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Abstract

Inverse modeling methods are now commonly used for estimating surface fluxes of
carbon dioxide, using atmospheric mass fraction measurements combined with a nu-
merical atmospheric transport model. The geostatistical approach to flux estimation
takes advantage of the spatial and/or temporal correlation in fluxes and does not re-5

quire prior flux estimates. In this work, a geostatistical implementation of a fixed-lag
Kalman smoother is developed to improve the computational efficiency of the inverse
problem. This method makes it feasible to perform multi-year inversions, at fine reso-
lutions, and with large amounts of data. The new method is applied to the recovery of
global gridscale carbon dioxide fluxes for 1997 to 2001 using pseudodata representa-10

tive of a subset of the NOAA-ESRL Cooperative Air Sampling Network.

1 Introduction

Inverse modeling methods are now commonly used for estimating surface fluxes of
carbon dioxide, using atmospheric mass fraction measurements combined with a nu-
merical atmospheric transport model. The majority of recent studies have implemented15

a Bayesian synthesis inversion approach (e.g. Enting, 2002) applied to continental or
sub-continental regions. In the majority of these applications, the errors associated
with prior flux estimates were considered uncorrelated, as were the errors between
the modeled and observed measurements. Researchers and policy makers are in-
creasingly interested in estimating sources and sinks of greenhouse gases at finer20

spatial and temporal discretizations. This exacerbates two issues associated with the
classical Bayesian setup. First, the assumption of uncorrelated errors becomes more
invalid, and the unbiasedness of prior flux estimates at fine scales becomes more dif-
ficult to determine. Second, the computational cost of the inversion increases, with a
batch setup requiring the inversion of a matrix with dimensions of either the number25

of observations or the number of fluxes to be estimated. This computational cost be-
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comes prohibitive as inversions are performed using more data, at finer scales, and
over longer periods. One solution to the first of these problems was recently proposed
by Michalak et al. (2004) in the form of a geostatistical formulation of the inverse prob-
lem. Such a setup does not require the use of prior flux estimates and takes advantage
of the spatial correlation between fluxes, making it particularly well suited for inversion5

at small spatial scales. One solution to the second of these problems was recently
proposed by Bruhwiler et al. (2005) in the form of a fixed-lag Kalman smoother (FLKS)
that steps through an inversion in multiple steps while conserving information about
the covariance between sequential sets of fluxes. This method dramatically increases
the computational efficiency of inversions, while providing uncertainty estimates almost10

identical to those obtained using batch inversions. Other recently proposed numerical
tools (e.g. Baker et al., 2006; Peters et al., 2005) have the potential to solve large in-
verse problems, but are not designed to provide full information on flux uncertainties
and their covariances. In its current implementation, however, the FLKS can only be
applied with a Bayesian synthesis inversion approach.15

In this technical note, the geostatistical counterpart to the method of Bruhwiler et
al. (2005) is developed, yielding a method that combines the desirable characteristics of
a geostatistical setup and offers the computational efficiencies of the Kalman smoother.
The new method is tested by estimating global monthly-averaged fluxes at the 5.0◦

longitude by 3.75◦ grid scale, using pseudodata generated at 44 observation sites from20

the NOAA Cooperative Air Sampling Network (Tans and Conway, 2005).

2 Methodology

2.1 Geostatistical inverse modeling

The geostatistical approach to inverse modeling is a Bayesian approach in which the
prior probability density function is based on an assumed form for the spatial and/or25

temporal correlation of the surface fluxes to be estimated. This differs from the tradi-
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tional Bayesian approach, where the prior information is in the form of initial surface
flux estimates. Geostatistical flux estimates are not subject to some of the limitations of
traditional Bayesian inversions, such as potential biases created by the choice of prior
fluxes and aggregation error resulting from the use of large regions with prescribed flux
patterns (Michalak et al., 2004). The geostatistical approach is also ideally suited to5

inversions at fine spatial scales. The objective function used in the solution of a linear
geostatistical inverse problem is:

Ls,β = − ln
(
p”

(
s,β|z

))
(1)

=
1
2

(z − Hs)T R−1 (z − Hs)+
1
2

(s − Xβ)T Q−1 (s − Xβ) (2)

where H is an (N×M) matrix of sensitivities of the observations z (with dimensions10

N×1) to the discretized unknown surface flux distribution s (with dimensions M×1), R
is the (N×N) model-data mismatch covariance matrix, Xβ is the model of the mean
of the flux distribution, where X (with dimensions M×p) contains known information on
the form of the mean trend of the fluxes and β (with dimensions p×1) are unknown drift
coefficients (e.g. the fluxes can have a constant but unknown mean), and the (M×M)15

flux covariance matrix Q is based on a spatial and/or temporal correlation structure of
flux deviations from the mean trend. The inverse problem involves solving for both β

and s, and the form of the solution is therefore different from the classical Bayesian
setup (Michalak et al., 2004).

