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Abstract

This paper presents experiments of PM10 data assimilation with the optimal inter-
polation method. The observations are provided by BDQA (Base de Données sur
la Qualité de l’Air), whose monitoring network covers France. Two other databases
(EMEP and AirBase) are used to evaluate the improvements in the analyzed state over5

one month (January, 2001) and for several outputs (PM10, PM2.5 and chemical compo-
sition). Then, the method is applied in operational conditions. The results show that the
assimilation of PM10 observations significantly improves the one-day forecast for total
mass (PM10 and PM2.5). The errors on aerosol chemical composition are not reduced
and are sometimes amplified by the assimilation procedure, which shows the need for10

chemical data. As the observations cover a limited part of the domain (France versus
Europe) and as the method used for assimilation is sequential, we focus on the hori-
zontal and temporal impacts of assimilation in the last part of this paper. To conclude,
we discuss the perspectives, especially the use of a variational method for assimilation
or the investigation of the sensitivity to a few choices (e.g., the error statistics, etc.).15

1 Introduction

State-of-the-art models, in meteorology or in air quality, reasonably approximate the at-
mospheric state (meteorological fields and chemical composition). However, there are
still a lot of uncertainties in modeling (Hanna et al., 1998; Mallet and Sportisse, 2006),
and in particular for aerosols (Roustan et al., 2008), leading to important discrepancies20

with observational data.
Data assimilation (DA hereafter) makes use of measurements of parts of the model

state in order to reduce the uncertainties in input data such as initial conditions or
boundary conditions. In some cases (especially for air quality modeling) the purpose
of the modeler may be the evaluation of the emissions fluxes, and not necessary the25

improvement of the forecast itself. This defines the so-called inverse modeling issue,

9608

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/9607/2008/acpd-8-9607-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/9607/2008/acpd-8-9607-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
8, 9607–9640, 2008

PM10 data
assimilation

M. Tombette et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

which is not addressed in this paper.
DA is based on several theories that provide the basis for many existing methods:

statistical methods (e.g., the optimal interpolation), variational methods (3D- and 4D-
Var) and sequential methods (Kalman filters). We refer to Bouttier and Courtier (2001)
for an overview.5

DA could be applied with different objectives: to produce an analysis, in other words
to compute a field as close as possible to the “true” state; to improve the initial con-
ditions in order to improve the forecasts; or to identify uncertain parameters (inverse
modeling), such as the emission fluxes.

DA is a relatively recent research field in atmospheric chemistry (Austin, 1992; Fisher10

and Lary, 1995; Riishojgaard, 1996), whereas it has been widely applied in meteorol-
ogy. However, numerous studies were carried out for specific gases and with measure-
ments of diverse nature (in-situ, airborne, satellites). Ozone columns are assimilated
with an optimal interpolation approach in Jeuken et al. (1999); Planet (1984), and with
a 4D-Var approach in Riishojgaard (1996). In Levelt et al. (1998), ozone and car-15

bon monoxide profiles are assimilated with the Mozart model. Elbern et al. (1997),
Elbern et al. (2007) and Segers (2002) present several assimilation studies of terres-
trial data with a 4D-Var approach and a sequential approach for the latter. Wu et al.
(2008) compare four assimilation methods (optimal interpolation, ensemble Kalman fil-
ter, reduced-rank square root Kalman filter and 4DVar) for assimilation of ozone ground20

measurements.
Aerosol models are now a component of most of available chemistry-transport mod-

els (CTMs). It is therefore relevant to investigate data assimilation for aerosols. In the
case of the aerosol model SIREAM (SIze-REsolved Aerosol Model, Debry et al., 2007)
embedded in the POLYPHEMUS platform Mallet et al. (2007), which is used in this study,25

the assimilation method is constrained by the use of a thermodynamic model (ISOR-
ROPIA, Nenes et al., 1998). Indeed, there is currently no adjoint model for SIREAM:
first, the thresholds set by ISORROPIA (discontinuous model due to phase transitions)
raise a theoretical problem (definition of the derivatives at the discontinuity points);
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second, the code of ISORROPIA has not been written so that it may be automatically
differentiated (and in practice this leads to large difficulties). A variational approach is
thus not conceivable at the moment.

Aerosol measurements seldom correspond to model state variables (which, for a
size-resolved model, give the size distribution of the aerosol chemical composition).5

They are often aggregated data (PM10, PM2.5) or optical data (extinction coefficient,
optical thickness). It is therefore not straightforward to assimilate this data. As the cur-
rent standards for air quality regulation focus on PM10 mass and as the networks giving
PM10 data are the most widely extended, we chose to assimilate these observations.

