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Abstract

Concentrations and fluxes of eight volatile organic compounds (VOCs) were measured
during October 2006 from a high telecom tower above central London, as part of the
CityFlux contribution to the REPARTEE I campaign. A continuous flow disjunct eddy
covariance technique with analysis by proton transfer reaction mass spectrometry was5

used. Daily averaged VOC mixing ratios were within the range 1–19 ppb for the oxy-
genated compounds (methanol, acetaldehyde and acetone) and 0.2–1.3 ppb for the
aromatics (benzene, toluene and ethylbenzene). Typical VOC fluxes were in the range
0.1–1.0 mg m−2 h−1. There was a non-linear relationship between VOC fluxes and traf-
fic density for most of the measured compounds. Traffic activity was estimated to ac-10

count for approximately 70% of the aromatic compound fluxes, whereas non-traffic
related sources were found to be more important for methanol and isoprene fluxes.
The measured fluxes were comparable to the estimates of the UK national atmospheric
emission inventory for the aromatic VOCs and CO. In contrast, fluxes of the oxygenated
compounds were about three times larger than inventory estimates. For isoprene and15

acetonitrile this difference was many times larger. At temperatures over 25◦C it is es-
timated that more than half the isoprene observed in central London is of biogenic
origin.

1 Introduction

Volatile organic compounds (VOCs) in ambient air influence local and regional air qual-20

ity and can also impact upon human health. Consequently, efforts have been made to
curtail and better regulate anthropogenic VOC (AVOC) emissions. In Europe, much of
this has been achieved through the implementation of the Geneva VOC and Gothen-
burg multi-pollutant protocols (UNECE, 1991, 1999), which promoted the introduction
of 3-way catalytic converters to all newly manufactured road vehicles and forced steps25

to be taken to reduce evaporative emissions from petroleum products.
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In order to model the effect of VOC emissions on air quality and to quantify the effec-
tiveness of emission control measures accurately it is necessary to compile spatially
disaggregated emission inventories. In the UK (as with many other countries) this is
done using a “bottom-up” approach to produce a yearly emission estimate for a large
number of air pollutants as part of the UK National Atmospheric Emission Inventory5

(NAEI) activity.
In contrast to the NAEI, micrometeorological flux measurement techniques such as

eddy covariance offer a “top down” approach to quantifying emission estimates, giving
insight into both spatial and temporal changes in VOC emission from a flux “footprint”
and their controls, and they offer the opportunity to identify new sources. To date most10

VOC flux measurements made with these methods have focussed on emissions of
biogenic volatile organic compounds (BVOC) from vegetation canopies such as grass-
land (Karl et al., 2001; Rinne et al., 2001; Warneke et al., 2002; Ammann et al., 2006;
Brunner et al., 2007; Davison et al., 2009) and forests (Karl et al., 2002; Grabmer et
al., 2004; Spirig et al., 2005; Lee et al., 2005). However, recent studies have demon-15

strated that micrometeorological flux measurement techniques can also be extended to
the urban canopy, as long as a measurement site with a suitable elevation above street
level can be found (Nemitz et al., 2002; Dorsey et al., 2002), and first applications have
been made to the measurement of urban VOC fluxes (Velasco et al., 2005; Langford
et al., 2009; Park et al., 2009; Velasco et al., 2009).20

In this study we use disjunct eddy covariance with continuous flow (DECcf) to mea-
sure emission estimates for eight volatile organic compounds above central London.
We compare the results to emission estimates within the most recent (2006) NAEI
data base for London. We also analyse these data with respect to traffic density and
ancillary measurements of CO fluxes and concentrations.25
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2 Experimental

2.1 Measurement site

During the autumn of 2006 (30 September 2006–30 October 2006), micrometeorolog-
ical measurements of VOC concentrations and fluxes were made over central London.
The measurements were conducted as part of the UK CityFlux project, as a contri-5

bution to the REgents PArk and Tower Environmental Experiment (REPARTEE-I). The
aims and objectives of this project are summarised elsewhere (Dall’Osto et al., 2009).

The site selected for the study was the London Telecom Tower (51◦31′17.4′′ N;
−0◦8′20.04′′ W), a 188 m high telecommunications tower, which is located in central
London. The tower is surrounded by a mixture of commercial and residential build-10

ings, giving the location an urban classification of 2 (Intensely developed high density
urban with 2–5 storey, attached or very close-set buildings) according to the criteria of
Oke (2006). A more detailed description of this site has been provided by Dall’Osto et
al. (2009).

An ultrasonic anemometer (Model R3-50, Gill Instruments, UK) and gas inlet were15

attached to a mast which extended 3 m above the 12 m tall lattice structure which is
erected on the Tower’s flat roof. The sample inlet was therefore ∼200 m above ground
level. Air was pumped down a ∼45 m long Teflon tube (3/8′′ OD) at a flow rate of
∼60 l min−1 to the proton transfer reaction mass spectrometer (PTR-MS) which was
housed inside the Tower.20

2.2 VOC sampling

Concentrations of selected VOCs were measured using an Ionicon (GmbH, Innsbruck,
Austria) high sensitivity PTR-MS which was fitted with three Varian turbo-molecular
pumps and a stainless steel ringed drift tube (9.6 cm). This instrument has been de-
scribed in detail elsewhere (Lindinger et al., 1998; de Gouw et al., 2007; Hayward et al.,25

2002); therefore only a description of the instrument setup and operation are included
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here.
Air for analysis by PTR-MS was purged into the instrument at a flow rate of 0.3 l min−1

through a heated Silcosteel inlet line. The instrument was programmed to operate
in two modes, SCAN and FLUX. During the first five minutes of every hour the to-
tal mass range (m/z 21–146) was scanned to provide basic concentration information5

on a wide range of hydrocarbons. The PTR-MS was then operated in FLUX mode
for two 25 min averaging periods per hour, with the quadrupole scanning through 11
pre-determined masses (dwell time 0.1 s per m/z) in measurement cycles lasting just
over 1 s per cycle. The targeted protonated masses and likely contributing compounds
were: m/z 33 (methanol), m/z 42 (acetonitrile), m/z 45 (acetaldehyde), m/z 59 (ace-10

tone/propanal), m/z 69 (isoprene/furan/alkenes), m/z 79 (benzene), m/z 93 (toluene)
and m/z 107 (ethylbenzene/C8 aromatics). In addition to these masses, both the
primary ion count m/z 21 (H18

3 O+) and its first cluster m/z 37 (H16
3 O+ H16

2 O+) were
recorded. The remaining 5 minutes of each hour were used to measure the instru-
ment background by sampling air which first passed through a platinum catalyst, again15

in SCAN mode. The catalyst was custom built and consisted of a glass tube packed
with platinum catalyst powder, heated to 200◦C.

