Atmos. Chem. Phys. Discuss., 8, S2831–S2833, 2008 www.atmos-chem-phys-discuss.net/8/S2831/2008/ © Author(s) 2008. This work is distributed under the Creative Commons Attribute 3.0 License.

ACPD

8, S2831–S2833, 2008

Interactive Comment

Interactive comment on "Laboratory studies ofH₂SO₄/H₂O binary homogeneous nucleation from the SO₂+OH reaction: evaluation of the experimental setup and preliminary results" by L.-H. Young et al.

Anonymous Referee #1

Received and published: 19 May 2008

General comments:

The manuscript is dealing with experimental findings from laboratory regarding new particle formation by oxidizing SO2. This topic is very important for atmospheric science and at the moment it is still open what the most important nucleation process is. The authors present a couple of experimental results for different conditions, e.g. residence time, relative humidity, precursor concentrations. These data are worth to publish. But, while reading this manuscript few questions arose, mainly technical points. Before publication a major revision is necessary.

Printer-friendly Version

Interactive Discussion

Discussion Paper

Specific comments:

1) In text, figures and tables it is stated that residual H2SO4 concentration at the end of the flow tube was in the range 10(8) - 10(10) molecule cm(-3). At page 5 and figure 2b OH concentration in the photolysis zone is given with about 10(9) molecule cm(-3). Downstream the photolysis zone this gas stream is diluted with N2/SO2 before entering the nucleation reactor, see figure 1. That means that after dilution maximum OH is < 10(9) molecule cm(-3) and after total conversion via OH + SO2 maximum H2SO4 is < 10(9) molecule cm(-3). Given wall loss factors are in the range 2 to 12 resulting in maximum H2SO4 at the end of the tube < (0.83 - 5) x 10(8) molecule cm(-3) neglecting any contribution from condensation. The authors should clearly explain the discrepancy between maximum OH level and residual H2SO4 measured. Do they assume additional channels for H2SO4 generation other than OH + SO2? What is the accuracy of H2SO4 determination?

2) What is the photolysis time, page 5? What is the dilution factor for the OH/N2 gas stream in the mixing region, figure 1?

3) The WLFs depicted in figures 3a and b are incorrect, log WLF is not about 10 or in the range 10(1) to 10(6) !

4) H2SO4 was produced via R1 - R3. For chosen conditions, i.e. SO2, O2 and H2O concentrations, the time scales should be given needed for complete conversion of OH, HOSO2, and SO3. What was the residence time in the mixing zone? E.g. the data for a 4 sec nucleation experiment given in figure 6b: Using $k(OH+SO2) = 1.5 \times 10(-12)$ for 0.03 ppm SO2 (7.4 x 10(11) molecule cm(-3)), for a 90% OH conversion 2.1 sec are needed and for a 99% OH conversion 4.2 sec!!!

5) What is the reason for the very low O2 mixing ratio in N2 of 0.001/(1.7 - 5.3)?

6) Total residence time in the nucleation region was taken for the nucleation time for J-calculations. From my point of view, total residence time stands only for maximum

ACPD

8, S2831–S2833, 2008

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

nucleation time. For a wall loss factor of 2 (neglecting condensation) and a power equation, Eq.7, with n = 5 the ratio J(start)/J(end) = 1 / 0.03. And for a wall loss factor of 12 the ratio J(start)/J(end) is 1 / 0.000004. That shows that nucleation is inhomogeneous with time in this experiment. Ball et al. (1999) defined only a part of the tube as the "nucleation zone". The authors should discuss this topic and the consequences for J vs. H2SO4.

7) Page 11: The authors did not observe clear effects regarding H2SO4 and produced particles switching off O2 in the carrier gas. What does it mean "without O2"? What is the residual O2 concentration in the carrier gas under conditions "without O2"? Is it enough for converting HOSO2 via R2?

8) Page 12 and figure 5: It is confusing to see the particle number depending on the SO2 concentration in the bottle. Was the purity of the 100 ppm SO2 bottle checked?

9) In the figures in some cases there is an increase of particle number with time for constant H2SO4 visible. What is a possible explanation for this behavior? Are there saturation effects regarding the wall loss of H2SO4?

ACPD

8, S2831-S2833, 2008

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

Interactive comment on Atmos. Chem. Phys. Discuss., 8, 6903, 2008.