Since policies about particulate matter have mainly focused on PM10 up to now, it10

is important to accurately forecast their concentrations, primarily in urban areas. For
example, in Europe, the limit is set to a maximum of 35 days per year during which
PM10 exceeds 50µg m−3. However, the numerical models hardly reproduce the highest
PM10 peaks, because of inaccurate descriptions of exceptional events (Saharan dust
episodes, dust resuspension in dry conditions, etc.). DA could be useful in order to15

compensate for these model deficiencies.
In this paper, we use a simple method for PM10 DA, namely the optimal-interpolation

method. This method was applied for the assimilation of aerosol optical thickness
(Generoso et al., 2007; Collins et al., 2001). Variational methods were also investi-
gated, like the 1D-Var method in Huneeus (2007) or the 4D-Var method in Benedetti20

and Fisher (2007), but for simplified aerosol models.
The objectives are to sketch answers to the following questions:

1. Is there an improvement for forecasts after the assimilation of PM10 hourly data
over Europe? If so, to what time extent?

2. Does the analysis produced by the PM10 assimilation over a subdomain (here,25

France) result in an improvement over the remaining part of the domain (western
Europe)?

3. Does the analysis produced by the PM10 assimilation improve the computed
9610
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chemical aerosol composition? Should the measured concentrations of precursor
gases be assimilated?

The first question has no obvious answer. First, the thermodynamic equilibria be-
tween the aerosol and gaseous phases could annihilate the corrections after DA if the
gaseous concentrations are not corrected meanwhile. Second, the aerosol residence5

time in the atmosphere is relatively low (a few days); particles are known for having
mostly a regional effect. So, it may be necessary to perform a joint state-parameter
estimation. For instance, it would be useful to make corrections on the aerosol emis-
sions.

The second question is related to the timescales of atmospheric transport. It con-10

sists in determinating if the improvements in a part of the domain (where most of the
measurements are available) can improve the simulation in places where the wind
transports the air masses. This could be important for regions where only sparse data
is available. The choice of the scale parameters Lh and Lv (see Eq. 5) might then
be important, since they determine the distance at which the measurements have an15

influence in the analysis.
The last question deals with the effects of DA on chemistry. Assimilating a total

mass only brings a coarse information about chemistry; we cannot, a priori, expect an
improvement in the aerosol chemical composition, unless the errors are similar for all
the species (which may not be realistic).20

2 Methodology

2.1 Optimal interpolation

In the optimal interpolation method, the analysis is given by the best estimate (linear
and unbiased) in the least-squares sense. The objective is to find the analysis state
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vector xa, solution of the minimization problem

xa = argmin J , (1)

with J the following cost function:

J (x) = (x − xb)TB−1(x − xb) + (y − H[x ])TR−1(y − H[x ]) . (2)

xb is the background state vector, or a priori state vector (i.e. the PM10 forecast5

provided by the model), y is the vector of observations (measured PM10), and H is an
interpolation function that maps the state x to the observational data. B and R are the
matrices of error covariances, for background and observations respectively.

Upon minimization, xa is given by:

xa = xb + K (y − H(x)) , (3)10

K = BHT
(

HBHT + R
)−1

, (4)

where K is the so-called gain matrix.
The specification of the covariance matrices is decisive, because these matrices

determine the corrections applied to the background field to coincide with the obser-
vations. The main parameters are the variances (diagonal terms), but the covariances15

are also important because they specify how the information should be distributed over
the domain.

The variances of the observation errors can be evaluated by considering the char-
acteristics of the instruments (supposed to be known). The covariances can be set
to zero since the instruments errors are independent. This would not be the case for20

measurements from the same platform (radiosonde, airborne sensor or satellite), but
this is reasonable for different instruments from different ground stations.

A first estimate of the background errors can be obtained by taking an arbitrary frac-
tion of the climatological variance of the field itself. It is also conceivable to take an
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estimate of the model-to-observation error (from the knowledge of the model uncer-
tainty with respect to the observations). More complex methods, like the Hollingsworth-
Lönnberg method, exist (Daley, 1991; Hollingsworth and Lönnberg, 1986).

The B matrix is difficult to determine explicitly. We therefore need a method to rep-
resent the covariances between the grid points. A classical method is the Balgovind5

approach: the covariance is a function of the horizontal and vertical distances (rh and
rv respectively) between the two points of interest,

f (rh, rv ) =
(

1 + rh
Lh

exp
(
− rh

Lh

))
×
(

1 + rv
Lv

exp
(
− rh

Lv

))
× v ,

(5)

where Lh and Lv are two homogeneous influence radii and v is the variance estimate.

