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Abstract

In this paper we investigate some basic properties of the multi-model ensemble sys-
tems, which can be deduced from a general characteristic of statistical distributions
of the ensemble members with the help of mathematical tools. In particular we show
how to find optimal linear combination of model results, which minimizes the mean5

square error both in the case of uncorrelated and correlated models. By proving basic
estimations we try to deduce general properties describing multi-model ensemble sys-
tems. We show also how mathematical formalism can be used for investigation of the
characteristics of such systems.

1 Introduction10

The use of ensemble techniques in atmospheric dispersion is becoming more and
more a popular research topic as well as application. A large number of modeling
communities opt for joining forces in a common multi-model effort to improve their
results, thus moving from the “deterministic” approach typical of the 80ies and 90ies to
the statistically based ensemble approach of the last decade.15

As described by Galmarini et al., 2004a there are several ways in which an en-
semble can be constructed: either as a group of model runs produced by different
modeling systems, or with one model and different input data or model settings. In
this work we will mainly focus on multi-model ensembles in which models in principle
have “nothing more” in common than the modeled case. Examples of these kind can20

be found in Stull et al. (1997), Krishnamurti et al. (2000), Dabbert and Miller (2000),
Ziehmann (2000), Galmarini et al. (2001, 2004a, 2004b, 2008), Delle Monache and
Stull (2003), Killip et al. (2003), Vijaya Kumar et al. (2003), Williford et al. (2003), McK-
een et al. (2004), Mutemi et al. (2004), Yun et al. (2004), Delle Monache et al. (2006a),
Mallet and Sportisse (2006), Van Loon et al. (2007), Vautard et al. (2008), Wang et25

al. (2008), Potempski et al. (2008). The multi-model ensemble approach constitutes
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yet the extreme application case of the ensemble techniques and therefore it is worth
attention.

Regardless of the methodology selected it is rather indisputably recognized that the
treatment of several model results produces an overall improvement of the quality of
the model simulations when compared with measurements. It is our opinion, however,5

that the technique deserves a yet renewed attention by the scientific community that
should attempt to define its boundaries of applicability by formal methods other than
through examples and applications. An attempt in this direction has been made, re-
cently, in Riccio et al. (2007) where the ensemble results of Galmarini et al. (2004b)
where reproduced in a Bayesian context and a formal explanation was presented.10

To date, several questions remain unanswered. Among them one that is constantly
present in the case of ensemble dispersion modeling relates to the way in which the en-
semble should be set up. In other words, which criteria should be adopted to guarantee
that the ensemble results will always be superior to those of any individual member?
Moreover, how should the members be selected?15

It is extremely interesting to note that all the multi-model ensembles presented in the
last decade or so in the literature, found their reasons for existence in the opportunity
of joining forces rather than in the analysis of the model characteristics, the specificity
and peculiarity of their results, and the way that might have affected the ensemble.
This interesting aspect of science sociology can be easily verified. The ensembles20

are made out of existing groups of scientists that get together offering their model re-
sults and having in return the added value of the ensemble. It feels good to be on
one side or the other of the ensemble mean since it does not make a difference as
long as the latter compares well with the measurements and no one is neither too
near nor too far from it1. No a priori investigation is known to have been conducted25

on the degree of kinship each model has in the constituted community, on the models
independence and complementarity. Models are not selected for a specific common

1 We take the liberty to be so critical since we have been responsible for setting up one of
these communities and we have the insider’s perspective.
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or exclusive characteristic they show, their results are just assumed to be appropri-
ate for that specific application. In this context, the ensemble practice relies on what
we could define phenotypical model distinction. Models differ for a limited number of
modules, characteristics, or simply for the data used. The differentiation of a common
model genotype occurs whenever the model is adopted or used in a specific modeling5

environment (modeling group or modeling application). In most of the cases the en-
semble practice brings together models that show no substantial differences and that
are available since they survived the natural selection of individual model evaluation.
Another important element motivating ensemble model practices and, in particular the
multi-model ensemble, is the relationship between multi-model ensemble result and10

political consensus. Examples in this sense are the last IPCC reports or to a much
smaller scale and different contest, the ENSEMBLE activity (Galmarini et al., 2004a).
The concurrence of different results, from different sources, to the determination of an
ensemble is an optimal method to represent all available scientific evidences (including
its variability) and an efficient way to drive political consensus around it.15

It should be clear that we are not at all against this process of natural aggregation of
scientists and we do know and understand that most of the time, realism, pragmatism
and practical constraints rule people’s actions. However, we feel like pointing out that
no investigation has ever been published on the fundamental elements that define an
ensemble of atmospheric transport and dispersion model results and on the theoretical20

requirements that define it. A clear and robust theory should guide the practice rather
than heuristic approaches. In this respect the ensemble generation and treatment
of weather forecast can be of inspiration to the atmospheric transport and dispersion
modelling community.

This paper is a humble attempt to give formulas and ways to identify a priori the25

ensemble characteristics and to try to give a formal definition to a number of aspects
that have never been discussed in the context of atmospheric dispersion modeling. The
main aim of this paper is to introduce some basic properties of multi-model ensemble
systems, which can be deduced from general characteristics of statistical distributions
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of the ensemble members with the help of mathematical analysis. We have identified
a precise number of questions that we wish to address in this work, namely:

1. Is the ensemble result always superior to that of individual members?

2. If one of the models has essentially a higher variance (and mean square error),
should we remove it from the ensemble? Under which conditions?5

3. How should an average of the ensemble be modified in order to extract an optimal
representation from all its members?

4. Is there a condition which guarantees that the variance (and mean square error)
of the ensemble mean is less than that of any individual model?

The paper is structured as follows: in the second section we present basic assump-10

tions, and then the analysis for uncorrelated multi-model ensemble follows. In the fourth
section we generalize the results to the case where the models should be considered
as correlated ones. In Sect. 5 we summarize multi-dimensional case. The last section
contains the conclusions. In the Appendix we include some technicalities related to
multi-dimensional case.15

An explanation is probably due on the title of this paper. The expression: “Est modus
in rebus” is a sentence from the Satire (1, 1, 106–107) by the Latin poet Quintus
Horatius Flaccus (aka Horace). The sentence should be translated as: “There is an
optimal condition in all things” which in the original text is followed by the verse: “There
are therefore precise boundaries beyond which one cannot find the right thing” (sunt20

certi denique fines | quos ultra citraque nequit consistere rectum). We think that these
expressions summarize quite well the central topic of this paper and we hope it will
result clearly in the proceedings.
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2 The starting point

Our work starts from the article of Van Loon et al., 2007 (VL2007) in which a simple
formula was presented to explain the advantage of the multi-model ensemble system
for long-term ozone simulations in comparison with a single model approach. The
formula proposed was obtained under the assumption that statistical distributions of5

model results and observations were identical and independent. More precisely, they
considered daily ozone maxima in summertime determined by seven models and ob-
servations made in a number of stations. After bias corrections, the Talagrand diagram
created from model results became flatter, which allowed them to conclude that the ac-
tual ozone concentration has similar statistical properties as the ensemble members.10

This justified the assumption that both simulated and observed concentrations could be
sampled randomly from identical distributions (i.e. their variances are all equal), which
in turn led to the following formula for the mean square error (msqe):

msqe = (1 +
1
m

)σ2 + b2 (1)

In (1) σ2 and b stand for the variance and ensemble bias, respectively, while m rep-15

resents the number of ensemble members. Expression (1) shows the advantage of
ensemble approach as it demonstrates that the msqe for the ensemble (after bias cor-
rection) is always less than that of any individual model (m=1).