During the study period the PTR-MS operating parameters, drift tube pressure, tem-
perature and voltage were held constant at 2.06 mbar, 45◦C and 600 V, respectively,
maintaining an E/N ratio of approximately 125 Td. The H3O+ primary ion count ranged20

between (4–9)×106 ion counts per second (cps) with an average of 7×106 cps. Ion
counts of m/z 37 ranged between 0.89 and 9.3×105 cps with a mean of 3.1×105 cps,
which represented 4% of the primary ion signal. Typical normalised ion counts ranged
between 1 and 210 ncps for the targeted compounds after background subtraction, with
instrument sensitivities in the range of 6.4 (acetonitrile) to 8.2 ncps ppbv−1 (benzene).25

Gas standards were not available for on-site calibration of the PTR-MS, hence mix-
ing ratios were calculated using the instrument-specific transmission coefficients and
reaction rate constants (k) taken from Zhao and Zhang (2004). Despite careful cal-
culation of transmission coefficients, using a range of gas standards under laboratory
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conditions, mixing ratios may be subject to systematic errors, which, in some instances
can be as much as a factor of two (de Gouw and Warneke, 2007). In the current study,
where possible, VOC mixing ratios were verified against measurements made by a
GC-FID, as discussed in more detail in Sect. 3.1.

2.3 Calculation of fluxes5

Fluxes of individual VOCs were measured using a continuous flow disjunct eddy co-
variance technique (DECcf). This technique has been described in detail by Langford
et al. (2009) and Davison et al. (2009). Briefly, a covariance function between vertical
wind velocity measurements (w) and VOC mixing ratios (χ ) is used to determine the
flux for each selected compound (Fχ ):10

Fχ (∆t) =
1
N

N∑
i=1

w ′(i −∆t/∆tw )χ ′(i ) (1)

Here, primes denote the instantaneous fluctuations about the mean vertical wind and
VOC concentration (e.g. χ ′=χ−χ ), ∆t represents the lag time between wind and PTR-
MS measurements, ∆tw is the sampling interval of the vertical wind velocity measure-
ments (0.05 s) and N gives the number of disjunct samples (1363) from the PTR-MS15

during each 25 min averaging period.
The lag time, ∆t, was determined using a cross-correlation (c-c) function between

w ′ and χ ′ within a 25 s flux averaging period. The maximum correlation typically oc-
curred between 6 and 10 s. This agreed closely with the same c-c function applied
to CO2 data recorded by a fast response instrument (Infrared gas analyzer LI-COR20

7000) which sub-sampled the same sample air flow directly after the PTR-MS, and the
theoretical value of 4 s, calculated from the volume of the inlet line and the flow rate.
The precision of each measurement was determined following the criteria specified
by Spirig et al. (2005), using the standard deviation of the covariance function at dis-
tances far from the peak value to characterise the random noise. Assuming a normal25
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distribution, multiplying the standard deviation by 3 gives the measurement precision
at the 99.7% confidence interval. This value was used as a proxy for the flux limit of
detection and only data that exceeded this threshold are presented here. In addition
to VOC measurements, fluxes of CO were measured with a fast-response VUV CO
analyser (AeroLaser AL5002) and are described in more detail elsewhere (Phillips et5

al., 2009a).

2.4 Flux losses

All flux measurement techniques are, to some extent, bandwidth limited and therefore
measurement frequency and choice of averaging period become important consider-
ations. During the REPARTEE-I campaign the quadrupole dwell time was set to 0.1 s10

per m/z, yet the response time of the instrument may be as much as 1 s, resulting in
turbulent fluctuations in the <1 Hz frequency range being attenuated during the mea-
surement process. Corrections for such flux losses are available (Horst et al., 1997).
However at a measurement height of 200 m, the typical eddy size is sufficiently large
that fluctuations in this high frequency range carry only a very minor proportion of the15

total flux (estimated from Horst, <2%). Therefore no correction was applied here. Con-
versely, measurements made at this elevation may be subject to attenuation at the
lower end of the frequency spectrum as the chosen averaging period may not fully
resolve low frequency fluctuations without compromising the stationarity of the mea-
surement.20

In order to investigate this effect, sensible heat flux data from the campaign were
re-analysed by joining individual 25 min files to create averaging periods of 25, 60, 90,
120 and 150 min (with 5-min gaps). A coordinate rotation was applied to the resulting
files which acted as a high pass filter (Finnigan et al., 2003) to the three dimensional
wind velocity measurements, ensuring that fluctuations from eddies with a time period25

greater than that of the averaging period could not contribute to the flux measurement
(Moncrieff et al., 2004). The resulting fluxes were then compared back to the average
values measured using the standard 25 min averaging periods, which were also rotated
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to ensure the flux was only made up by turbulent fluctuations of 25 min or less.
The results of this are shown in Fig. 1, where the fluxes calculated from the extended

averaging period are plotted against the flux constructed by averaging the results from
the individual consecutive 25-min averaging periods. Eddies with a time period of
between 25 and 60 min increase the flux by 3.1%; similarly eddies with a period of5

between 1 and 1.5 h increase the flux by 2.6%. Extending the averaging period fur-
ther to 2.5 h shows a total flux increase of 12.6%, but after this little further increase
is observed (not shown). Similar results were observed in heat fluxes measured at
Nelson Monument, Edinburgh (E. Nemitz, personal communication) and in CO fluxes
measured above Boulder, Colorado (Nemitz et al., 2008).10

These findings show that VOC flux measurements made at the Telecom Tower are
bandwidth limited with low frequency contributions attenuated due to the choice of
averaging period (25 min). Consequently, VOC fluxes measured at this site may be
underestimating the true flux by some 10 to 15%. However, increasing the averaging
period for the PTR-MS measurements to 2.5 h would have increased the likelihood of15

non-stationarities affecting the flux measurements. In addition, lower time resolution in
the flux measurements contains less information to study the processes affecting the
fluxes, which was an important objective of this work. Thus a ∼30-min averaging time
appears to achieve the right balance.