2.2 Redistribution over sections and chemical species10

The correction applied to the simulated PM10 at ground is provided by the optimal-
interpolation method. The controlled state of the model is thus the PM10 concentrations
over the whole horizontal domain. Forecasted PM10 are computed by summing the
concentrations of all aerosol species simulated over all sections (size discretization).

After DA, the analyzed PM10 are redistributed over the model variables following15

the initial chemical and size distributions. If (PM10)b and (PM10)a are the PM10 mass

concentrations for the background and the analysis respectively, and
(
P j
i

)b
and

(
P j
i

)a
are the concentrations of the chemical species j in the section i for the background
and the analysis respectively, then:(
P j
i

)a
=

(PM10)a

(PM10)b
×
(
P j
i

)b
. (6)20

The underlying assumption is that the aerosol relative chemical composition and gran-
ulometry are well represented in the model.
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3 Experimental setup

3.1 Simulations

The model used in this study is SIREAM, plugged to the chemistry-transport model
Polair3D. SIREAM is a SIze-REsolved Aerosol Model, described in details in Debry
et al. (2007). SIREAM includes 16 aerosol species: 3 primary species (mineral dust,5

black carbon and primary organic species), 5 inorganic species (ammonium, sulfate,
nitrate, chloride and sodium) and 8 organic species managed by the SORGAM model
(Schell et al., 2001). In the usual configuration, SIREAM includes 5 bins logarithmically
distributed over the size range (0.01µm, 10µm). All these models are embedded in
the POLYPHEMUS system, available at http://cerea.enpc.fr/polyphemus/ and which is10

described in Mallet et al. (2007).
The simulations presented hereafter (with or without assimilation) are at a continental

scale, over Europe, and for one month (January, 2001). A first study, Sartelet et al.
(2007), evaluates the model for the year 2001 with comparisons to three databases
(also used in this study and described hereafter) and with respect to the performances15

of other models. The model shows a tendency to underestimate PM10 as the other
models do in general, and to overestimate nitrate concentrations in wintertime. The
model general configuration has the same features as in Sartelet et al. (2007). The
main points are quoted hereafter.

The domain covers the area from 10.75◦ W to 22.75◦ E in longitude and from 34.75◦ N20

to 57.75◦ N in latitude, with a 0.5◦ step. There are five vertical layers: 0–50 m, 50–
600 m, 600–1200 m, 1200–2000 m and 2000–3000 m.

The meteorological fields are interpolated from the outputs of the model of the Eu-
ropean Center for Medium-range Weather Forecast (ECMWF, http://www.ecmwf.int/
products/data/operational system/). The ECMWF raw data has a resolution of 0.36◦

25

horizontally, 60 sigma-levels vertically and a timestep of 3 h.
The boundary conditions for aerosol species are interpolated from outputs of the

GOddard Chemistry Aerosol Radiation and Transport model (GOCART, Chin et al.,
9614
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2000) for 2001.
The anthropogenic emissions for gases and aerosols are generated from the EMEP

expert inventory for 2001 (available at http://www.emep.int/).
The chemical mechanism is RACM (Regional Atmospheric Chemistry Mechanism,

Stockwell et al., 1997). Aerosol and gases are scavenged by dry deposition, rainout5

and washout. We take into account coagulation and condensation. Nucleation is not
included because the diameters of nucleated particles (typically about 1nm) are lower
than the lowest diameter bound of the model. Aqueous phase chemistry inside cloud
droplets is also described (Variable Size Resolved Model VSRM, Fahey and Pandis,
2001; Strader et al., 1998).10

3.2 Observational data for assimilation and comparison

In Sartelet et al. (2007), three databases are used for comparisons:

– the EMEP database, available on the EMEP Chemical Co-ordinating Centre
(EMEP/CCC) web site at http://www.emep.int/;

– the AirBase database, available on the European Environment Agency (EEA) web15

site at http://air-climate.eionet.europa.eu/databases/airbase/;

– the BDQA database (“Base de Données Qualité de l’Air”: the French data base
for air quality that covers France).

The EMEP data is provided only on a daily basis. As a result, it will not be used for
assimilation but for performance assessment.20

The BDQA data will be used for assimilation in this study. The reasons for this choice
is that it includes hourly concentrations and that the station types are specified, so that
the traffic stations with too high concentrations can be removed. On the contrary, the
types of the AirBase stations are not available, so AirBase data will only be used for
comparisons, as the EMEP network.25
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Figure 1 shows the location of the BDQA stations on the model grid mesh, except
the traffic and industrial stations whose high concentrations cannot be represented by
our model (at 0.5◦ resolution).