In general the assumption on identical statistical distribution is obviously a simplifi-
cation as the models differ in terms of used parameterizations or numerical concept20

not mentioning application of distinct meteorological data. Also in the case consid-
ered in VL2007, the Talagrand diagram although improved after bias correction still
was not perfect. An analysis we conducted on 204 different realizations produced by
four atmospheric dispersion models applied to the ETEX-1 case (Girardi et al., 1998),
using ECMWF-Ensemble Prediction System (EPS) weather fields, demonstrates that25

the spreads of the results sometimes can be significantly different among the models
(see Fig. 1), and as a consequence also the variances.
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Regardless of these additional considerations, the simple formulation given in (1)
illustrates very well and quite synthetically the basic idea of the multi-model ensemble
approach. Starting from this, we would like to give a slightly deeper look at the anal-
ysis based on statistical characteristics of the mean square error and present more
general mathematical formalism. We will start our consideration with the simplest one-5

dimensional case i.e. when the simulation results can be described by a scalar-valued
random variable for each model (for instance when multi-model ensemble is applied
at a single point in space and time), then we will provide analogous formulas for the
multi-dimensional case i.e. when the problem is described by a vector-valued random
variable.10

First we introduce the notation and some relevant assumptions. The model results
we want to focus on are those of a prediction of the concentration levels of an unspec-
ified substance at a single point in space and time. Let us assume that by using a set
of m atmospheric dispersion models we obtain m simulations of the concentration evo-
lution at that point. We assume that at the same point measurements were collected15

for the same variable. Both model data and observations are characterized by some
estimation of variability or the error. For the models this can be done for example,
by perturbing model parameters and some input data using Monte Carlo technique or
through sensitivity analysis (e.g. Saltelli et al., 2006). The formal description of this sit-
uation implies that the values predicted by the models are represented by random vari-20

ables xj , j = 1,. . . ,m, where xj corresponds to data produced by model j ; each xj has
statistical distributions characterized by probability density functions (pdf) with bias and
variance, which we denote as bj and σ2

j , respectively. Analogously we also assume
that the observed values have some uncertainty characterized by random variable y
with a pdf, which is described by the variance σ2

o (we can treat the measurements as25

not biased). In this context we do not need to specify any particular form of the pdf
neither for the models nor for the observations. What we need to know however, are
biases and variances.
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An important aspect that requires clarification from the beginning is the level of di-
versity, independence, or correlation that we expect each of the m models of the en-
semble to exhibit as a priori condition. These concepts or definitions are most of the
time ignored, or given for granted thus leaving every reader with his own interpretation
and sometime misunderstanding. To avoid that, we define explicitly the conditions we5

want the ensemble members to satisfy. The first condition we could impose on the
members is that the individual models are independent2. In this sense we will need to
specify whether we intend independence of the systems or of the results. Two models
could be defined independent if they are structurally different, in other words if they
are based on different modeling approaches or philosophies or if they are based on10

different parameterization of physical processes. At the same time they might be con-
sidered independent (or partially so) because they calculate atmospheric dispersion
starting from meteorological fields originating from different weather models. In this
context we will not distinguish between these two instances and we will refer to both
cases indistinctively as independent models. More formally, the independence of two15

systems can be expressed as: two variables z1and z2 representing two models are in-
dependent whenever their joint probability can be calculated as a product of individual
ones i.e. p(z1, z2) = p(z1)p(z2). While this condition is automatically valid in the case
in which z1is the result of a model and z2 is a measurement, it is not difficult to imagine
that it will not apply necessarily to two models. In fact in this case the condition applies20

to all results extracted from the two pdfs and implies that there is not possibility of a
synergic contribution of the two models to the same result. In general this is a condi-
tion that is very difficult to satisfy for any atmospheric model and if it applies it will be
by all means too restrictive. We will therefore relax the independence condition, thus
requiring that the members of our ensemble are un-correlated. This is indeed a more25

realistic assumption to the extent that it applies to the expectation value rather than the
intrinsic properties of the pdf of each model. The un-correlation is in fact expressed

2This concept is most of the time confused with model difference which is just a qualitative
and unrealistic definition.
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as: E{z1z2}=E{ z1}E{ z2} where E{} is the expectation value. In other words there
is no need to know the pdf of the models which could be or not independent in this
case. The un-correlation includes the VL (2007) condition of independence of identi-
cal pdfs but also the condition of different pdfs or partly overlapping ones, as depicted
schematically in Fig. 2.5

Any consideration that will be derived for un-correlated models case, will then be
extended to the correlated-models case, thus producing as result that whole model
space will be covered. In fact by looking at Fig. 2 it is also clear that when we cover
the correlated and uncorrelated model spaces we will include automatically also the
dependent model class (dashed area) which is complementary to independent model10

class.

3 The case of an ensemble of uncorrelated model results

We assume that the results predicted by the m models can be represented in the
ensemble form. We define the ensemble representative as any combination of model
results in the form of an average or a generic linear combination of model results or15

median or any other percentile and that we denote by x. The ensemble value is also
supposed to be independent of measurements as all the members of the ensemble.

Finally we use standard notation E (z) and V (z) for the expectation operator and
variance one, respectively, of any random variable z.

Now we can introduce the bias (b) and mean square error (shortly written as S2) of20

the ensemble as:

b = E (x−y) andS2 = E (x − y)2 (2)

Under these assumptions the following formula holds:

S2 = V (x−y) + b2 (3)
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Formula (3) is a direct consequence of the definition of bias and msqe, namely:

S2 = E (x−y)2 = E (x−y)2−(E (x−y))2 + (E (x−y))2 = V (x-y) + b2 .

Using well known properties of the variance and under the assumed condition of the5

models independence of observations, from (3) we obtain:

S2 = V (x) + V (y) + b2 . (4)

At this stage we define x explicitly as a linear combination of ensemble members i.e.:

x =
∑
j

αj×j . (5)

It is also reasonable to assume that the coefficients αj are normalized i.e.10 ∑
j

αj=1 . (6)

Since the models are uncorrelated expression (4) leads to the following equation:

S2 =
∑
j

α2
j V (xj ) + V (y)+ b2 =

∑
j

α2
j σ

2
j + σ2

o +

∑
j

αjbj

2

(7)

Please note that formula (1) derived in VL2007, is a very special case of (7), as it can
be obtained from the latter by taking the mean (i.e. all αj=1/m) and assuming that all15

the variances to be equal, i.e.: σ2
j =σ

2
o=σ

2.
More in general formula (7) offers us the possibility of finding optimal coefficients αj so
that they minimize msqe. This can be transformed into the optimization problem:
Find α1, ..., αm such that:

S2(α1, ..., αm)= min
α1,...,αm

∑
j

α2
j σj

2 + σo
2 +

∑
j

αjbj

 2

 and
∑
j

αj = 1 (8)20
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We then proceed by removing the bias from the model results first (i.e. introducing new
variables:

∼
x
j
=xj −bj ) or by seeking for the solution of minimization problem in the form:

x′=
∑
j
αjxj−β=x−β, which introduces a new parameter β representing the bias of the

ensemble. In the second case we would need an additional equation for β, which can
be simply E (x′)=0 (i.e. we postulate that x′ is not biased), and leads to the following5

solution for β: β=
∑
j
αj bj . In one way or the other the bias can be easily removed.

Therefore from now on we will consider that this operation was done a priori and that
the models are all unbiased. The solution of problem (8) is equivalent to minimiz-

ing the following Lagrangian function: L(α1, ..., αm, λ)=
∑
j
α2
j σ

2
j + σ2

o+ λ

(
1−
∑
j
αj

)
,

which leads to linear system of equations:10

2σ2
j αj − λ = 0 for j=1,. . . ,m (9)∑

j

αj = 1

System (9) can be solved explicitly. By determining αj from the first m equations and
applying the normalization condition (6) we get:

αk =

1
σ2
k∑

j

1
σ2
j

for k=1,. . . ,m (10)15

As a matter of fact Eq. (10) corresponds to the minimization of the variance V (x), which
is widely used in a number of different applications for a large spectrum of problems,
like the optimal interpolation in meteorology or Kalman filter (Gandin, 1964; Talagrand
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1997; Kalnay, 2003 and references there). Formula (10) allows us to determine the
optimal variance of the ensemble as the variance of the optimal linear combination i.e.:

V (xopt) =
∑
j

α
2
j σ

2
j =

1∑
j

1
σ2
j

(11)

From (11), because of the minimization of the msqe, the optimal variance is always
less than any individual model variance. In fact for any k=1,. . . ,m we have:5

1

σ2
k

<
∑
j

1

σ2
j

,

which immediately implies that:

1∑
j

1
σ2
j

< σ2
k .

For the case where all the individual variances are equal, Eq. (11) leads to V (x)=σ2

m ,
corresponding to the formula used in VL2007.10

In summary formulas (10) and (11) can be applied to multi-model ensemble systems
to produce optimal linear combination of model results, which minimizes msqe. This
answers questions (a) and (c) set in the introduction.