2.5 Quality assessment of fluxes20

A post-processing algorithm was written in LabVIEW which not only re-processed
fluxes but also filtered out data files which did not meet specific quality criteria. The al-
gorithm involved the following steps: (i) calculation and optimisation of lag times using
a c-c function, (ii) calculation of VOC fluxes, (iii) calculation of flux precision, rejecting
files where the peak in the c-c function was below three times the measurement preci-25

sion, (iv) testing of the mean frictional velocity, rejecting data files where u∗<0.15 m s−1

and (v) testing of fluxes for stationarity, rejecting failed data files. The stationarity test
applied here and associated data quality rating is described in detail by Foken and
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Wichura et al. (1996) and Velasco et al. (2005).
About 1% of the data were rejected due to lack of stationarity, 25% were removed

because of insufficient turbulence (u∗<0.15 m s−1) and a further 18% were rejected as
fluxes were below the limit of detection. Of the 56% of the data that passed the quality
assessment, 91% were ranked as high quality and 9% low quality.5

As the urban environment presents a non-ideal terrain for micrometeorological flux
measurements, an assessment of the integral turbulent statistics of the vertical wind
velocity (σw /u∗ = standard deviation of the vertical wind velocity normalised by the fric-
tion velocity) was carried out, with measured values compared with modelled values,
which predict σw /u∗ for a set of ideal conditions (Foken et al., 2004). Classification10

of data based on this quality test was outlined by Foken et al. (2004) as part of the
FLUXNET programme. According to their criteria over 70% of the current data were
rated category 6 or better (suitable for general use) and less than 3% of the data set
qualified for rejection. A more detailed analysis of the turbulence characteristics from
this site is presented elsewhere (Wood et al., 2009).15

2.6 Calculation of the flux footprint

In order to compare measured VOC emissions with the appropriate NAEI grid squares
the typical daytime flux footprint for the site was calculated using a simple parame-
terisation model (Klujan et al., 2004). Although originally developed for dynamically
homogenous terrain, this model has been extended to the urban environment with20

some success (Langford et al., 2009), hence its application here. Typical values of
urban meteorology were used to determine footprint estimates under the average con-
ditions encountered during the measurement period. The following parameters were
used in the model: standard deviation of vertical wind velocity σw=0.3 m s−1; friction
velocity u∗=0.45 m s−1; measurement height zm=200 m; roughness length z0=1.5 m25

(1/10th the average building height); and boundary layer height h=2000 m (unstable).
The resulting footprint (80% of flux contained within 4.7 km radius) was superimposed
onto a map of NAEI 1×1 km grid squares and the entrained squares averaged using
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a weighting factor to account for the measured wind direction during the REPARTEE-I
campaign.

3 Results and discussion

3.1 VOC concentrations

Averaged diurnal concentration plots for each of the eight compounds are shown in5

Fig. 2 and are summarised in Table 1. During the study period, the largest concentra-
tions of most VOCs were recorded during daytime and the lowest at night, indicating
that patterns in emission (peaking at day) had a larger effect on concentrations than
boundary layer dynamics. Temporal trends on a weekly time scale were also evident,
with VOC concentrations typically 20% higher during weekdays than at weekends. Fur-10

thermore, at weekends, concentrations of some compounds began to increase later in
the day, typically around 06:00 [UTC], three or four hours later than was typical Monday
to Friday. This is consistent with the temporal pattern in CO2 concentrations at this
site (Helfter et al., 2009). Throughout the measurement period, concentrations of the
oxygenated compounds were highest, followed by those of the aromatics and isoprene.15

On a day to day basis, each analyte typically followed one of two patterns. The
first, characterised by the aromatic compounds (benzene, toluene and ethylbenzene),
had two day-time peaks, one occurring around 08:00 and the second, larger peak
between 17:00 and 20:00. A third, much less well defined peak, occurring at around
13:00 was also evident on certain days, although this tended to be more prominent20

at weekends. In addition to the aromatics, both acetonitrile and acetaldehyde loosely
followed this double-peak trend, whereas acetone and isoprene did not. Instead, for
these compounds, only a single midday maximum was observed, followed by a decline
in concentration throughout the mid-to late-afternoon and evening.

Methanol concentrations were highly variable on both daily and weekly timescales25

and therefore did not follow either trend. During the first week of measurements,
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methanol mixing ratios increased steadily from 7 ppb, to a maximum of 80 ppb on
08/10/06. A slow decline in concentration was recorded in the subsequent days and,
following a short disruption to the measurements between 15–19 October, concentra-
tions returned to the level (7–15 ppb) observed at the start of the campaign. Unlike the
other VOCs, strong diurnal trends were not apparent for methanol.5

Toluene concentrations also showed longer term variations, with much higher con-
centrations observed between 1–12 October. During this period the concentration ratio
of benzene to toluene (B/T) was 0.07, which is much lower than the range typically
observed in urban air (Heeb et al., 2000). This ratio increased to 0.16 between 19–
30 Octover 2006 and toluene concentrations followed those of benzene much more10

closely.
In order to assess possible analytical interferences of PTR-MS measurements, addi-

tional measurements of VOC concentrations were recorded for validation and compari-
son purposes at a much lower time resolution using a dual column gas chromatograph
– flame ionisation detector (GC-FID). This system operated between 19–30 October.15

Glass sample canisters were pressurized with air taken over 30 min time periods, with
4-hour gaps between samples. Canisters were later analysed offline using a split col-
umn GC-FID calibrated with a 74 component hydrocarbon gas standard with individual
analytes in the 1–5 ppb range (Apel-Riemer Environmental, Inc.). The results obtained
tended to be slightly higher than PTR-MS measurements for compounds in the low C2-20

C3 range, while the heavier hydrocarbons, shown in Fig. 3, such as benzene, toluene
and ethylbenzene all showed excellent agreement. This comparison provides indepen-
dent confirmation that mixing ratios obtained using the specific transmission curve of
the PTR-MS were able to yield quantitative results.