4 Crosswise comparisons with other networks

In a first step, we would like to evaluate the improvements due to the assimilation5

process on other networks than the one used for assimilation. For this purpose, two
simulations over one month (January, 2001) are carried out: one without DA (Model)
and one with DA. For the simulation with DA, every hour, the model forecast (one-hour
forecast) is modified by optimal interpolation with the data from BDQA stations. This
gives an analyzed state (analysis), which becomes the initial condition for the next time10

step. Table 1 summarizes the fields compared in this section.
The Balgovind method is used to estimate the covariances for the background errors,

with a scale parameter Lh set to 2 mesh cells (about 100 km). The background variance
is set to 90µg2m−6, which derives from a RMSE of about 9µg m−3 for annual model-
to-data comparisons (Sartelet et al., 2007). The matrix of observation covariances15

is assumed to be diagonal, with a variance set to 5µg2m−6. The error variance for
observations is lower than the instrumental uncertainty1. In our study, the observations
are assumed to be highly accurate because we aim at assessing the potential benefit
of assimilation.

We first present statistics for the comparison with the AirBase data. The statistical20

measures are defined in the definition paragraph hereafter. The number of AirBase
stations makes it possible to compute statistics for each country, as shown in Table 2.
Figure 2 represents the RMSEs and the correlations with circles whose diameters are
proportional to the statistical indicator. It is noteworthy that the statistics for PM10 are

1For a TEOM (Tapered Element Oscillating Microbalance), the observation error variance is
about 25µg m−3.
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globally improved: the global RMSE decreases from 21.4 to 19.3µg m−3 for the analy-
sis, the correlation increases from 51.1% up to 58.9%, MFE decreases from 57.2% to
52.6% and MFB increases by 4%.

4.1 Definition

Let {oi}i=1,n and {si}i=1,n be respectively the observed and the simulated concentra-5

tions. The Root Mean Square Error (RMSE), correlation, Mean Fractional Error (MFE)
and Mean Fractional Bias (MFB) are defined below. RMSE is in µg m−3, the other
indicators are dimensionless.

RMSE =

√√√√1
n

n∑
i=1

(oi − si )2

correlation =

∑n
i=1(oi − o)(si − s)√∑n

i=1(oi − o)2 ×
∑n

i=1(si − s)2

10

MFE =
1
n

n∑
i=1

|si − oi |
(si + oi )/2

MFB =
1
n

n∑
i=1

si − oi

(si + oi )/2

The statistics are clearly better over France (the RMSE decreases by more than
4µg m−3 and the correlation increases by more than 30%). This is obviously due to
the fact that the BDQA stations are located in France. In addition, in France, the BDQA15

and AirBase networks share many stations. The statistics of border countries or near
countries of northern Europe are improved, like for Belgium, Switzerland, Germany
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(even if the correlation is deteriorated), Great Britain or the Netherlands. Countries
that are relatively far from France, like Portugal, Poland or Slovakia show no changes
in their statistics. On the contrary, the statistics for Spain (about 1µg m−3 increase for
RMSE and 15% decrease for correlation) and Italy (equivalent RMSE but a decrease
of 30% for correlation) are deteriorated. Section 6 will show that Italy and Spain are5

the countries with the highest the differences between the simulations with and without
DA (if we except France). This remark raises the question of the distance over which
the stations of southern France are representative of PM10 pollution in the direction
toward Italy and Spain. It is possible that the Alps and the Pyrenees constitute a high
barrier for aerosols at ground, barriers that the error statistics model does not take into10

account, with an overestimated Lh.
Table 3 shows that DA also improves the statistics for PM2.5 (4µg m−3 decrease for

RMSE and 24% increase for correlation), which could indicate that the a priori layout
over the model bins is relatively reliable. On the other hand, the aerosol chemical com-
position is deteriorated (specially for ammonium and nitrate which is even more over-15

estimated). The number of stations that provide measurements for chemical species is
lower than the stations providing PM10 observations; it is therefore difficult to conclude
on a general behavior. This highlights the need for more chemical measurements in
the DA method presented here. The distribution on species could then be corrected by
assimilation, while it is constant in this case.20

Table 4 shows statistics for the comparisons with the EMEP data. Most statistics
on PM10 for the simulation with DA (analysis and one-hour forecast) are deteriorated
compared to the simulation without DA. Nevertheless, the simulated mean is better with
assimilation because DA adjusts the underestimation. Note that the EMEP network
includes very few stations in France, but much more in Spain where the results are25

spoiled by DA (see the results on the AirBase network). Moreover, EMEP stations
are background stations, whereas the assimilated observations are measured at both
background and urban or periurban stations. Some DA updates may not be consistent
with background-concentrations levels. Besides, there may not be enough stations to
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draw reliable conclusions.
The conclusion about the lack of improvement of the chemical speciation after DA

remains the same with EMEP. For sulfate, the simulated mean agrees better with the
measurements, while the RMSE is equivalent and the correlation decreases by 5%. All
statistics are deteriorated for nitrate and ammonium, while the statistics do not change5

for sodium.