In the remaining part of this section we try to demonstrate some generally valid prop-
erties of multi-model ensemble systems based on the formalism we have introduced15

and derived.
The first question that can be raised is about other than optimal linear combinations

of ensemble which would have the property that the variance of the combination is
always less than the variance of any individual models. This is not necessarily guaran-
teed by any linear combination as shown by the following example. Let us consider a20
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simple case with two models of variances σ2
1 , σ

2
2 such that σ2

2=pσ
2
1 for some p>1. The

combined variance is equal to:(
α2

1 + (1 − α1)2p
)
σ2

1

which is less then σ2
1 only if p<1+α1

1−α1
. For example for α1=α2=1/2 (i.e. the mean of

ensemble) this produces the condition p<3. This suggests that in case of models5

with different variances it would be better if the difference between them is not too
large, otherwise the combination described above would not produce an ensemble
variance smaller than that of the individual models. Things would not be much different
if we would assume that the linear combination coincides with the average. As shown
above, even in this case, there is a possibility that an individual model variance (and10

consequently the msqe) can be less than the variance of the ensemble mean. We
can therefore ask what conditions can guarantee that ensemble variance produced
from the ensemble mean (α1=. . .=αm=1/m) is always less than any individual model
variance? The condition which should be fulfilled is:

V (xm) =
σ2

1 + ... + σ2
m

m2
< σ2

1 ,15

where xm represents the ensemble mean and we assume that the models variances
are ordered such as σ2

1 ≤ σ2
2 ≤ ... ≤ σ2

m.
Then the following implication holds:

if
σ2
m

σ2
1

≤ m + 1 then V (xm) ≤ σ2
1 ≤ σ2

2 ≤ ... ≤ σ2
m. (12)

Condition (12) defines the relation between the maximal and minimal variances of en-20

semble datasets to assure that the variance of the ensemble mean is always not greater
than any individual model variances, which answers question (d) in the introduction.
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Proof: Indeed condition (12) implies that: (m−1)σ2
m

m2 ≤ (m2−1)σ2
1

m2 and thus:

(1 − 1
m2 )σ2

1 ≥ m−1
m2 σ2

m ≥ 1
m2 (σ2

2 + ... + σ2
m) which gives σ2

1 ≥ σ2
1+...+σ

2
m

m2 = V (xm). �

A question that follows from (12) is whether it is possible to define a priori limits of
variability of the ensemble variance. Since σ2

1≤σ
2
j ≤σ

2
m for j=1,. . . ,m we have 1

σ2
1

≥
1
σ2
j

≥ 1
σ2
m

and therefore the optimal ensemble variance will range as follows:5

σ2
1

m
≤ V (xopt) ≤

σ2
m

m
(13)

The estimation shows that in principle it would be better to aggregate models whose
individual variances are not very different (i.e. their relative ratio is close to 1). One
could therefore conclude that when one model has a much bigger variance than the
others, it is better to disregard it and exclude it from the ensemble. Unfortunately (or10

fortunately), this is not the case since the optimal variance obtained from m models is
always less than the one calculated from m−1 ensemble members as shown by the
following inequality:

Vm(xopt)=
1

m∑
j

1
σ2
j

<
1

m−1∑
j

1
σ2
j

= Vm−1(xopt).

The latter shows that σ2
m can be large but its contribution to the optimal representation15

will be very small (i.e. αm → 0 asσ2
m → ∞). In other words even a model (or models)

with a huge variance cannot deteriorate the ensemble result if an optimal combination
of model results is taken as ensemble representative. To corroborate this conclusion
we can see that by combining inequality (13) with the fact that the optimal variance is
always less than any individual model variance we get finally the following estimation:20
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σ2
1
m ≤ V (xopt) ≤ min{σ2

1 ,
σ2
m
m }.

This shows that adding “a bad model” (i.e. the model with big variance) does not nec-
essarily makes the estimation worse as msqe is bounded by the smallest individual
variance anyway – hence it answers question (b) in the introduction. By the way (13)
is also valid for the variance of the ensemble mean, but as shown above there is no5

guarantee that the individual model does not produce smaller msqe than the mean of
the ensemble.

On the other hand a big difference between highest and lowest variances indicates

that there is no agreement among the models in estimating uncertainty, so the ratio σ2
m

σ2
1

can be used as an indicator of the coherence of the multi-model ensemble simulations.10

If this ratio is close to 1 and the model predicted values are also close then there is a
very good agreement within the ensemble.

At the end of this section we would like to add some comments related to the other
possible way for obtaining weights (10). Namely this can be achieved by using the max-
imum likelihood principle (see for example Kalnay, 2003; Sasaki 1969; Parrish, Derber,15

1992; Lorenc, 1986). Let us assume that x represents the truth and that conditional

probability distributions are given by Gaussian pdf i.e.: fσj (xj |x)= 1√
2πσj

exp
(
− (xj−x)2

2σ2
j

)
for j=1, ..,m. Then the likelihood of x being the truth is given by the following formula:

L(x|x1, ..., xm)=
∏
j
fσj (xj |x)= 1(√

2π
)m

σ1...σm
exp

(
−
∑
j

(xj−x)2

2σ2
j

)
Hence the most likely value of x can be found by maximization of the likelihood20

function x→L(x|x1,. . . ,xm), which after taking logarithm and neglecting constant terms
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leads to the minimization of the so called cost function:

J(x)=1
2

[
(x−x1)2

σ2
1

+ ... + (x−xm)2

σ2
m

]
Then the solution of this problem is given by formulas (5) and (10).
The difference between this approach and preceding one is that here we assumed

explicitly Gaussian distribution, while previously we did not take any particular assump-5

tion on pdf. On the other hand the minimization of the cost function is with respect to x
not to parameters αj , hence it shows that for Gaussian pdf appropriate linear combina-
tion produces an optimal solution. It can be also mentioned that the same cost function
can be obtained using Bayesian interpretation (Edwards 1992; Kalnay, 2003).

4 What if the models are correlated?10

While the formulas of the optimal combination for independent models correspond to
the optimal interpolation in meteorology and therefore are generally well known, and
have been already applied in a number of completely different areas (anywhere where
independent measurements are considered), in this section we intend to extend the
results to a more complicated situation, where the models cannot be no longer treated15

as uncorrelated ones. In particular we would like to derive analogous formulas for the
optimal linear combination of multi-model results and variance. While this case might
be perceived as an academic exercise, it is however a more realistic representation
of the behavior of atmospheric dispersion models ensembles. We want to verify if
properties analogous to those derived for the uncorrelated multi-model ensemble can20

be also obtained for the correlated case.
Let us consider the problem of minimizing msqe under the assumption that the sta-

tistical distributions of model results are not necessarily uncorrelated. If the ensemble
is represented by a linear combination of the models results (according to the Eqs. 5–6)
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then the formula for the ensemble variance is as follows:

V (x) =
∑
i
α2
i σ

2
i +

∑
i ,j,i 6=j

αiαjCov(xi , xj ) =
∑
i ,j

αiαjCov(xi , xj ),

where Cov(xi , xj ) stands for the covariance of random variables xi and xj ; we use the

notation that σ2
i =Cov(xi , xi ), where indices i , j correspond to model numbers.

Then the minimization problem (8) can be reformulated as follows where, as in the5

previous case, we consider the unbiased case:
Find α1, ...αm such that:

S2(α1, ..., αm)= min
α1,...,αm

∑
i ,j

αiαjCov(xi , xj ) + σ2
o

 and
∑
j

αj = 1. (14)

This leads to the system of linear equations that can be written in a block form as:[
2K − 1
1 0

][
α

λ

]
=
[

0
1

]
10

where K is the covariance matrix of dimension m×m (its ij-th element is Cov(xi , xj ))
and α is a vector of coefficients (αi ). If we use notation (·, ·) for a dot product and define
vector l as l = [1, ...,1]T this gives the equations:

2Kα−λl=0
(α, l)=1

(15)

Actually this system solves the minimization problem for the quadratic form (Kα,α)15

with the normalization condition (6) – in fact V (x)=(Kα,α). This is also true for un-
correlated models case, in which the matrix K contains only variances as diagonal
elements i.e.: K=diag(σ2

1 , ..., σ
2
m).

