Atmos. Chem. Phys. Discuss., 8, S10479–S10481, 2009 www.atmos-chem-phys-discuss.net/8/S10479/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribute 3.0 License.

ACPD

8, S10479–S10481, 2009

Interactive Comment

Interactive comment on "Measurements of OH and HO₂ concentrations during the MCMA-2006 field campaign – Part 1: Deployment of the Indiana University laser-induced fluorescence instrument" by S. Dusanter et al.

S. Dusanter et al.

Received and published: 16 January 2009

We are grateful to Dr. Ezra Wood for his short comment which helped us to improve the manuscript. For clarity, the comment is reproduced below with a bold font, followed by our reply.

The definition of $P(O_3)$ (Eq. 9) in this manuscript contains an erroneous term; the subtraction of the HNO₃ formation rate from the rate at which NO is oxidized to NO₂ by HO₂ and RO₂:

 $P(O_3) = k[HO_2][NO] + k[RO_2][NO] - k[OH][NO_2].$

Printer-friendly Version

Interactive Discussion

Discussion Paper

This term appeared earlier in Shirley et al (2006) and Sheehy et al (2008). (The $RO_2 + NO$ term is not always considered as explained by the authors since they are calculating the portion of $P(O_3)$ that is from $HO_2 + NO$ only (since there are HO_2 measurements but not RO_2 measurements)). The idea behind the subtracted term is to account for the NO_2 (formed from $HO_2 + NO$) that does not actually photolyze (producing O_3) and instead reacts with OH to form HNO_3 . The problem with the subtraction is that it subtracts the rate at which all NO_2 react with OH, and not just the portion that was recently formed by HO_2 oxidation of NO. If one wishes to account for the fraction of NO_2 (formed from $R/HO_2 + NO$) that react with OH instead of photolyze, then the $k[HO_2][NO]$ term should be *multiplied* by the fraction of NO_2 that undergo photolysis:

 $P(O_3) = k[HO_2][NO] * j_{NO2}[NO_2]/(j_{NO2}[NO_2] + k[OH][NO_2])$

where j_{NO2} is the photolysis rate constant and the RO₂ term has been ignored. This adjustment factor is equal to 0.995 for j_{NO2} = 9.6E-3 s⁻¹, [OH] = 5E6 molec/cm³, and [NO₂] = 40 ppb (noon-time values). The value of the k[OH][NO₂] term itself is ~7 ppb/hr. Thus if k[HO₂][NO] is 37 ppb/hr, subtracting k[OH][NO₂] yields a value for P(O₃) from HO₂ + NO of ~30 ppb/hr; over a 20% difference.

Even better would be to just consider the gross production rate of O_x ($O_3 + NO_2$) instead of O_3 . Viewed in this context, OH + NO₂ is an O_x loss, just as O_3 dry deposition, O(¹D) + H₂O, and HO₂ + O₃ are O_x losses.

 $P(O_x) = k[HO_2][NO] + k[RO_2][NO]$

which is equivalent to the definition of $P(O_3)$ most commonly used. Formation/decomposition of PAN compounds has been ignored here but could be included as well.

The formalism adopted in this paper for the calculation of $P(O_3)$ is similar to that developed in Shirley et al. (Shirley et al., 2006). This was done in an attempt to compare

ACPD

8, S10479–S10481, 2009

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

net instantaneous rates of O_3 production from HO₂ only observed during the MCMA-2003 and 2006 field campaigns. We agree with Dr. Wood that subtracting the rate of HNO₃ formation from the chemical reaction rate of HO₂+NO leads to an underestimation of P(O₃) that can be attributed to HO₂. As suggested by Dr. Wood, we revised the manuscript to include P(O_x) calculations from the following equation:

 $\mathsf{P}(\mathsf{O}_x) = \mathsf{k}_{HO2+NO}[\mathsf{HO}_2][\mathsf{NO}] + \Sigma \mathsf{k}_{RO2+NO} \Phi_{RO+NO2}[\mathsf{RO}_2][\mathsf{NO}]$

where Φ_{RO+NO2} represents the production yield of RO+NO₂ from RO₂+NO. HO₂ and NO measurements were used to calculate the gross production of oxidants (O₃ + NO₂) formed from the NO-to-NO₂ conversion due to HO₂. For the sake of the comparison with MCMA-2003, we still present P(O₃) calculations as defined in Shirley et al. (2006):

 $\mathsf{P}(\mathsf{O}_3) = \mathsf{k}_{HO2+NO}[\mathsf{HO}_2][\mathsf{NO}] + \Sigma \mathsf{k}_{RO2+NO} \Phi_{RO+NO2}[\mathsf{RO}_2][\mathsf{NO}] - \mathsf{k}_{OH+NO2}[\mathsf{OH}][\mathsf{NO}_2]$

The difference between $P(O_x)$ and $P(O_3)$ represents the rate of HNO₃ formation from OH + NO₂.

References

Sheehy, P., Volkamer, R., Molina, L. T., and Molina, M. J.: Oxidative capacity of the Mexico City atmosphere - Part 2: A RO_x radical cycling perspective, Atmos. Chem. Phys. Discuss., 8, 5359-5412, 2008.

Shirley, T. R., Brune, W. H., Ren, X., Mao, J., Lesher, R., Cardenas, B., Volkamer, R., Molina, L. T., Molina, L. T., Lamb, B., Velasco, E., Jobson, T., and Alexander, M.: Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003, Atmos. Chem. Phys, 6, 2753-2765, 2006.

Interactive comment on Atmos. Chem. Phys. Discuss., 8, 13689, 2008.

ACPD

8, S10479–S10481, 2009

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