5 Operational forecast

In operational conditions, at time t0, only the data for the previous days is available. It
is possible to assimilate this data over a few days before t0. The model results from t0
to (t0+1 day) are called one-day forecasts, the results from (t0+1 day) to (t0+2 days)10

are called two-day forecasts, etc. This operation can be repeated every day (“moving
window”); a one-day forecast and a two-day forecast are then available every day.

Several five-day DA experiments are carried out: the BDQA data is assimilated dur-
ing the first three days, then the model forecasts the next two days. The first experiment
assimilates data from 1 January 2001 to 3 January 2001 and forecasts the days 4 Jan-15

uary 2001 and 5 January 2001; the second experiment assimilates data from 2 January
2001 to 4 January 2001 and forecasts the days 5 January 2001 and 6 January 2001;
and so on. Consequently, one-day forecasts are available from 4 January 2001 to 30
January 2001, and two-day forecasts are available from 5 January 2001 to 31 January
2001. Table 5 describes the simulations carried out in this section.20

Table 6 summarizes the statistics of the model and of the one-day and two-day fore-
casts compared to BDQA data. It is noteworthy that, as expected, the one-day forecast
clearly improves the statistics for PM10 and PM2.5. The decrease of the RMSE value is
1.6µg m−3 for PM10 and 1.5µg m−3 for PM2.5, that is, about 10%. The increase of the
correlation is more than 10% for PM10 and PM2.5. MFE and MFB are also markedly im-25

proved; the improvement in MFE brings the model to satisfy the performance objective
of 50% defined by Boylan and Russell (2006) (see also Sartelet et al., 2007).
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Since the optimal interpolation method only changes the initial conditions, two-day
forecast shows a less obvious improvement. The model tends to its reference trajec-
tory (without assimilation). Two-day forecast shows slightly better statistics, but the
decrease of the RMSE is only 0.3µg m−3 and the increase of the correlation is 3%.

6 Temporal and horizontal impacts of DA5

Because the optimal interpolation method only modifies the initial conditions, and not
the model itself, we would like to evaluate the time and space scales for which DA
affects the results. In this section, we carry out some tests over a shorter period, to
estimate the effective time scales of DA (the data is assimilated over a period and then
the control is “released” for the next days), and to find out the important parameters.10

The configuration for the present simulations is the same as in the previous section,
but only over the period from 1 January 2001 to 06 January 2001. As in the previous
sections, the simulation without assimilation is compared to the other simulations with
DA. For the simulations with DA, hourly data from all BDQA stations is assimilated
from 1 January 2001 to 5 January 2001. The forecast starts on the 6 January 200115

at 00:00:00 UTC. Eight simulations are presented here: the reference test and seven
alternatives. The different configurations are summarized in Table 7.

In this section, a higher variance for observations, equal to the background variance,
is tested. The ratio α=v/r (where v is from Eq. 5 and, in our case, R=rI where I is
the identity matrix) is then equal to 1. The Balgovind method is used to represent the20

horizontal and vertical covariances for the background. The impact of the Lh and Lv
parameters is tested. Horizontally, the reference Lh is taken equal to 2 grid cells (about
100 km), and is changed to 0.5 grid cell (about 25 km). Vertically, the reference test
performs assimilation only in the first level at 25 m. Three other tests are carried out:
respectively with a vertical Lv parameter equal to 200 m (with two controlled levels),25

300 m (with three controlled levels) and 600 m (with three controlled levels).
The redistribution of analyzed PM10 on chemical species will also been investigated.
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The different cases are the following:

– redistribution on all species (default): the model shows the same uncertainties for
all species;

– redistribution of the corrections only on primary species: it is assumed that the
uncertainties are mainly due to the emissions;5

– redistribution of the corrections only on inorganic species: it is assumed that the
uncertainties are mainly due to the condensation of inorganic species.

