

Interactive
Comment

Interactive comment on “Secondary organic aerosol formation from primary aliphatic amines with NO₃ radical” by Q. G. J. Malloy et al.

Anonymous Referee #3

Received and published: 22 October 2008

The atmospheric fate of amines has recently got attention in a series of interesting paper. The present paper is focused on night-time chemistry of four amines (primary aliphatic) and their potential to form secondary organic aerosol. The understanding of the chemistry investigated has potential to be of great value in order to establish the reaction mechanism for amines and to elucidate their role in atmospheric chemistry. Consequently, these types of studies are within the scope of ACP. Furthermore, the experimental part has been done in a good and controlled way using a suit of high quality/advanced instrumentation for this type of study (PTR-MS and HR-ToF-MS). Unfortunately, I will add to the criticism pointed out by Referee 1 in the lack of proper data evaluation and interpretations. For my concern this paper needs to be revised considerable and some key aspect being addressed. In addition, I noticed another paper with

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

an overlapping set of co-authors treating a similar system. (tertiary amines-by Erupe et al, ACPD). Rather unconventionally, I would encourage the co-authors to read the ACPD comments on that paper as well since it clearly addresses the method an evaluation as such. Even though I encourage a full revision of the paper I have selected a few topics that I think could be useful to address specifically in addition to some minor items:

Selected topics:

Mechanism. A good proposed mechanism (such as the attempts in Figure 1 and 12) is essential for the success of this paper but in the present state this is poorly described and not well assigned to the observations and the open literature. Here the authors have a major and important task to more clearly being able to present a useful and plausible mechanism that can be tested against models, field studies or future experiments. Is there any possibility to be more quantitative? 1) Use of the measurements and standards for compound/compound class can at least give a hint on the magnitude of the yield for respectively compound. 2) From fundament knowledge in kinetics, like use of bond strength etc, one can help the reader by addressing the major part-way(s) for a specific reaction. E.g. the NO₃ abstraction (if this is the mechanism) should be very sensitive to the bond strength and will predominately abstract hydrogen from the carbon skeleton, i.e. C-H weaker than N-H. For the amines with long carbon chain an abstraction of secondary hydrogen is preferable to primary hydrogen. These statements can be brought forward already in the introduction when discussing Figure 1. (the missing night-time aspect of that figure has already been pointed out by referee 1, e.g. no NO present and NO₃ initiating the reaction). Figure 12: Interesting thoughts that in addition could explain any molecular yield higher than one. The figure caption should state something about "surface reaction" if that is a pre-request for the protonation. The "alcohol" reacting with the amine needs something more, i.e. is it charged?/radical?). It would be beneficial if this statement be proven by time traces of carbonyl products disappearing as a result of this reaction.

ACPD

8, S8467–S8470, 2008

Interactive
Comment

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

[Discussion Paper](#)

Interactive
Comment

Evidence of NO₃ reaction. Here it is unfortunate that the amines could not be directly measured in the chamber. Again looking at the "sister" paper for tertiary amines where all amines are disappearing by reaction with ozone it is not clear that NO₃ is the initiating oxidizing agent for amines. However, old kinetic data (Tuazon et al., 1994) reveals that primary amines are much slower with ozone than tertiary amines which may give hope for the NO₃ radical reaction in the second phase of the experiment, but this need to be established! Another caveat is that there is clearly something happening when adding just the amine to the chamber. Is there any amine left when NO₃ is produced? The last concern for NO₃ being the primary oxidant for the amines is to put forward evidence for NO₃ being produced in significant concentration in the chamber. The reaction between NO₂ and ozone is a rather slow reaction and since there is no time trends on O₃, NO and NO₂ one can not judge how much of amines that can react with NO₃.

Influence of HONO from the chamber walls. Sometimes large chambers have difficulties to maintain low levels of HONO, depending on history of the chamber. HONO is well known to react with amines and may influence e.g. the initial aerosol production. This will obviously have an influence on the interpretation of the results. Can one conclude that HONO was not present and did not influence the result at any stage of the experiment?

Reproducibility. The paper is based on four experiments (one for each amine). In order to be conclusive on the findings at least one experiment should be reproduced using the same condition. This is very high priority since the results are rather unexpected and consequently ruling out variation in smog chamber conditions would certainly add to credibility.

Minor recommendations/comments:

Title: The title should be revised forming a complete sentence. E.g. "SOA formation from oxidation of primary aliphatic under nighttime conditions". I would avoid NO₃

[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)[Discussion Paper](#)

since I am not convinced the fate of the amines and subsequent SOA formation are influenced by NO₃ radical chemistry (but that depends on the outcome of re-evaluation as described above).

Abstract: Row 8 "by extension NO₃" needs to be revised depending on the findings of the re-evaluation.

Page 12697: row 7-9: A certain oxidation product will by definition have a specific vapour pressure. rephrase.

Its not very common nowadays to use units such as: "psig"

Presence of water. was the experiment dry experiments?

Interactive comment on *Atmos. Chem. Phys. Discuss.*, 8, 12695, 2008.

ACPD

8, S8467–S8470, 2008

Interactive
Comment

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

[Discussion Paper](#)