To facilitate the treatment of the equations we take advantage of the fact that the co-
variance matrix is symmetric thus allowing us to apply the spectral theorem to write it20
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in the following form: K = USU∗ (Strang, 2003), where U is a unitary matrix (i.e. the
columns are orthonormal vectors, which means that they are mutually orthogonal and
have norm 1 i.e. || · ||2 = (·, ·) = 1; the same is true for the rows) and S is a diagonal
matrix containing eigenvalues of the matrix K. It should be added that the columns of U
are eigenvectors of the matrix K and U−1 = U∗. The asterisk usually denotes generally5

adjoint operator i.e. complex conjugate and transposition defined by the following rela-
tion: (Uu, v )=(u,U∗

v ) – since our case is real, U∗ = UT . The unitary matrix preserves
also dot product i.e. (Uu,Uv ) = (u, v ).

System (15) can be also solved explicitly – we can repeat a similar procedure as
used before to find that:10

α = λ
2K−1

l = λ
2US−1U∗

l, and

1 = (α , l) = λ
2 (K−1

l, l) = λ
2 (US−1U∗

l, l) = λ
2 (S−1U∗

l,U∗
l), hence

α =
US−1U∗

l

(S−1U∗
l,U∗

l)
=

K−1
l

(K−1l, l)
(16)

where we have assumed that there is no zero eigenvalue of the matrix K. It is known15

that the covariance matrix K is nonnegative (Feller, 1968), so this also implies that all
eigenvalues must be positive. In fact the case of zero eigenvalue would correspond
to the situation where the model has zero variance, which means that the non-biased
model is ideal (i.e. it does not produce errors).

If we denote the eigenvalues of K by s1,. . .,sm, then obviously the diagonal ma-20

trix S−1 contains their inverses i.e. 1/s1,. . .,1/sm (i.e. S−1=diag(1/s1,. . .,1/sm)). By
(u, v )S−1 we denote dot product generated by the operator S−1, which corresponds to
the appropriate norm ((u, v )S−1=(S−1

u, v ), ||u||2S−1 = (u,u)S−1 ; analogously for K−1).
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Then using formula (16) we can calculate the optimal variance:

V (xopt) = (Kα ,α ) =
(KK−1

l,K−1
l)

(K−1l, l)2
=

1

(K−1l, l)
=

1

||l||2
K−1

or

V (xopt) = (USU∗α ,α ) =
1

||U∗
l||4

S−1

(USU∗US−1U∗l,US−1U∗l) =
1

||U∗
l||4

S−1

(U∗l,S−1U∗l),

which reduces to:5

V (xopt) =
1

||U∗
l||2

S−1

=
1

||l||2
K−1

(17)

If the matrix K is diagonal (i.e. the models are uncorrelated) formula (17) becomes (11)
(as well as formulas (10) and (16) become identical). Please note that the denominator
is simply the sum over the all elements of the matrix K−1.
Using the fact that l=

∑
j
ej , where ej is the j -th versor (ej=[0, ...,1, ...0]T with 1 only on10

the j -th position) the denominator of Eq. (17) can be rewritten in terms of the elements
of the matrix U = (ui j ) as follows:

||U∗l||2
S−1 =

∑
j

1
sj

(∑
i

ui j

)2

=
∑
j

1
sj

∑
i ,k

ui jukj =
∑
j

1
sj

(1 +
∑
i , k
i 6= k

ui jukj ) .

In comparison with the formula (11) an additional term appears (as an effect of cor-
relation), while eigenvalues sj play the role of variances. Thus in the remaining part15

of this section we investigate properties of multi-model ensemble similarly as for un-
correlated models case to verify whether already obtained results can be extended by
transforming the variance into the eigenvalues.
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First let us assume that all the eigenvalues of the covariance matrix are equal
(s1=. . .=sm=s), which for uncorrelated models case corresponds to the situation with
all the variances being the same. From formula (17) we can easily conclude that:

V (xopt) =
1

1
s ||U

∗
l||2

=
1

1
s

∑
i

∑
j

(U∗
ej,U

∗
ei)

=
s∑

i

∑
j

(ej,ei)
=

s
m
,

which is in accordance with the uncorrelated models case (of course all the weights αk5

will be all equal).
Consider now the case of the ensemble mean (i.e. α= 1

m l). The implication analo-
gous to (12) can be formulated as follows:

If sm
s1

≤ m, then V (xm) ≤ s1 ≤ ... ≤ sm,10

where xm represents the mean of ensemble (we assume that eigenvalues are ordered
such that s1 ≤ ... ≤ sm).

Proof. This can be easily verified because of:

V (xm) = 1
m2 (USU∗

l, l) = 1
m2 ||U

∗
l||2S = 1

m2

∑
j
sj

(∑
i
ui j

)2

≤ sm
m2

∑
j

(∑
i
ui j

)2

= sm
m2 ||U

∗
l||2 =

= sm
m2 ||l||

2 = sm
m ≤ s1

15

as ||l||2=m �

In comparison with uncorrelated models case we see that the condition above is slightly

more restrictive (sms1
≤ m versus σ2

m

σ2
1

≤ m + 1), which is the effect of taking into account

correlation terms. This condition cannot be changed to sm
s1

≤ m + 1 as the following
example shows. Consider the covariance matrix:20
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K =
[

1 1
2 + ε

1
2 + ε 2

]
, where ε >0 is a parameter. Then one can calculate that:

V (xm) = 1 + ε
2 > 1 > s1 =

3−
√

1+4( 1
2+ε)2

2 , s2
s1

=
3+
√

1+4( 1
2+ε)2

3−
√

1+4( 1
2+ε)2

. For

ε ≤
√

5−2
4 we have 2 < s2

s1
≤ 3 i.e. sm

s1
≤ m + 1 but the condition sm

s1
≤ m is not satisfied5

(by the way V (xopt) ≤ 1).

Finally also in the correlated case general bounds for the optimal variance can be
obtained. Namely the following estimations hold:

s1

m
≤ V (x)opt ≤

sm
m

10

Proof. ||U∗
l||2S−1=

∑
j

1
sj

(∑
i
ui j

)2

≤ 1
s1

∑
j

(∑
i
ui j

)2

= 1
s1
||U∗

l||2 = 1
s1
||l||2 = m

s1
,

and analogously:
∑
j

1
sj

(∑
i
ui j

)2

≥ 1
sm

∑
j

(∑
i
ui j

)2

= m
sm

. �

Hence we get equivalent estimations for the optimal variance as for uncorrelated15

models case.
As optimal variance minimizes quadratic form (Kα ,α ) for any vector α satisfying

formula (6) then by taking versor e1 as vector α we get: V (xopt) ≤ σ2
1 , where σ2

1 is the
smallest model variance.

In such a way we can conclude that the following estimations for the optimal variance20

are true:

s1

m
≤ V (xopt) ≤ min{σ2

1 ,
sm
m

}.
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In summary we can say that we have obtained similar results as for uncorrelated mod-
els case but the variances of models have been replaced by the eigenvalues of the
covariance matrix K.

An interesting point relates to the fact that taking into account correlation one may
improve msqe. As an example let us consider the following covariance matrix:5

K =
[

1 a
a p2

]
, (p>a≥0) then V corr

opt = p2−a2

p2−2a+1
, while for a=0 (i.e. uncorrelated models

case) we have: V uncor
opt = p2

1+p2 . It can be easily checked that V corr
opt <V uncor

opt for a ∈ ( 2p2

1+p2 , p).

In other words the inclusion of the correlation term has improved msqe. This example10

shows also that the ensemble consisting of correlated models in some very specific
situations can be more accurate than the ensemble (with the same pdfs) created from
uncorrelated models.

At the end of this section we want to add that there is another way to obtain the for-
mulas for the solution of the minimization problem formula (14), namely, by applying the15

spectral decomposition of the matrix K (Strang, 2003). This means that by considering
K as a linear operator we have:

Kα =
∑
j
sj (ϕj,α )ϕj, where φj are eigenvectors of matrix K (hence φj=Uej) form-

ing the orthonormal basis. Using the same method as previously one can obtain the
formula equivalent to (17):20

V (xopt) =
1∑

j

(ϕj ,l)2

sj
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5 Summary of multi-dimensional case

In this section we provide a summary on multi-dimensional case – all the technical
details are given in the Appendix.

