Atmos. Chem. Phys. Discuss., 8, S3180–S3181, 2008 www.atmos-chem-phys-discuss.net/8/S3180/2008/ © Author(s) 2008. This work is distributed under the Creative Commons Attribute 3.0 License.

ACPD

8, S3180-S3181, 2008

Interactive Comment

Interactive comment on "1-D air-snowpack modeling of atmospheric nitrous acid at South Pole during ANTCI 2003" by Wei Liao and D. Tan

P. Anderson

philip.s.anderson@bas.ac.uk

Received and published: 29 May 2008

I draw the attention to the subject of "model selection", with reference to Equation (3) and the comment at the bottom of the page on 9734: levels at 30 cm > levels at 10 cm, depite hardly any actinic flux.

Using the simplest diffusion model will explain this, assuming 1. local near equilibrium of chemsitry and therefore C proportional upon actinic flux 2. steady state profiles 3. true diffusion term (term 1 on RHS eq 3)

d/dz(D.dC/dz) that is, the gadient in diffusivity, D, is incuded in the model. e.g. if actinic derived concentration is given as

Aexp(k.z)

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

with k = 1/0.2 (typical from figure 3) z depth (negative) and diffusivity, D is given as

 $D = 5e-4 * exp(k_D.z)$

with $k_D = 1/0.05$ (which also looks reasonable, and describes the enhanced diffusivity near the surface due to ventilation), then solving

dC/dt = Aexp(k.z) + d/dz(D.dC/dz)

with boundary conditions of C = 0 at z = 0 and -infinity produces a peak in C at a depth of 30 cm.

Parsimony would imply that the data presented cannot therefore discriminate between the chemistry and the diffusion.

Interactive comment on Atmos. Chem. Phys. Discuss., 8, 9731, 2008.

ACPD

8, S3180-S3181, 2008

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