Concentrations of benzene, toluene and ethylbenzene were also recorded by the25

UK Ambient Automatic Hydrocarbon Air Quality Network at their Marylebone road kerb
site (e.g. Dumitrean, 2008). This site is 900 m west of the base of the Telecom Tower
(Dall’Osto et al., 2009). Comparisons of the trends in concentrations between the two
sites were in good agreement for benzene and ethylbenzene with R2 values of 0.5 and
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0.6 respectively, whereas for toluene, the trend observed at the Tower differed from that
seen at street level. Typically, at street level, concentrations of toluene were highest
during the day with a broad peak between 07.00 and 17.00 and at their lowest dur-
ing the night. A comparison of toluene concentrations from the two sites using data
obtained between 19–30 October revealed much closer agreement (R2=0.58). The5

higher concentrations observed by the PTR-MS between 1–12 October were not re-
flected at the Hydrocarbon Network site, which could be suggestive of the PTR-MS
detecting additional compounds at m/z 93, which would overestimate the toluene mea-
surement. Nevertheless, measurements from the Tower may be strongly influenced
by air masses originating from outside of the city, whereas at street level, where the10

sampling location is in close proximity to the primary emission sources, the influence
of advected air masses is likely to be negligible.

Despite the good agreement in concentration trends, kerbside measurements were
on average twice as high as those observed at the Tower at 200 m height.

3.2 VOC fluxes15

Figure 4 illustrates the tendency for fluxes to be on average ∼19% lower at weekends
than on weekdays. The morning increase in VOC fluxes typically coincided with the
increase in traffic which occurred at approximately 06:00 (5 a.m. local time). Yet, on
some days, VOC fluxes were not seen until much later, between 07:00 and 08:30. Dur-
ing some nights, due to the elevation of the measurement location, the site became20

de-coupled from the street-canyon activity and fluxes were only observed as the noc-
turnal boundary layer broke up in the morning. This phenomenon was most noticeable
on the morning of the 23 October and is shown here in relation to the typical traffic
activity (2006) in Fig. 5. The “saw-tooth” shaped curve is symptomatic of the venting
of nocturnal/early morning emissions, initially trapped in the shallow boundary-layer25

below the measurement height, and can also be seen in the CO2 fluxes (Helfter et al.,
2009). Thus, the local flux measured with the DECcf approach at the relatively high
measurement height of 200 m is not always representative for the surface emission at
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that time. Vertical gradient measurements, required to quantify the storage below the
measurement heights, were not available. However, it is expected that the integrated
emission over the day nevertheless provides a robust estimate.

Although measurements of boundary layer height (BLH) were not recorded during
the REPARTEE-I campaign, estimates of mixed layer depth were taken from the Hysplit5

model (http://www.arl.noaa.gov/ready/hysplit4.html) and compared with flux data. The
model shows the nocturnal boundary layer breaking up at around 07:00 and the mea-
surements show the flux to rise shortly after. Although the mixed layer depth estimates
suggest a nocturnal boundary layer height of 250 m, some 50 m above the measure-
ment location (200 m), the Hysplit model uses this value as a lower limit and the actual10

BLH might be significantly lower. Hence the measurement location may be located
above the nocturnal boundary layer at night. Lidar measurements made during the
subsequent REPARTEE-II campaign near to the Telecom Tower substantiated these
observations by showing how the nocturnal boundary layer was stratified resulting in a
decoupling of the turbulent fluxes at the tower from the street level emissions (Barlow15

et al., 2009). It should be noted that an alternative explanation for the higher emissions
during the morning compared with the evening rush-hour could be increased emissions
associated with cold starts.

Throughout the campaign, the largest observed fluxes were of methanol (average
daily flux 0.95 mg m−2 h−1), followed by toluene (0.68 mg m−2 h−1) and acetaldehyde20

(0.65 mg m−2 h−1). The magnitudes of the fluxes were variable from day to day, with
much larger fluxes observed on certain days: for example, on Wednesday 11 October
emission fluxes in excess of 3 mg m−2 h−1 were recorded for methanol and acetalde-
hyde. The average daily fluxes are shown in Table 2, which also shows data from VOC
flux studies above Mexico City and Manchester.25

Fluxes of acetone and methanol were approximately 1.8 times larger in London than
the summer time fluxes measured over the city of Manchester. Similarly, fluxes of
both benzene and toluene were between 1.3 and 2.5 times larger in London. This is
consistent with the observation of larger organic aerosol emission fluxes above London
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compared with Manchester (Thomas, 2007; Phillips et al., 2009b).
Despite the differences in their relative magnitudes, the diurnal flux profiles are

roughly similar for each compound and approximately follow the pattern of traffic activity
in the city. The absence of a clear two-peak rush hour pattern is consistent with earlier
CO2 flux measurements made above the city of Edinburgh (Nemitz et al., 2002). One5

explanation is that rush hour behaviour tends to be more pronounced on commuter
roads, thus affecting concentration measurements which are influenced by air masses
advected from outside of the city centre. By contrast, in the central, inner city areas
(the flux footprint of the tower), traffic density (and other activities) increases steadily
throughout the day.10

Although the fluxes of VOCs followed a similar pattern, there are also differences.
For example, acetone emission rates peak in the morning, whereas emission rates
of ethylbenzene peak in the afternoon. Some fluxes remain relatively large into the
late evening (benzene, toluene and acetaldehyde), while others decrease more rapidly
(acetone and isoprene). This may be due to a change in the source mix in the evening15

(e.g. larger contribution of residential heating sources; shift of the traffic composition
away from HGV; larger fraction of taxi journeys) or a different relative contribution of
combustion vs. evaporative sources which respond differently to changes in the mete-
orological drivers (such as temperature for biological and fugitive sources).