By multi-dimensional (or multivariate in general) case we consider the situation when
the results of the simulations can be described by a vector-valued random variable.5

Typically this is the situation when we have a simulation domain with a number of
spatial-temporal points and we want to include correlation between them. In fact the
main difference between one- and multi-dimensional cases lies in taking into consider-
ation correlation among different points. We are therefore adding an additional level of
complexity to the cases analysed so far.10

Analogously to the one-dimensional case we take random vector X as the rep-
resentative of the ensemble defined as a linear combination of random vectors
Xj=[x1j , ..., xnj ]

T representing multi-dimensional distribution for the model j :

X=[x1, ..., xn]T = [
m∑
j=1

α1jx1j , ...,
m∑
j=1

αnjxnj ]
T , (18)

where m is the number of models and n denotes the dimension of the random vectors15

(for example number of points in some area). As previously we assume that the weights
αi j are normalized i.e.

m∑
j=1

αi j = 1 for each i = 1, . . ., n. (19)

We assume that the models are independent of the observations represented by ran-
dom vector Y =[y1, ..., yn]T . We consider non-biased case as a similar procedure as for20

one-dimensional case can be also applied.
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The first question is how to extend the definition of the square error. It seems that a
natural way is the following one:

S (1)
2 =

n∑
i=1

E (xi − yi )
2 (20)

The mean square error can be expressed then as the average over all points i.e.:
msqe= S (1)

2 /n.5

First we assume that the models are mutually uncorrelated.
Then the problem of finding optimal coefficients which minimizes (20) leads to the

minimization of the following Lagrange function (we can omit observation term):

L(α11, ..., α1m, ..., αn1, ..., αnm, λ1, ..., λn) =
∑
i

∑
j

αi jσ
2
i j +
∑
i

λi

1 −
∑
j

αi j


It can be easily seen that in such a way we obtain n separated systems of linear10

equations of the form (9) and therefore the formulas (10) and (11) can be applied
for each point separately (for i = 1, .., n).

However, if we want to include also correlations between points (i.e. to consider the
situation when the distributions x1j , ..., xnj are correlated for any j ), it seems that we

should use the expression E{(X−Y )(X−Y )T } representing the covariance matrix. This15

upon the assumptions on independence between models and measurements leads to
E{XX

T } i.e. n×n matrix:

Cov(X) = E{XX
T

} =


∑
j
α1jα1jE{x1jx1j} ..........

∑
j
α1jαnjE{x1jxnj}

................................................................................∑
j
αnjα1jE{xnjx1j} ..........

∑
j
αnjαnjE{xnjxnj}

 (21)
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Then as a generalization of formula (20) we use the following formula:

S (2)
2 =

n∑
k=1

n∑
l=1

m∑
j=1

αkjαl jE{xkjxl j} +
∑
k,l

E{ykyl } = V (X) + V (Y ), (22)

which corresponds to taking into account all the elements of the matrix (21). By msqe
we put the average over all points i.e.: msqe= S (2)

2 /n.We split the formula into two

terms: the first one related to the covariance matrix for the models (V (X)) and the5

second one to the observations (V (Y )). It can be easily noticed that the previous
formula (20) corresponds to taking into account only diagonal elements of the matrix
(21). The matrix (21) should be distinguished from the covariance matrix introduced
in Sect. 4. The latter one describes correlation between different models at one point
while (21) defines the correlation between number of points for a linear combination of10

model results.
It should be also added that due to well known property of covariance (Feller, 1968):

E{xixj} ≤
√
E{x2

i }E{x2
j } ≤

1
2

(
{E{x2

i } + E{x2
j }
)

,

saying that off-diagonal elements are bounded by diagonal ones, formula (20) can be
used to estimate upper bound of (22).15

An extension to the correlated case is straightforward – we generalize formula (22) by
including also terms related to the correlations between the models apart from already
considered the correlations between the points. Then by the generalized mean square
error we put msqe= S (2)

2 /n, where S (2)
2 is expressed as follows:

S (2)
2 =

n∑
k=1

n∑
l=1

m∑
j=1

m∑
i=1

αkiαl jE{xkixl j} + V (Y ) = V (X) + V (Y ) (23)20

It can be observed that in both cases (22, 23) the first term of the formulas can be
expressed as: V (X) = (Kα,α), where:
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– for uncorrelated case K is a block diagonal matrix: K = diag (C1, ...,Cm),

where Cj =

E{x1jx1j}......E{x1jxnj}
.....................................
E{xnjx1j}......E{xnjxnj}

,

5

– for correlated case K=

C11.............C1m
..........................
Cm1.............Cmm



where Cij=

E{x1ix1j}......E{x1ixnj}
.....................................
E{xnix1j}......E{xnixnj}

,

and α = [α1, ...,αm]T , αj = [α1j , ..., αnj ]
T .

Using this notation we can obtain the formulas for optimal weights and covariance10

matrix shown in Table 1.
For both cases we can obtain similar as in one-dimensional case ensemble proper-

ties, namely:

1. minσ(K)
m ≤ V (Xopt)

n ≤ maxσ(K)
m ,

15

where by minσ(K) and maxσ(K) we denote minimal and maximal elements of the
spectrum σ(K) of the covariance matrix K, respectively i.e. the minimal and maximal
eigenvalues.

2.
V (Xopt)

n ≤ min
j

s(j )
n = min

j
max

i
s(j )
i ,
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where s(j )
i , i=1,. . . ,n; j=1,. . . ,m are the eigenvalues of K according to the block notation

and put in the increasing order i.e.: s(j )
i ≤ s(j )

i+1 for any i , j .

3. If maxσ(K)
minσ(K) ≤ m, then V (Xm)

n ≤ minσ(K), where σ(K) is the spectrum of the matrix K

and Xm is the ensemble mean.5

We can see that we have analogous a priori estimations as in one dimensional case
– optimal msqe is always bounded by minimal and maximal eigenvalues divided by
the number of models. Similarly optimal msqe is always bounded by the maximal
eigenvalue of the best individual model. And finally the ratio between highest and
lowest eigenvalues can be used to find the condition when msqe for the ensemble10

mean is less than the one produced by any individual model.

6 Conclusions

In this study, by means of analytical formulation we have tried to fix some aspects never
presented before, regarding the relationship between statistical behaviour of ensem-
ble members and related expectations of the ensemble. The considerations presented15

here have been deduced having in mind the well known and extensively applied prac-
tice of ensemble dispersion modeling.

The results obtained show the importance of the knowledge of bias and variance
of the statistical distributions for the models used in multi-model ensemble systems
and how useful this information can be in the definition of the ensemble characteristics20

and in guaranteeing that the behaviour of the ensemble will fulfill the expectations.
The results apply to both categories of correlated and uncorrelated models (or model
results) filling a whole model space and can be summarized as follows:

– By choosing appropriate combination of model results we can find an optimal rep-
resentative of the ensemble that after bias correction minimizes the mean square25
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error. This is equivalent to the minimization of the quadratic form defined by the
covariance matrix with normalization condition. In fact the mean square error is
expressed in terms of quadratic form determined by the covariance matrix.

– Some general a priori estimations for the optimal variance and msqe have been
obtained, which show that multi-model ensemble has clear advantages in com-5

parison to one model approach. This is expressed by the analytical formula
demonstrating that msqe is bounded by the maximal variance or eigenvalue of
the covariance matrix divided by the number of models. Similarly the lower bound
of msqe is determined by the minimal variance or eigenvalue also divided by the
number of models.10

– We have devised the condition under which the mean of the ensemble still gives
more accurate results in the sense of the minimization of msqe, than any individ-
ual model. This condition is expressed in the terms of the ratio between highest
and lowest variances or eigenvalues of the appropriate covariance matrix. When
the condition is not fulfilled, one can consider removing the responsible member15

from the ensemble. However in the sense of msqe, the ensemble results in prin-
ciple cannot be deteriorated even by a model with a big variance if the optimal
combination of models results is taken as a representative of the ensemble. It
should be considered that eliminating a result from an ensemble is not as easy
practice (especially for predictions) since there is no way to recognize when a sin-20

gle model is wrong or the ensemble is wrong or the case has a low predictability.

– If there is nothing wrong with any model then the ratio between the highest and
lowest variances or eigenvalues can be considered as an indicator of the coher-
ence of the multi-model ensemble. The biggest the ratio is, the highest disagree-
ment among the models in estimating the uncertainty. In particular when this25

ratio is greater than the number of models this indicates that the ensemble mean
may be worse than the best single models and special attention should be paid
to take optimal representative of the ensemble. In this sense there is a relation
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between the coherence of multi-model ensemble and the applicability of the en-
semble mean, and this relation can be expressed simply as the ratio between the
biggest and smallest eigenvalues of the appropriate covariance matrix. Thus the
knowledge of the maximal and minimum eigenvalues has also practical meaning.
When there is no big difference between them one can guarantee good coherence5

among models.