The redistribution only on the organic species is not tested. The reason is that the
evaporation of organic species during the measurements is so important that we as-
sume that the observations slightly depend on organic species.10

Figures 3, 4 and 5 show the time evolution of the RMSE, the correlation and the
simulated mean respectively, averaged over all BDQA stations for the different tests.
Table 8 shows the associated statistics, over the first day of forecast (6 January 2001).
All simulations with assimilation improve the RMSE and the correlation. Anyway, the
figures show that the influence of DA lasts no more than a few hours. The RMSEs15

and the correlations are equivalent for all tests after 6 h. For the simulated mean, the
typical time period before all simulations converge is 20 h. The inorganics simulation
is almost the same as the reference test where all species are assimilated, whereas
the primary simulation gives really different results for the simulated mean. Indeed, in
the inorganics simulation, the transfer of the PM10 changes to the inorganic species20

will take place essentially in the fine mode (less than 2.5µm diameter), where the
major part of inorganics resides. The PM10 mass is also located in this mode, so
the size distribution of corrected PM10 will be equivalent in both the reference and the
inorganics simulations. For this reason, the scavenging (depending on the particle
size), which could imply the differences in PM10 budget between simulations, is not25

impacted. Although the simulated mean for the primary simulation is the most different
one from the simulation without DA at the beginning of the forecast, the RMSE is quite
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the same. This probably means that, for this case, the errors of the model are mostly
due to secondary species, rather than primary species. These errors could then be
attributed essentially to physical processes rather than to emissions description for
example. The simulation where α=1 is, as expected, rather close to the simulation
without DA (see the evolution of the simulated mean). The simulations where one of5

the parameters Lh or Lv for the Balgovind method has changed give similar RMSEs
on the BDQA network. However, the differences in the concentration mean remain
significant for a longer period in the simulations where the number of levels used for
assimilation and the vertical Lv are increased. This shows that DA should influence a
part of the PM10 vertical profile, but increasing Lv over 200 m has a limited impact.10

Figure 6 shows the maps of the absolute difference between the PM10 fields of sim-
ulation with DA and the same field without DA, averaged over one day after assimila-
tion. As expected, the test with Lh=0.5 does not influence the PM10 at a long distance.
Southern (Marseilles’ region) and south-eastern France are the most impacted regions,
showing that the concentrations of these regions are particularly badly reproduced by15

the model. This may be due to the fact that some stations in these regions are influ-
enced by the mountains, by the Mediterranean circulation, and by large urban areas.
Therefore, it is a region difficult to describe with a continental-scale simulation.

For the other tests, it is noteworthy that northern Spain is the region which is the
most impacted by DA, showing that the corrections are transported at this location.20

Tests with Lh=2 show that northern Italy (Po Valley) is also greatly impacted. As Lv in-
creases, the corrections seem to be transported over longer distances. It is noteworthy
that the regions impacted by the inorganics and the primary tests are quite different.
Actually, the inorganics test shows large differences over marine regions (see west of
Corsica). Over marine areas, the changes in thermodynamic equilibria due to DA can25

be amplified by the presence of sea salt.
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7 Conclusions

This paper shows that PM10 DA with the optimal interpolation method may be useful
for one-day forecasts. In our tests, a mean decrease of 1.5µg m−3 for the RMSE and a
10% increase in the correlation are obtained. For longer forecast periods, the statistics
are not improved because the concentrations converge too quickly to the trajectory5

without DA.
Moreover, the crosswise comparison with other networks than the one used for DA

allows to evaluate the quality of the analysis for different network types. For example,
the EMEP database only contains background stations and the assimilation of data
from stations of other types spoils the statistics.10

The background error covariances are important components of the assimilation. In
this study, we used a simple parameterization with an influence radius Lh, supposed
to be the same in the whole domain. This method results in spoiling the statistics in
regions where topography would demand specific Balgovind lengths Lh.

For future works, the following studies could be initiated:15

1. Using more sophisticated methods to build the background covariance matrix,
such as methods based on statistical studies of the simulated fields (e.g. the
Hollingsworth-Lönnberg method, Daley, 1991);

2. Implementing inverse methods in order to improve the quality of input data (emis-
sions) and/or parameterizations;20

3. Assimilating observations of gases that are poorly measured but important for the
formation of secondary inorganic species, like nitric acid (HNO3) or ammoniac
(NH3);

4. Assimilating observations of the aerosol chemical composition (nitrate, sulfate,
ammonium, primary and organics); the bias existing for some species could then25

be withdrawn;
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5. Assimilating optical data from a lidar network, which could improve the vertical
distribution of aerosols and, as a result, improve the persistence of DA impacts
over the domain.
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Table 1. Description of the European simulations for the period from 1 January 2001 to 31
January 2001.