Fluxes of methanol and toluene did not mirror the longer term variations that were20

observed in measurements of their mixing ratios. This is suggestive of emissions origi-
nating from outside the area of the flux footprint being advected over the measurement
site, leading to higher concentrations without elevated local fluxes. With an average
value of 0.21, the ratio of benzene to toluene flux is much larger than the B/T concen-
tration ratio of 0.08. Ratios of B/T measured from vehicle exhaust are usually in the25

range of 0.4–0.8 (Heeb et al., 2000). Therefore, the lower values of the flux ratios ob-
served here suggest emissions from traffic were not the only major source of toluene
within the city.
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3.3 Ratios of VOC to CO – concentrations and fluxes

Measurements of CO in the urban atmosphere provide a useful marker for anthro-
pogenic combustion emissions. Therefore analysis of the ratios of both concentrations
and fluxes of VOCs to CO can be useful in the determination and identification of
sources. Average [VOC]/[CO] concentration (ppbv−1/ppbv−1) ratios for this campaign5

and previous urban studies are presented in Table 3 and the typical diurnal pattern of
the ratios are shown in Fig. 6 for each compound.

Ratios of benzene and ethylbenzene with CO concentrations remained relatively
constant throughout the daytime, indicating a common source and a similar chemi-
cal lifetime. For the remaining compounds, ratios with CO all followed a similar trend,10

with a higher ratio during the night-time and mid-afternoon. The two troughs in the
[VOC]/[CO] ratio coincide with peak traffic flows on the commuter roads outside of the
city centre. Explanations for these troughs may include the following: (i) emissions of
CO may be elevated in congested traffic situations relative to VOC emissions (Heeb et
al., 2000), or (ii) during transport the air is photochemically processed before reach-15

ing the tower and therefore the VOCs are depleted in relation to CO, which reacts in
the atmosphere more slowly. The most likely explanation, however, is that some of
the VOCs have additional sources that are not related to combustion and that make a
larger relative contribution outside the rush hour periods.

The average flux ratios of VOC/CO (mole m−2 h−1/mole m−2 h−1) differ from concen-20

tration ratios, which is an indication that some of the sources contributing to the con-
centration measurements were located outside the flux footprint. Between the hours of
07:00 and 22:00 the ratio of VOC/CO remains relatively constant, which is suggestive
of a common source.

However, during the night time (23:00 to 07:00 UTC) the ratio becomes elevated, with25

more VOC flux relative to CO flux, peaking at typically 2 to 3 times the daytime values.
This increase is likely to be linked to a shift in the source mix during the night, with
heating sources and diesel taxis making a larger relative contribution to the emissions.
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In addition, the characteristic times for transport and chemical processing change dur-
ing night and photochemical processing of the VOCs is strongly suppressed, not just
due to the absence of sunlight, but also due to the titration of O3 by NO at street level.
However, it cannot be ruled out that the post-processing of the data also affected the
flux ratio. The VOC/CO flux ratio is based on paired measurements when the VOC flux5

exceeded the calculated limit of detection, which may have resulted in a systematical
bias towards higher values.

3.4 VOC flux dependence on traffic activity

Traffic density data recorded on Marylebone Road (2006) were used as a proxy for traf-
fic activity across the whole flux footprint and were compared with the measured VOC10

fluxes (Fig. 7). These plots indicate a clear relationship with traffic, with an increase
in both VOC and CO emissions with increasing volumes of traffic. As the volume of
traffic increases, the roads become congested and the average vehicle speed drops
from the permissible 50 km h−1 (30 mph) on Marylebone road to 34 km h−1 at peak
times. Emissions of both VOCs and CO from vehicles increase with decreasing vehicle15

speed (Heeb et al., 2000; Jensen, 1995), therefore the slower average vehicle speed,
combined with increased “stop-start” driving conditions, explains the non-linear rise in
emissions.

The plots show good correlations between the measured fluxes and traffic activity,
yet in places the fit to the data is close to the limit of uncertainty. This is particularly20

noticeable at vehicle counts of between 300 and 330 and is best illustrated in the plots
of acetone and toluene. Vehicle counts in this range typically occurred between 08:00
and 11:00, which coincided with the breakdown of the nocturnal boundary layer and
subsequent venting of night time and early morning VOC emissions. Therefore, in
reality, these points may have been affected by the hysteresis between flux and traffic25

counts and may have had a much closer fit to the curve. Conversely, when vehicle
counts are at their peak, between 19:00 and 20:00, VOC fluxes fall below the curve. In
this instance the deviation from the curve would be consistent with the formation of the
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nocturnal boundary layer.
The intercept of the curve with the zero traffic line was used to estimate the propor-

tion of the flux not attributable to road traffic. For most of the VOCs measured, this
figure was around 30% of the peak fluxes, indicating traffic counts to be a very good
surrogate for VOC fluxes at this site. Nevertheless, vehicle counts are not the only5

contributing factor and the average driving speed, driving conditions and ambient air
temperature are all likely to influence the relative source strength of VOCs. It should
also be noted that non-traffic emissions during the day associated with anthropogenic
activities could correlate with traffic and therefore may be masked by the response of
the flux to the traffic counts.10

For methanol non-vehicle-related emissions were estimated to account for 65% of
the total observed flux, while for isoprene this contribution was 47%. Identifying the
non-traffic related sources of methanol within the city was not possible due to the large
number of potential point and diffuse sources. For isoprene the task is simplified as
there are just three dominant sources of isoprene to the atmosphere in the urban envi-15

ronment: direct emissions from vehicles, evaporative emissions from petroleum prod-
ucts and biogenic emissions from plants, where emission rates are both temperature
and light dependent (Loreto and Sharkey, 1990). An attempt was made to separate the
biogenic fraction of isoprene within the city using 5 years of hydrocarbon data collected
between 2001 and 2006 by the Hydrocarbon Network monitoring station situated on20

Marylebone Road (e.g. Dumitrean, 2008). Scatter plots of isoprene against benzene
concentrations were made over a range of ambient air temperatures (−5–0, 0–5...30–
35◦C) (surface temperature measurements obtained from the London Weather Centre
– 3.1 km east of Marylebone Road). Benzene is used here as a marker of vehicle
emissions. The intercept of the regression line was used to indicate the background25

concentration of isoprene which was not attributable to direct emissions from vehicles,
and the temperature-dependent fraction [%] was calculated using this value as a per-
centage of the total isoprene present (5th–95th percentile range).