– We have also demonstrated that the same properties of multi-model ensemble
are valid in the most general case in which both correlations between the models
and between the points are taken into account.

Although it is out of the scope of the paper, we would like to add that it can be eas-10

ily proved that the same formulas for the optimal covariance can also be applied in
Kalman filter procedure to find optimal solution both for the gain matrix and ensemble
representation at a time. This means that instead of using ensemble mean it is better to
take optimal combination of models results accordingly to formulas shown in the paper.

The analysis produced points quite clearly toward the fact that one should acquire15

both the bias and variance of each ensemble member (see also Delle Monache et
al., 2006b, Pagowski et al., 2006). To estimate the variance three approaches can be
used:

1. Some of the models have built-in features to calculate variability of their results
(e.g. Dabbert and Miller, 2000; Draxler, 2001; Stohl, 2005). It can be done by20

incorporating a kind of Monte Carlo simulations into the models for example by
perturbing some crucial parameters.

2. More advanced approaches could be based by using meteorological data from
Ensemble Prediction Systems (EPS), for example the ones available at ECMWF
or NCEP.25
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3. A general approach based on sensitivity analysis in principle can be also applied
(e.g. Saltelli, 2002; Hanson and Hemez, 2004; Saltelli et al., 2006; Campolongo
et al., 2007)

All these approaches may not cover all possibly varying aspects of the model. However
they are existing and applicable methods that can be used to produce yet useful infor-5

mation on the model variance. Of course the estimation of the variance can make sim-
ulation times much longer, in particular if it is to be based on EPS data. Bias correction
methods have been already applied, in particular in air quality problems where there is
enough amount of measurement data (Delle Monache et al., 2006, Delle Monache et
al., 2008, Wilczak et al., 2006; Zupanski et al., 2007).10

The estimation of correlation between the models can be based on various statistical
tests (Lehman and Romano, 2008) for example, using Pearson correlation coefficient
(see Rodgers and Nicewander, 1988 for an overview of different approaches). It may
require however representative statistical material, which can be acquired from long
term studies.15

It should be also added that if individual models pdfs are known we can combine
them using optimal weights to calculate ensemble pdf. This is in accordance with
the general concept of applying the ensemble approach (Dabbert and Miller, 2000;
Galmarini et al., 2004; Stull et al., 1997; Riccio et al., 2007; Potempski et al., 2009)
to perform predictions in order to rely on stochastic paradigm rather than deterministic20

one.
Although mathematical framework used in the paper is not very sophisticated it

shows how some basic results can be obtained. We wanted also to demonstrate that a
formal mathematical approach can be useful to obtain general properties of the multi-
model ensemble systems. It should be also added that a similar kind of analysis can be25

made for other than msqe metrics like the maximum norm. Obviously the estimations
we presented can be applied to any multi-model ensemble system, not necessarily
related to atmospheric dispersion models.

The real open issue still remains however, namely the connection between ensemble
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coherence or agreement among the models which as we have seen can be predicted
quite nicely with the analysis above, and uncertainty dealing with the relationship be-
tween the ensemble and observational data. The two are not coinciding concepts, and
they are extremely relevant especially in the case of atmospheric dispersion ensemble
forecast. In some cases the confusion between the two and an excessive confidence in5

the ensemble coherence as proxy of good result can lead to unwanted consequences,
nicely summarized already in 1568 by P. Bruegel The Elder in the painting presented
in Fig. 3. We will try to address also this aspect in the formal way in the future.

We are sure that the analysis presented here may result obvious to statisticians; we
are not so sure the same effect will be produced to the eyes of atmospheric modellers10

who are extensive users of ensemble techniques.
Theoretical framing of practices is what we feel mostly needed at this stage of devel-

opment of the ensemble dispersion technique and activities.

Appendix A
15

Details on multi-dimensional case

A1 Uncorrelated case

First we consider the problem of finding coefficients αi j which minimize expression
formula (22) similarly as in one-dimensional case. This leads to the minimization of the
following Lagrange function (observation term can be omitted):20

L(α11, ..., α1m, ..., αn1, ..., αnm, λ1, ..., λn)=
∑
k,l

Covkl (X)+
∑
i

λi

1−
∑
j

αi j

, (A1)
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where Covkl (X) denotes (k, l ) element of the covariance matrix (21) i.e.:

Covkl (X)=
m∑
j=1

αkjαl jE{xkjxl j}

Then after differentiating formula (A1) with respect to all coefficients λi and αrs we get
the normalization formula (19) and:

∂L
∂αrs

=2
n∑

k=1

αksE{xrsxks}−λr for r=1, .., n and s=1, ..,m, (A2)5

where the first index shows point number and the second one model number.
This system is not separable for each point but it can be written in a more convenient

way, namely by grouping Eq. (A2) for each model we get:

2C1α1 − λ=0
2C2α2 − λ=0
........................
2Cmαm − λ=0
m∑
j=1

αj=l

(A3)

where αj=[α1j , ..., αnj ]
T for j=1,. . . ,m, λ=[λ1, ..., λn]T , l=[1, ...,1]T and Cj is the covari-10

ance matrix of n×n dimension for the model j :

Cj=

E{x1jx1j}......E{x1jxnj}
.....................................
E{xnjx1j}......E{xnjxnj}

 (A4)

In fact the system (A3) solves the minimization problem for the quadratic form (Kα ,α )
with the condition (19) (analogous to formula (6)), where K is a block diagonal matrix:
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K=diag(C1, ...,Cm) and α=[α1, ...,αm]T . One can note that V (X) = (Kα,α), and this
relation justifies the generalized formula of msqe (22) as it is natural extension of one-
dimensional case.

From formula (A3) we can observe that the equations are coupled only via La-
grangian multipliers and normalization equation. Then again we can find explicit for-5

mulas for the optimal weights – namely as:

αj=
1
2

C−1
j λ for j=1,. . . ,m, from the last equation of (A3) we haveλ=2

 m∑
j=1

C−1
j

−1

l,

hence αk=C−1
k

 m∑
j=1

C−1
j

−1

l, fork=1, ..,m (A5)

This formula is a natural extension of formula (10) for multi-dimensional case.
In order to obtain the optimal formula for the first term of the square error we rewrite10

it in the following form:

V (X)=
m∑
j=1

(
Cjαj,αj

)
(A6)

Then by applying (A5) we get:

m∑
j=1

(
Cjαj, αj

)
=

m∑
j=1

(
CjC

−1
j Cl,C−1

j Cl
)
=

Cl,
m∑
j=1

C−1
j Cl

 ,where (A7)

C=

 m∑
j=1

C−1
j

−1

15
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which leads finally to the following formula:

V (Xopt)=(Cl, l)=


 m∑

j=1

C−1
j

−1

l, l

 (A8)

Hence we have obtained similar expression as for correlated models case (17), how-
ever with different covariance matrix. The matrix C defined by formula (A7) can be
considered as the optimal covariance matrix.5

Before starting examination of the properties of the optimal msqe we would like to
add that formula (A7) has also Bayesian interpretation. Namely, if we consider for
example case m=2 and assume that X1, X2 have Gaussian pdfs provided that Xt
is the truth (i.e. X1|X t∼N(Xt,C1) and X2|Xt∼N(Xt,C2)), then the pdf of Xt| X1, X2 is
also Gaussian of the distribution N(X ,C), where C−1=C1

−1+C2
−1 (Riccio, Giunta, Gal-10

marini, 2007).
We start investigating the properties of the optimal combination of model results from

the simple situation where all sub-matrices Cj are the same (i.e. all the models have
the same distributions). Hence Cj=C′ for all j , and from spectral representation we get:

C=

(∑
j

C−1
j

)−1

=(mC′−1)−1= 1
mC′ and (Cl, l)= 1

m (C′
l, l)= 1

m (SU∗
l,U∗

l)=
||U∗

l||2S
m15

If we denote eigenvalues of C′ as s1 ≤ ... ≤ sn then by applying the same technique

as in Sect. 3 (note that ||l||2=n) we get similar estimations: s1
m ≤ V (X)

n ≤ sn
m .

