$. The data were measured under dry, wet (RH 25%), and wet (RH 25%) and NO₂ (1 ppm) conditions. Fit curves assume a Langmuir-Hishelwood-type mechanism.

of PAH in the quasi-static surface layer, and of the ozone uptake coefficient (γ_{O_3}) at 100 ppb O_3 and 25% RH assuming OH concentration of 0 (solid line), 1.0×10^6 cm⁻³ (dotted line) and 1.0×10^6 cm⁻³ (dotshed line). PAHs are either (a) on soot or (b) on a solid organic surface.

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

Fig. 7. Chemical half-life of PAHs on different substrates (soot, solid organic, liquid) as a function of gas phase ozone concentration at 25% RH assuming OH concentrations of 0 (solid lines), 1.0×10^6 cm⁻³ (dashed lines), and 1.0×10^7 cm⁻³ (dotted lines). The desorption lifetime of O₃ (τ_{d,O_2}) was set to 10 s (soot), 1 or 0.1 s (solid organic), and 0.01 s (liquid), respectively.

Fig. 8. Temporal evolution of the surface concentrations of PAHs and volatile species (O_3 and H_2O) on soot, and of the ozone uptake coefficient (γ_{O_3}) at 100 ppb O_3 , 500 ppb NO_2 and 25% RH. (a) PAH- O_3 - H_2O - NO_2 system considering surface reaction of O_3 with NO_2 . (b) PAH- O_3 - H_2O - NO_2 - NO_3 system assuming NO_3 concentrations of 1 ppt (solid line), 10 ppt (dashed line) and 100 ppt (dotted line), respectively.

9, 18021–18063, 2009

Kinetic double layer model (K2-SURF)

M. Shiraiwa et al.

Fig. 9. Chemical half-life of PAHs on different substrates (soot, solid organic, liquid) as a function of gas phase ozone concentration at 100 ppb NO₂ and 25% RH. The desorption lifetime of O₃ (τ_{d,O_3}) is set to 10 s (soot), 1 or 0.1 s (solid organic), and 0.01 s (liquid), respectively. The assumed NO₃ gas phase concentrations are 0 (thick solid lines), 1 ppt (dashed lines), and 10 ppt (dotted lines), respectively. Thin solid lines indicate that O₃-NO₂ surface layer reactions are taken into account assuming [NO₃]_g=0.