In order to isolate the biogenic fraction from the evaporative fraction, a similar proce-
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dure was applied to concentrations of iso-pentane, a compound that shares the same
two major sources as benzene and has a similar volatility to isoprene, but importantly
has no biogenic component. The results of both analyses are plotted in Fig. 8. Only
slight increases in iso-pentane concentrations were found relative to benzene at higher
temperatures due to increased evaporative emissions. In contrast, the temperature-5

dependent fraction of isoprene was large and increased exponentially with tempera-
ture. The percentage contribution of biogenic isoprene is thought to be in excess of
∼80% at temperatures of 30◦C. During the REPARTEE-I campaign the average tem-
perature was 15.9◦C which, using the parameterisation from Fig. 8, equates to a 19%
contribution of temperature controlled (or biogenic) isoprene. This value is not enough10

to resolve the 47% non-traffic related sources. Therefore it is likely that other com-
pounds, such as furan and or alkenes are being detected at m/z 69, resulting in an
overestimation of isoprene concentrations by the PTR-MS.

3.5 Comparison of measured fluxes with NAEI emission estimates

An annual emission estimate for the flux footprint was made using measured VOC15

fluxes and compared with NAEI emission estimates. Previously this has been done
by simply extrapolating average daily flux measurements to give an annual estimate
(Langford et al., 2009). Here, we use the equation of the line from Fig. 7 (Sect. 3.4),
where VOC fluxes were plotted against traffic density, to produce an emission estimate
using traffic data from Marylebone Road for the whole of 2006. As the parameterisation20

is based on a “snap-shot” of the total yearly fluxes, this method relies heavily on the
assumptions that (i) vehicle emissions account for the bulk of the VOC emissions within
the city, (ii) the observed traffic density is representative of traffic activity occurring
throughout the flux footprint and (iii) that there is little or no seasonal variation in the
emission of VOCs. This last assumption has been shown to be untrue for some of the25

measured VOC with the contribution from fugitive emissions and cold-start emissions
changing throughout the year, but no correction has been applied here.
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The traffic density data set was not continuous over the whole year; therefore, miss-
ing sections were filled by repeating data from the equivalent lane of traffic. Where
no equivalent data were available, data were taken from the previous year’s data set,
taking care to match both time of day and day of week. In total less than 20% of the
traffic data set was filled in this way.5

Emission estimates for each of the measured VOCs and CO are shown in Fig. 9
alongside estimates made by the NAEI for the same footprint area. For those VOCs
not explicitly included in the NAEI mapping activity, individual emission estimates were
made using the total VOC emission map (2006) multiplied by the VOC speciation for
2006 (NAEI Reference: 45321001/0/AO6069/NP).10

Measured flux estimates are larger than NAEI estimates in all cases, with the dis-
crepancy ranging from a few percent in the case of benzene to several orders of magni-
tude for both isoprene and acetonitrile. In general, emission estimates of the aromatic
compounds, toluene (5.28 t km−2 yr−1), benzene (1.20 t km−2 yr−1) and ethylbenzene
(2.2 t km−2 yr−1), compared most closely with the NAEI and on average were 1.4 times15

greater. Similarly, fluxes of CO (329 t km−2 yr−1) were very close to NAEI estimates
with less than 10% difference between the two. This is consistent with the close agree-
ment between the NAEI emissions figure for CO and airborne boundary layer budget
measurements (Polson et al., 2009), and the agreement between city-scale CO flux
measurements and the NAEI in Edinburgh (Famulari et al., 2009; Phillips et al., 2009a).20

The difference between flux derived estimates and NAEI was considerably larger
for the oxygenated VOCs, acetaldehyde (5.28 t km−2 yr−1), acetone (4.40 t km−2 yr−1)
and methanol (8.77 t km−2 yr−1), whose estimates differed by an average factor of 3.3.
These findings reflect results from a similar comparison made in Manchester by Lang-
ford et al. (2009) as part of the same CityFlux project. Flux estimates of isoprene25

(1.07 t km−2 yr−1) and acetonitrile (1.22 t km−2 yr−1) were many times larger than those
predicted by the NAEI. Emissions from the transport sector are not included in the
NAEI for either of these two compounds and emissions from nature are not speciated
within the inventory, therefore biogenic emissions, which are likely to contribute a sig-
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nificant fraction of the total isoprene emission, are not included in these NAEI emission
estimates.

4 Conclusions

Traffic within the city has been shown to be the primary source of VOC fluxes to the
atmosphere within central London, but its relative contribution varies from compound to5

compound and also temporally, with changes occurring from hour to hour and in some
cases even season to season. It is thought that the relative source strength also varies,
with vehicle counts just one of many variables, including air temperature (increased
emissions from cold starts vs. increased fugitive emissions), driving conditions (start-
stop driving in congested areas), vehicle speed (larger emissions at slower average10

vehicle speeds) and fleet composition (range of fuel/engine types).
The ambient air temperature has also been shown to play an important role in the

emission rates of certain VOCs. Isoprene concentrations in the city, for example, are
highly dependent on the ambient air temperature, with biogenic emissions, most prob-
ably originating from the large areas of urban parkland within the city, thought to con-15

tribute as much as 80% of the total isoprene concentrations recorded at the Maryle-
bone Road monitoring station at temperatures above 30◦C. Such information may be
significant in aiding our understanding of VOC precursor emissions associated with
photochemical pollution episodes

The close agreement between flux measurements and the NAEI for the aromatic20

VOCs and CO show the “bottom-up” inventory approach to be effective for air pollu-
tants whose emissions are dominated by one or two sources (e.g. road transport or
combustion) which are both well understood and accurately characterised within the
inventory. For oxygenated compounds such as acetaldehyde or acetone, emissions
can originate from a multitude of point and diffuse sources which are difficult to char-25

acterise within the inventory, and these appear to be grossly underestimated by the
official emission inventory. For many other VOCs, including acetonitrile, major sources
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have yet to be identified and included within the inventory making “top-down” flux mea-
surements essential.
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Table 1. Summary of VOC concentrations and fluxes measured at the Telecom Tower (London)
during October 2006.