Let us consider now the general case and use the spectral representation for each
Cj: Cj=Uj SjU

∗
j , where Uj and Sj are the unitary and diagonal matrices, respectively. For

the sake of convenience we put eigenvalues of Cj (i.e. elements of Sj) in the increasing20
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order i.e.: s(j )
i ≤ s(j )

i+1 for any j .
The following estimations hold:

minσ(K)
m

=
min
j

s(j )
1

m
≤

V (Xopt)

n
≤

max
j

s(j )
n

m
=

max σ(K)
m

,

where by min σ(K) and max σ(K) we denote minimal and maximal elements of the
spectrum σ(K) of the covariance matrix K = diag(C1, ...,Cm) i.e. the minimal and max-5

imal eigenvalues.

Proof. Let put w=Cl=

∑
j

C−1
j

−1

l,

then (denoting by (v )i the i -th element of any vector v ) we have:

(Cl, l)=(w ,
∑
j

C−1
j w )=

∑
j

(C−1
j w ,w )=

∑
j

(S−1
j U∗

jw ,U∗
jw )=

∑
j

∑
i

1

s(j )
i

(U∗
jw )2

i ≥

∑
j

1

s(j )
n

||U∗
jw ||2 =

∑
j

1

s(j )
n

||w ||2=
∑
j

1

s(j )
n

||Cl||210

Hence by Schwarz inequality:∑
j

1

s(j )
n

||Cl||2 ≤ (Cl, l) ≤ ||Cl||||l||, so ||Cl|| ≤
||l||∑
j

1

s(j )
n

,

and finally we get the following estimation:
V (Xopt)

n = (Cl,l)
n ≤ ||Cl||||l||

n ≤ 1∑
j

1

s
(j )
n

≤
max

j
s(j )
n

m .

To prove lower bound for optimal msqe we proceed in the following way – for any
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α=[α1, ...,αm]T we have:∑
j

(Cjαj,αj)=
∑
j

(SjU
∗
jαj,U∗

jαj)=
∑
j

∑
i

s(j )
i (U∗

jαj)2
i ≥
∑
j

s(j )
1 ||αj ||2 ≥ min

j
s(j )

1 ||α ||2

where the vector α fulfils normalization condition (19). In order to find lower bound

we minimize the norm i.e. ||α ||2=
n∑

i=1

m∑
j=1

α2
i j . Taking into account condition (19) this can

be done by minimizing inner sum separately for each i=1, .., n. It can be easily found5

that the minimum is reached at point αi j=
1
m for any i , j ; which leads to the following

inequality: ||α ||2 ≥
n∑

i=1

m∑
j=1

1
m2=

n
m , true for any vector α satisfying formula (19). Hence

finally we obtain:

(Cl, l)=min
α

(Kα ,α )=min
α

∑
j

(Cjαj,αj) ≥
n
m

min
j

s(j )
1 , which gives :

V (Xopt)

n
≥

min
j

s(j )
1

m
. �10

In such a way we have shown that also for multi-dimensional case the same estima-
tion is valid as for one-dimensional case.

The other generally valid estimation is:
V (Xopt)

n ≤ min
j

s(j )
n = min

j
max

i
s(j )
i .

Proof. This can be proved in the following way: as the weights α are chosen to
minimize lagrangian function then for any j the following inequality holds:15

(Cl, l)=min
α

(Kα,α) ≤ (Cjl, l)=
∑
i
s(j )
i (U∗

l)2
i ≤ max

i
s(j )
i ||l||2=nmax

i
s(j )
i , so taking mini-

mum over j we get the estimation.
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Combining this with previous estimation we have:
V (Xopt)

n ≤ min

(
min
j

s(j )
n ,

max
j

s(j )
n

m

)
,

saying that even if one model produces high eigenvalue msqe is still bounded by the
maximal eigenvalue obtained from the best single model.

Let us finally consider the case where the mean is taken as the representative
of the ensemble, which means that for any i , j , K we have: αi j=αik=

1
m , hence5

α ′=α1=...=αm=[ 1
m , ...., 1

m ]T (so ||α ′||2= n
m2 ). Then the following implication holds:

If maxσ(K)
minσ(K) =

max
j

s(j )
n

min
j

s(j )
1

≤ m, then V (Xm)
n ≤ min

j
s(j )

1 , where Xm is the ensemble mean.

Proof. This is a simple consequence of the following estimation:

V (Xm) =
∑
j

(Cjα
′,α ′) =

∑
j

(SjU
∗
jα

′,U∗
jα

′) =
∑
j

∑
i

s(j )
i (U∗

jα
′)2
i ≤
∑
j

s(j )
n ||U∗

jα
′||2 ≤

≤ mmax
j

s(j )
n ||α ′||2 = n

m max
j

s(j )
n . �10

Hence as for one-dimensional case the condition that ensemble mean produces
lower msqe than any single model can be expressed by the ratio between highest and
lowest eingevalues of the covariance matrix.

Finally we can add that some other estimations can be proved in a similar way like

the following one: If
∑
j
s(j )
n ≤ m2∑

j
s(j )

1 , then V (Xm)
n ≤

∑
j
s(j )

1 , where Xm is the ensemble15

mean.

A2 Correlated case

For correlated case in order to simplify calculations we will use block matrix notation.
Let Cij (i,j=1,. . .,m) be n×n matrix expressing dependence between two models i and
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j at all n points (strictly – how model i is correlated to model j ):

Cij=

E {x1ix1j}......E {x1ixnj}
.....................................
E {xnix1j}......E {xnixnj}

 (A9)

Obviously we have CT
ii=Cii and CT

ij=Cji for j 6=i . Please note that strictly speaking the
matrix Cij (except of Cii) should not be treated as the covariance (or correlation) one
(as it is not symmetric). In fact we ought to speak rather about the pair Cij and Cji as5

these both matrices describe fully mutual correlation between two models i and j .
If we introduce the matrix K of the dimension mn×mn as a block matrix:

K=

C11.............C1m
..........................
Cm1.............Cmm

 (A10)

and the vectors: αj=[α1j , ..., αnj ]
T , for j=1,. . . ,m, α=[α1, ...,αm]T (of dimension mn)

then for the first term of formula (23) we get:10

V (X)=(Kα ,α )=
m∑
j=1

m∑
i=1

(Cijα j ,α i ) (A11)

The matrix K fully describes two types of correlations: between points and models, so
it generalizes previously used covariance matrices – it has all the required properties.

First of all due to the mentioned above properties of matrices Cij the matrix K is
symmetric.15

Secondly the matrix K is also positive semi-definite i.e. (Kv ,v ) ≥ 0 for any v .
Proof. To prove it, consider auxiliary random variables:

Zi=αi1xi1+...+αimxim=
m∑
j=1

αi jxi j for i=1,...,n, and their sum Z=
n∑

i=1
Zi=

n∑
i=1

m∑
j=1

αi jxi j .
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Then the variance of Z is equal to the first term of the formula (23) i.e. V (X). Ac-
cording to (A11) for any α we have: (Kα,α)=V(Z)≥0 and as the variance is always
nonnegative, this completes the proof.

This proof also shows that the first term of generalised msqe (i.e. V (X)) can be5

defined as an averaged variance of the sum of linear combinations of multi-model
results, taken over all the points (this to some extent justifies also used notation). On
the other hand it is represented by the quadratic form (Kα,α), which corresponds to
the previously considered cases.

If we use as previously vectors: λ=[λ1, ..., λn]T and l=[1, ...,1]T then the problem of10

finding coefficients minimizing (23) (or (A11)) can be solved by using the lagrangian
function of the following form:

L=
∑
i ,j

(Cijα j ,α i )+(λ, l−
∑
j

α j ) (A12)

Minimization with respect to all the elements of the vectors α and λ would lead to
nm+n equations. We simplify it by operating on the vectors α j and λ and by calculating15

Gaetaux derivative with respect to all αk along some vector δ:

dL(αk+tδ)

dt

∣∣∣∣t=0=
dL
dt

∣∣∣∣
t=0∑

i 6=k
(Cik(αk+tδ),α i )+

∑
j 6=k

(Ckjα j ,αk+tδ)+(Ckk(αk+tδ),αk+tδ)−(λ,αk+tδ)


=2(Ckkαk ,δ)+

∑
i 6=k

(Cikδ,α i )+
∑
j 6=k

(Ckjα j ,δ)−(λ,δ)=2
∑
j

(Ckjα j ,δ)−(λ,δ)=0

As the above equation is valid for any vector δ then we get the following system of the20

equations:
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2
m∑
j=1

Ckjα j−λ=0 for k=1,. . . ,m and
m∑
j−1

α j=l.