Simulation Data Assimilated species Assimilation period Outputs

Without DA – – – Model
With DA BDQA PM10 1 to 31 January 2001 Analysis

(all stations) One-hour forecast
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Table 2. RMSE, correlation, MFE and MFB (see Sect. 4.1) of the simulated PM10 without
and with DA (for the model, the analysis and the one-hour forecast), computed with the ob-
servations from the AirBase network. The total is computed over the whole stations, without
distinguishing the country. Countries are: Austria (AT), Belgium (BE), Switzerland (CH), Czech
Republic (CZ), Germany (DE), Spain (ES), France (FR), Great Britain (GB), Ireland (IE), Italy
(IT), the Netherlands (NL), Poland (PL), Portugal (PT), Slovenia (SI) and Slovakia (SK). Period:
1 January 2001 to 31 January 2001.

Stat Country AT BE CH CZ DE ES FR GB IE IT NL PL PT SI SK Total

# stations 12 17 12 45 161 18 120 49 2 17 14 27 5 1 3 503
RMSE Model 27.6 43.6 16.4 35.3 20.7 16.5 11.2 15.0 19.9 23.3 34.1 39.0 25.3 30.2 26.5 21.4

(µg m−3) Analysis 27.9 33.7 15.7 35.5 19.5 17.3 6.6 13.4 19.1 23.7 29.0 39.1 25.1 30.3 26.5 19.3
One-hour forecast 27.8 34.4 15.7 35.5 19.6 17.0 6.9 12.7 18.8 23.6 29.2 39.0 25.1 30.3 26.5 19.4

Correlation Model 36.0 79.5 54.8 53.8 65.9 54.7 36.7 43.8 −3.4 35.7 65.8 46.6 −26.6 54.6 44.5 51.1
(%) Analysis 16.7 88.3 54.2 45.2 62.4 39.1 71.9 70.4 40.4 0.9 74.6 45.2 −25.8 38.8 39.7 58.9

One-hour forecast 18.8 89.7 53.9 46.2 63.2 43.5 69.4 70.5 35.6 4.1 77.3 45.1 −26.0 43.0 40.2 58.7
MFE Model 83.1 58.4 53.3 78.1 54.7 90.5 45.2 40.4 56.0 59.8 49.5 86.5 61.5 89.0 83.5 57.2
(%) Analysis 82.3 51.4 49.8 76.7 50.5 90.1 27.1 57.5 62.1 58.9 47.2 86.1 61.1 82.8 81.9 52.6

One-hour forecast 82.5 51.3 49.9 77.0 50.1 90.5 28.3 48.0 56.8 58.7 46.7 86.1 61.3 84.0 82.1 51.9
MFB Model −60.6 −52.3 −8.1 −65.9 −37.5 −81.8 −9.7 −16.5 −24.9 −44.8 −41.0 −75.4 −6.1 −89.0 −81.8 −35.5
(%) Analysis −54.3 −46.2 9.4 −62.9 −29.9 −67.5 −0.2 −44.0 −46.7 −26.4 −37.7 −74.7 −9.5 -82.8 −80.2 −31.5

One-hour forecast −55.6 −47.1 6.7 −63.4 −30.5 −71.3 0.1 −34.4 −38.5 −29.2 −38.4 −74.8 −8.6 -84.0 −80.4 −30.9
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Table 3. Statistics of the simulation results without and with DA (for the model, the analysis and
the one-hour forecast) on AirBase network for different species. Period: from 1 January 2001
to 31 January 2001.

Species Simulation # stations Obs. Sim. RMSE Correlation MFE MFB
Mean Mean
µg m−3 µg m−3 µg m−3 % % %

PM2.5 Model 10 18.8 17.7 12.5 61.4 45.4 8.3
Analysis 20.4 8.7 85.8 38.2 13.8

One-hour forecast 19.9 7.9 86.4 34.1 14.8
Sulfate Model 11 2.4 1.7 2.2 62.1 64.1 3.9

Analysis 1.9 2.0 60.3 63.5 5.7
One-hour forecast 1.8 2.0 61.5 62.7 5.9

Nitrate Model 8 4.4 7.8 4.2 66.3 71.9 68.8
Analysis 8.7 6.6 66.3 74.3 70.9

One-hour forecast 8.6 6.2 67.9 73.3 71.4
Ammon. Model 8 2.2 2.6 1.3 81.6 52.9 34.0

Analysis 3.0 1.7 77.8 53.9 36.3
One-hour forecast 2.9 1.6 79.7 52.2 36.9

Chlore Model 6 0.9 2.8 3.0 45.7 93.6 81.6
Analysis 2.7 2.7 41.6 93.4 83.8

One-hour forecast 2.7 2.7 41.8 93.0 84.8
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Table 4. Statistics of the simulation results without and with DA (for the model, the analysis
and the one-hour forecast) on the EMEP network for different species. Period: from 1 January
2001 to 31 January 2001.