Methanol Acetonitrile Acetaldehyde Acetone Isoprene Benzene Toluene Ethylbenzene
[m/z 33] [m/z 42] [m/z 45] [m/z 59] [m/z 69] [m/z 79] [m/z 93] [m/z 107]

Concentrations [ppbv]
Mean 19.4 0.33 3.57 1.57 0.17 0.14 1.85 0.16
Median 12.3 0.28 3.35 1.49 0.15 0.13 1.30 0.15
5th percentile 5.4 0.19 2.48 1.00 0.08 0.06 0.47 0.06
95th percentile 46.5 0.61 5.29 2.36 0.30 0.26 4.28 0.32
SD 13.7 0.17 0.95 0.47 0.07 0.07 1.26 0.11
N 1065 1072 1065 1067 1048 1067 1058 1027

Fluxes [mg m−2 h−1]
Mean 0.95 0.25 0.65 0.55 0.13 0.15 0.68 0.28
Median 0.94 0.17 0.60 0.50 0.13 0.15 0.62 0.25
5th percentile −0.98 −0.08 0.22 0.15 −0.10 −0.10 −0.32 −0.09
95th percentile 2.2 0.82 1.33 1.24 0.26 0.29 1.57 0.63
SD 0.93 0.27 0.38 0.40 0.10 0.11 0.57 0.21
N 512 594 637 641 518 601 589 606

SD: Standard deviation; N: number of 25-min observations.
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Table 2. Average daily VOC fluxes [mg m−2 h−1] measured over a number of urban areas,
including Manchester, UK, and Mexico City.

Location Methanol Acetaldehyde Acetone Benzene Toluene Ethylbenzene Source/Comments
[m/z 33] [m/z 45] [m/z 59] [m/z 79] [m/z 93] [m/z 107]

London (Autumn) 0.95 0.65 0.55 0.15 0.68 0.28 This study, DECcf
Manchester (Summer) 0.54 0.38 0.53 0.12 0.28 – Langford et al. (2009), DEC
Mexico City 1.04 – 0.4 – 0.83 0.47 Velasco et al. (2005), DECcf
Mexico City – – – 4.7±2.3 15.5±4.0 – Karl et al. (2009), airborne DEC(cf),

average midday fluxes
Mexico City 1.48 – – 0.40 3.06 1.33 Velasco et al. (2009), DECcf
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Table 3. Averaged VOC/CO ratios for both concentrations and fluxes.

Compound London US – Urban London
[ppbv/ppbv] [ppbv/ppbv] [mole m−2 h−1/mole m−2 h−1]

[VOC]/[CO] R2∗∗ [VOC]/[CO] R2 VOC/CO R2∗∗

Methanol 9.31×10−2 0.01 – – 8.12×10−2 0.42
Acetonitrile 1.97×10−3 0.85 – – 7.95×10−3 0.86
Acetaldehyde 2.33×10−2 0.74 – – 2.44×10−2 0.94
Acetone 1.00×10−2 0.71 – – 1.45×10−2 0.77
Isoprene 1.00×10−3 0.43 – – 3.85×10−3 0.64
Benzene 8.57×10−4 0.85 7.0×10−4∗ 0.61∗ 3.22×10−3 0.93
Toluene 9.79×10−3 0.05 2.7×10−3∗ 0.44∗ 9.27×10−3 0.90
Ethylbenzene 8.93×10−4 0.94 4.0×10−4∗ 0.30∗ 3.64×10−3 0.87

∗ Baker et al. (2008).
∗∗ Correlation between average diurnal plots.
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Figure 1. Fluxes of sensible heat (FH) measured at the Telecom Tower calculated using 
averaging periods of 1, 1.5, 2 and 2.5 hours and compared with fluxes calculated using the 
more standard 25 minute averaging period. 

Fig. 1. Fluxes of sensible heat (FH) measured at the Telecom Tower calculated using averaging
periods of 1, 1.5, 2 and 2.5 h and compared with fluxes calculated using the more standard
25 min averaging period.
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Figure 2. Average diurnal concentrations of volatile organic compounds measured between 
30th September and 30th October 2006. Open circles represent the total average (25 minute) 

Fig. 2. Average diurnal concentrations of volatile organic compounds measured between
30 September and 30 October 2006. Open circles represent the total average (25 min) con-
centrations, solid line represents the average weekend concentrations and the dashed line
represents average week-day values.
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concentrations, solid line represents the average weekend concentrations and the dashed line 
represents average week-day values. 
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Figure 3. Mixing ratios of volatile organic compounds obtained by PTR-MS and GC-FID 
from the Telecom Tower (London) during the REPARTEE-I campaign. 
 
 
 
 
 

 

Fig. 3. Mixing ratios of volatile organic compounds obtained by PTR-MS and GC-FID from the
Telecom Tower (London) during the REPARTEE-I campaign.