This system can be written in the following form:
2C11.....2C1m −I
.......................
2Cm1.....2Cmm −I
I...............l 0



α1
....
αm
λ

=


0
...
0
l

 , which can be rewritten in a more concise form as:

5 [
2K − IR
IC 0

][
α

λ

]
=
[

0
l

]
, where IC=[I, . . ., I] and IR=[I,. . . ,I]T (i.e. ITC=IR) and I is

identity matrix of n×n dimension. Then the system of equations can be solved as
previously as:

α=1
2K−1IRλ and 1

2 IC K−1IRλ=l, hence λ=2(ICK−1IR)−1
l, and finally

α=K−1IR(ITR K−1IR)−1l=K−1 IR Cl (A13)10

Please note that the matrix ITR K−1IR has dimension n×n (so the inverse operator has
sense), but the matrix K is of mn×mn dimension. By C we denote (ITR K−1IR)−1.

Then we can calculate the optimal first term of formula (23) V (Xopt) as:

(Kα ,α )=(KK−1IR (ITRK−1IR)−1
l,K−1IR(ITRK−1IR)−1

l)=15

((ITRK−1IR)−1
l, ITRK−1IR(ITRK−1IR)−1

l) hence

V (Xopt)=(Cl, l)=((ITRK−1IR)−1l, l) (A14)

The formula is similar to the previous ones – if we write the inverse matrix K−1 in the
block form as:
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K−1=

C(−1)
11 .......C(−1)

1m
.........................
C(−1)

m1 ........C(−1)
mm

 , where C(−1)
kj are sub-matrices of n×n dimension, then:

C=
(

ITRK−1IR
)−1

=

 m∑
k=1

m∑
j=1

C(−1)
kj

−1

(A15)

Thus the formula (A15) generalizes previously obtained expressions for the optimal co-
variance. In fact the multi-dimensional case with uncorrelated models corresponds to5

the situation where all the off-diagonal sub-matrices Cij of the matrix K vanish. Then
the inverse of the matrix K can be done block by block for matrices Cii, which corre-
sponds to the formula (A7). On the other hand if we consider one-dimensional case
with correlated models then the dimension of matrices Cij is 1×1, so they become sin-

gle elements of the matrix K−1 from Sect. 3, and the Eq. (A14) leads to formula (17).10

The rest of the section will be devoted to prove similar estimations as previously for
simpler cases.

We start with a general estimation for V (Xopt). The analogous estimations as before
is valid:

minσ(K)
m

≤
V (Xopt)

n
≤

maxσ(K)
m

,15

where σ(K) is the spectrum of the matrix K defined by (33) while minσ(K) and max σ(K)
represent minimal and maximal eigenvalues, respectively.

Proof. First we write the matrix ITRK−1IR using spectral decomposition of the matrix
K=USU∗. We apply block notation i.e.

20
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U=

U11......U1m
..............
Um1.....Umm

 U∗=

U∗
11......U

∗
1m

..............
U∗

1m.....U
∗
mm

 S=

S1........0
..............
0.......Sm

 ,

where all the blocks have dimension n×n. Due to the properties of the unitary matrix U
we have: U∗

i j=UT
ji . Then we get:

K−1=US−1U∗=


∑
j

U1jS
−1
j U∗

j1........
∑
j

U1jS
−1
j U∗

jm

...............................................................∑
j

UmjS
−1
j U∗

j1........
∑
j

UmjS
−1
j U∗

jm

 and5

ITRK−1IR=
∑
l

∑
k

∑
j

UljS
−1
j UT

kj.

Let w=Cl and denote eigenvalues of S according to block notation and put into the
such an order that s(j )

k ≤ s(j )
k+1 for j=1,. . . ,m and k = 1, .=.., n−1. This leads to the10

following expressions:

(Cl, l)=(w , ITRK−1IRw )=
∑
l

∑
k

∑
j

(S−1
j Ulj

T
w ,UT

kjw )=
∑
j

(S−1
j

∑
l

UT
ljw ,

∑
k

UT
kjw )=

=
∑
j

∑
i

1

s(j )
i

(∑
k

UT
kjw

)2

i
≥
∑
j

1

s(j )
n

∑
i

(∑
k

UT
kjw

)2

i
≥ 1

max
j

s(j )
n

∑
j

(
∑
l

UT
ljw ,

∑
k

UT
kjw )=

= 1

max
j

s(j )
n

∑
l

∑
k

∑
j

(UT
ljw ,UT

kjw )= 1

max
j

s(j )
n

(w , ITRUU∗IRw )= m
max

j
s(j )
n

||w ||2= m
max

j
s(j )
n

||Cl||2

because of UU∗=I and ITRIR=mI.
Then as previously using Schwarz inequality we can get similar estimation:
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m
max

j
s(j )
n

||Cl||2 ≤ ||Cl||||l||, hence |Cl|| ≤ ||l||
max

j
s(j )
n

m , and finally (as ||l||2=n)

V (Xopt)

n
=

(Cl, l)
n

≤
max

j
s(j )
n

m
.

Similarly as for uncorrelated models case one can also find the lower bound i.e.:

V (Xopt)
n ≥

min
j

s(j )
1

m .

This can be proved in the same way as before since the following inequality holds for5

any vector α :
(Kα ,α )=(SU∗

α ,U∗
α )=

∑
j

∑
i
s(j )
i (U∗

α )2
i ,j ≥ min

j
s(j )

1 ||α ||2, and the rest of the proof is

identical.�
Identically as for uncorrelated models case we can also show that the following in-

equality holds:
V (Xopt)

n ≤ min

(
min
j

s(j )
n ,

max
j

s(j )
n

m

)
, saying that msqe is bounded also by10

the maximal eigenvalue obtained from the best single model.
Now let us consider the case where the average is taken as the representative of the

ensemble, which means that we have: α ′=α1= . . .=αm=[ 1
m , . . . , 1

m ]T . Let us assume
that the matrix K has eigenvalues s1 ≤ . . . ≤ sN , where N=mn. Then we have: s1

m ≤
V (Xm)

n ≤ sN
m , where Xm is the ensemble mean.15

Proof. Let us put α ′′=[α ′, . . . ,α ′], so ||α ′′||2= n
m . Then we get:

V (Xm)=(Kα ′′,α ′′)=(SU∗α ′′,U∗α ′′)=
N∑
i=1

si (U
∗α ′′)2

i

{
≤ sNn/m
≥ s1n/m

.
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From the above inequality the following implication follows: If maxσ(K)
minσ(K) ≤ m, then

V (Xm)
n ≤ minσ(K), where σ(K) is the spectrum of the matrix K defined by (A10). In such

a way we have obtained analogous results as for uncorrelated models case.

Acknowledgements. H. “Chip” Levy II (GFDL/NOAA) is thanked for the interesting discussion
had with SG on ensembles and political consensus.5
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Table 1. Formulas in multi-dimensional case.

Uncorrelated case Correlated case

Optimal
weights

αk=C−1
k

(
m∑
j=1

C−1
j

)−1

l

where l=[1, ...,1]T , k=1,. . . ,m

α=K−1IR(ITRK−1IR)−1
l

where IR=[I,. . . ,I]T ,l=[1,...,1]T

Optimal
covariance

C=

(
m∑
j=1

C−1
j

)−1

C=
(

ITRK−1IR
)−1

=

(
m∑

k=1

m∑
j=1

C(−1)
kj

)−1

where Cij
(−1) are sub-matrices of

K−1=

C(−1)
11 .......C(−1)

1m
.........................
C(−1)

m1 ........C(−1)
mm


Optimal
V (X)

V (Xopt)=(Cl, l)

=

( m∑
j=1

C−1
j

)−1

l, l


V (Xopt)=(Cl, l)=((ITRK−1IR)−1

l, l)
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Fig.1 ETEX-1 case: spread for 4 different models using the same meteo data 

(ECMWF-EPS) 

 

Fig. 1. ETEX-1 case: spread for 4 different models using the same meteo data (ECMWF-EPS).
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Fig. 2. Classes of models.
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Fig. 3: ‘The parable of the blind leading the blind’, by Peter Bruegle The Elder, 

(1568), courtesy of the Museo e Gallerie Nazionali di Capodimonte, Naples 

 

 

Fig. 3. “The parable of the blind leading the blind”, by Peter Bruegle The Elder, (1568), courtesy
of the Museo e Gallerie Nazionali di Capodimonte, Naples.
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