Species Simulation # stations Obs. Sim. RMSE Correlation MFE MFB
Mean Mean
µg m−3 µg m−3 µg m−3 % % %

PM10 Model 16 20.2 17.4 17.8 45.3 65.7 19.5
Analysis 19.8 19.0 36.0 70.4 27.3

One-hour forecast 19.4 18.7 36.7 69.0 26.5
PM2.5 Model 7 20.4 17.3 17.2 57.0 68.8 19.9

Analysis 21.1 18.8 52.4 70.0 30.0
One-hour forecast 20.5 18.4 52.9 69.3 29.5

Sulfate Model 55 2.3 1.2 1.9 52.5 63.5 −30.0
Analysis 1.4 1.9 46.6 66.9 −22.7

One-hour forecast 1.4 1.9 47.3 64.6 −22.1
Nitrate Model 14 3.2 6.4 4.2 38.3 92.1 84.3

Analysis 6.9 5.0 34.9 94.7 87.4
One-hour forecast 6.8 4.9 35.2 94.3 87.2

Ammon. Model 9 2.2 2.3 1.6 48.6 57.4 22.0
Analysis 2.6 1.9 42.3 61.5 26.6

One-hour forecast 2.6 1.8 43.0 60.6 26.5
Sodium Model 3 1.2 3.2 3.0 60.6 88.3 81.3

Analysis 3.2 2.9 62.9 87.4 78.8
One-hour forecast 3.2 2.9 61.7 87.2 79.0
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Table 5. Description of the European simulations used for the tests in operational forecasts
and the outputs used for the comparison to observations. t0 is a given day between 3 January
2001 and 30 January 2001. “d” stands for day.

Simulation Data Period Outputs
of assimilation

Without DA – – Model
With DA BDQA t0-3d to t0 One-day forecast (t0 to t0+1d)

(all stations) Two-day forecast (t0+1d to t0+2d)
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Table 6. Statistics of the simulations (model, one-day forecast and two-day forecast) on the
BDQA network for PM10 and PM2.5. Period: 4 January 2001 to 30 January 2001.

Species Simulation # stations Obs. Sim. RMSE Correl. MFE MFB
Mean Mean
µg m−3 µg m−3 µg m−3 % % %

PM10 Model 166 21.8 17.4 16.6 35.7 55.3 −9.2
One-day forecast 18.7 15.0 47.6 49.5 −3.3
Two-day forecast 17.7 16.3 38.5 53.3 −8.1

PM2.5 Model 8 19.8 15.8 15.0 30.2 57.9 −10.3
One-day forecast 16.9 13.5 44.0 44.0 −4.0
Two-day forecast 16.0 14.7 33.1 57.1 −9.4
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Table 7. Configuration of DA for the evaluation of the impact of the assimilation parameters on
the forecasts.

Parameter Reference Alternative

Lh Balgovind 2 cells 0.5 cell
Lv Balgovind 30m 200m
Lv Balgovind 30m 300m
Lv Balgovind 30m 600m
Redistribution all species primary

inorganics
α = v/r 18 1

9633

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/9607/2008/acpd-8-9607-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/9607/2008/acpd-8-9607-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
8, 9607–9640, 2008

PM10 data
assimilation

M. Tombette et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 8. Table of the scores of the different tests at BDQA stations for the first day forecast (6
January 2001).

Simulation RMSE Correlation Concentration mean

Observations 14.1
No assimilation 11.1 54% 11.2
All species (Reference) 10.2 57% 11.3
Primary species 10.9 55% 12.0
Inorganic species 10.2 57% 11.4
Lh=0.5 10.2 57% 11.2
alpha=1 10.4 56% 11.0
Lv=200m 10.2 58% 12.0
Lv=300m 10.3 57% 12.0
Lv=600m 10.3 57% 12.0
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Fig. 1. Location of BDQA stations used for PM10 DA. The background stations are located with
a red triangle, the other ones with a black point. The model grid is also shown.
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Fig. 2. Map of correlations (a) and RMSEs (b) for each country between the simulation and the
AirBase observations for the simulation without DA (blue points) and for the one-hour forecast
after assimilation (red points). The circle diameters are proportional to the statistical indicator.
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Fig. 3. Time evolution of the RMSE for the PM10 forecasts. The vertical line delimits the
assimilation period from the prediction period.
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Fig. 4. Time evolution of the correlation for the PM10 forecasts. The vertical line delimits the
assimilation period from the prediction period.
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Fig. 5. Time evolution of the mean concentration for the PM10 forecasts. The vertical line
delimits the assimilation period from the prediction period.
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Fig. 6. Maps of the absolute difference of the PM10 fields. Comparison between the simula-
tion without assimilation and the simulation with assimilation for the eight tests over the day 6
January 2001.
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