17327

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/17297/2009/acpd-9-17297-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/17297/2009/acpd-9-17297-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 17297–17333, 2009

Volatile organic
compounds above
central London, UK

B. Langford et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

  00   02   04   06   08   10   12   14   16   18   20   22   00

M
et

ha
no

l F
lu

x 
[m

g 
m

-2
 h

-1
]

0.0

0.5

1.0

1.5

2.0

Tr
af

fic
 D

en
si

ty
 [V

eh
ic

le
s/

ho
ur

]

0

50

100

150

200

250

300

350

400

  00   02   04   06   08   10   12   14   16   18   20   22   00

Ac
et

on
itr

ile
 F

lu
x 

[m
g 

m
-2

 h
-1

]

0.0

0.1

0.2

0.3

0

50

100

150

200

250

300

350

400

  00   02   04   06   08   10   12   14   16   18   20   22   00

Ac
et

on
e 

Fl
ux

 [m
g 

m
-2

 h
-1

]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

50

100

150

200

250

300

350

400

  00   02   04   06   08   10   12   14   16   18   20   22   00

Ac
et

al
de

hy
de

 F
lu

x 
[m

g 
m

-2
 h

-1
]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
af

fic
 D

en
si

ty
 [V

eh
ic

le
s/

ho
ur

]

0

50

100

150

200

250

300

350

400

  00   02   04   06   08   10   12   14   16   18   20   22   00

Is
op

re
ne

 F
lu

x 
[m

g 
m

-2
 h

-1
]

0.0

0.1

0.2

0.3

Tr
af

fic
 D

en
si

ty
 [V

eh
ic

le
s/

ho
ur

]

0

50

100

150

200

250

300

350

400

Total
Week days
Weekends
Traffic Density

  00   02   04   06   08   10   12   14   16   18   20   22   00

B
en

ze
ne

 F
lu

x 
[m

g 
m

-2
 h

-1
]

0.0

0.1

0.2

0.3

50

100

150

200

300

350

400

0

250

Hour [UTC]

  00   02   04   06   08   10   12   14   16   18   20   22   00

To
lu

en
e 

Fl
ux

 [m
g 

m
-2

 h
-1

]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
af

fic
 D

en
si

ty
 [V

eh
ic

le
s/

ho
ur

]

0

50

100

150

200

250

300

350

400

Hour [UTC]

  00   02   04   06   08   10   12   14   16   18   20   22   00

Et
hy

lb
en

ze
ne

 F
lu

x 
[m

g 
m

-2
 h

-1
]

0.0

0.2

0.4

0.6

0

50

100

150

200

250

300

350

400

A B

C D

E F

G H

 

Figure 4. Average diurnal flux profiles of volatile organic compound fluxes measured during 
the month of October, 2006, from the Telecom Tower, London (U.K). Solid bold line 
represents the total average (25 minute) fluxes, solid line denotes the average weekend fluxes, 
dashed line represents the average week-day fluxes and open circles show the traffic density. 
Greyed areas represent the measurement precision – see text. 

Fig. 4. Average diurnal flux profiles of volatile organic compound fluxes measured during the
month of October 2006, from the Telecom Tower, London (UK). Solid bold line represents
the total average (25 min) fluxes, solid line denotes the average weekend fluxes, dashed line
represents the average week-day fluxes and open circles show the traffic density. Greyed areas
represent the measurement precision – see text.
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Figure 5. Graph of acetone fluxes (running mean – solid line) measured during the 2nd (Panel 
A) and 4th (Panel B) week of the campaign relative to measured vehicle counts (dashed line) 
for central London (Marylebone Road). The top of the white layer shows the modelled 
boundary layer height. 
 
 
 

Fig. 5. Graph of acetone fluxes (running mean – solid line) measured during the 2nd (A) and
4th (B) week of the campaign relative to measured vehicle counts (dashed line) for central
London (Marylebone Road). The top of the white layer shows the modelled boundary layer
height.
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Figure 6. Ratios of VOC/CO for fluxes (mole m-2 h-1/mole m-2 h-1) and concentrations 
([ppbv]/[ppbv]) (25 minute averaged values) for the period of October 2006, measured from 
the Telecom Tower, London (U.K). Closed circles represent concentration ratios and open 
circles show flux ratios. 

Fig. 6. Ratios of VOC/CO for fluxes (mole m−2 h−1/mole m−2 h−1) and concentrations
([ppbv]/[ppbv]) (25 min averaged values) for the period of October 2006, measured from the
Telecom Tower, London (UK). Closed circles represent concentration ratios and open circles
show flux ratios.
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Figure 7. Scatter plots showing the correlations between VOC flux and measured traffic 
activity in London city centre (counts – Marylebone Road). Error bars show flux 
measurement precision, shaded areas show the 95% confidence bands and dashed lines shoe 
the 95% prediction bands. 

Fig. 7. Scatter plots showing the correlations between VOC flux and measured traffic activity in
London city centre (counts – Marylebone Road). Error bars show flux measurement precision,
shaded areas show the 95% confidence bands and dashed lines shoe the 95% prediction
bands.
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Figure 8. Temperature dependency of isoprene (closed circles) and iso-pentane (open circles) 
concentrations, calculated using 5 years of hydrocarbon data collected at the Marylebone 
Road automatic monitoring station and temperature data from the London weather centre. 
Error bars show the uncertainty of intercept values for temperature bands -5 – 0 oC, n = 114; 
0-5 oC, n = 3405; 5-10 oC, n = 9539; 10-15 oC, n = 12176; 15-20 oC, n = 9340; 20-25 oC, n = 
3171; 25-30 oC, n = 673; 30-35 oC, n = 73. 
 
 

Fig. 8. Temperature dependency of isoprene (closed circles) and iso-pentane (open circles)
concentrations, calculated using 5 years of hydrocarbon data collected at the Marylebone Road
automatic monitoring station and temperature data from the London weather centre. Error
bars show the uncertainty of intercept values for temperature bands −5–0◦C, n=114; 0–5◦C,
n=3405; 5–10◦C, n=9539; 10–15◦C, n=12176; 15–20◦C, n=9340; 20–25◦C, n=3171; 25–30◦C,
n=673; 30–35◦C, n=73.
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Figure 9. Measured emission estimates of VOCs and CO from the Telecom Tower flux 
footprint compared with emission estimates made by the NAEI for the same flux footprint 
area. NAEI estimates for isoprene and acetonitrile are too small to show up on this scale. 
Error bars show the standard deviation of averaged NAEI grid squares and the 95% prediction 
band for the flux parameterisation, where there are no error bars no estimate is given. 

Fig. 9. Measured emission estimates of VOCs and CO from the Telecom Tower flux footprint
compared with emission estimates made by the NAEI for the same flux footprint area. NAEI
estimates for isoprene and acetonitrile are too small to show up on this scale. Error bars show
the standard deviation of averaged NAEI grid squares and the 95% prediction band for the flux
parameterisation, where there are no error bars no estimate is given.
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