The best estimates of s are obtained by finding the minimum of Ls,β with respect to20

both s and β. After some algebra the system of linear equations can be expressed as:[
HQHT+R HX

(HX)T 0

][
ΛT

M

]
=
[

HQ
XT

]
(3)

and, after solving for Λ and M, the best estimate ŝ and posterior uncertainty covariance
Vŝ of s are defined as:

ŝ = Λz (4)25
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Vŝ = −XM+Q − QHTΛT (5)

The reader is referred to Michalak et al. (2004) for a detailed discussion of the geo-
statistical approach to the inverse problem as applied to the estimation of sources and
sinks of atmospheric trace gases. For the discussion presented in this paper, we will
be estimating a total of T months of fluxes, discretized to m regions globally, using T5

sets of monthly-averaged observations, sampled at n locations (i.e. M=T ∗m; N=T ∗n).

2.2 Fixed-lag Kalman smoother

The size of the matrix that must be inverted in the solution of a synthesis Bayesian
inversion is either (N×N) or (M×M), depending on the selected setup (see, for exam-
ple, Enting (2002)). The cost of the geostatistical inversion is almost identical, with the10

typical inversion being set up in (N+p)× (N+p) format (see Eq. 3), and an equivalent
(M+p)× (M+p) system being the alternative (not shown). Given that the geostatistical
approach to the inverse problem is particularly interesting when fluxes are to be esti-
mated at fine spatial resolutions, the system is typically underdetermined (M>N), and
the form presented in Eq. 3 is more computationally economical.15

As the spatial and or temporal resolution of the fluxes increases and as the total
time period for which the fluxes are to be estimated becomes longer, M becomes very
large and solutions in the (M×M) or (M+p)× (M+p) form become computationally pro-
hibitive. Similarly, as the amount of data increases as a result of observation network
expansions, an increase in the sampling frequency, and/or an increase in the total time20

period for which the fluxes are to be estimated, N becomes very large and solutions
in the (N×N) or (N+p)× (N+p) form become computationally prohibitive. These two
situations are currently happening simultaneously, as researchers strive to estimate
more fluxes using more data.

Recently, Bruhwiler et al. (2005) proposed a fixed-lag Kalman smoother (FLKS) to25

remedy this situation for synthesis inversions. This method allows for the sequential
estimation of a subset of tm sets of fluxes (e.g. monthly-average fluxes) using a sub-
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set of tn sets of data (e.g. monthly-average observations), while providing a rigorous
method for tracking the inferred temporal and spatial covariance between subsets of
fluxes. The method is illustrated in Fig. 1. In the example in the figure, each set of
monthly fluxes is estimated a total of three times (tm=3), each time using one month
of atmospheric observations (tn=1). For each iteration, the latest estimate available for5

each month of fluxes and its covariance are used as prior information. A covariance
propagation scheme allows for correlations between fluxes being estimated and fluxes
no longer being estimated to be conserved. Mathematically, each step of the FLKS
proceeds as follows:

ŝ = sp+QHT
(

R+HQHT
)−1 (

z − Hsp
)

(6)10

Vŝ = Q − QHT
(

R+HQHT
)−1

HQ (7)

where ŝ and sp now have dimensions (tm ∗m), z has dimensions (tn ∗ n), and the
other matrix dimensions are defined accordingly. In a typical setup, a single month of
monthly-averaged observations would be used at a time, yielding a setup that requires
the inversion of an n×n matrix. An equivalent form requiring an inversion of dimension15

(tm ∗m)× (tm ∗m) is:

ŝ = sp+
(

HTR−1H+Q−1
)−1

HTR−1 (z − Hsp
)

(8)

Vŝ =
(

HTR−1H+Q−1
)−1

(9)

In this approach, sp are the most recent estimates of the subset of fluxes being
estimated in a given step, Q is the most recent estimate of their covariance, z is the20

month of data being used to update these flux estimates, R is the covariance of model-
data mismatch for these observations, and H relates the single month of observations
to the several months of fluxes being estimated. In each iteration of the smoother, some
fluxes are estimated for the first time, using a priori flux estimates in the corresponding
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portions of sp. Other fluxes are estimated for at least the second time, using the latest
estimates of these fluxes from previous iterations in the corresponding portion of sp.
The reader is referred to Bruhwiler et al. (2005) for additional details, including the
equivalent equations for the case where the covariance is to be conserved between
fluxes being estimated and fluxes no longer being estimated.5

2.3 Derivation of the Geostatistical Kalman smoother

The form of the solution developed in Bruhwiler et al. (2005) is compatible with the
classical Bayesian approach. For the case of monthly flux estimates, independently
obtained flux estimates (typically from flux inventories and/or biospheric models) are
used as prior information the first time a given month of fluxes is estimated, and the lat-10

est (a posteriori) estimate is updated in the subsequent steps using additional months
of atmospheric data. In the geostatistical approach, the system needs to account for
the unknown components of the model of the mean (β) in obtaining the first estimate
of a given month’s fluxes, but needs to use the latest (a posteriori) estimates for sub-
sequent estimates of a given month’s fluxes. This requires a substantial modification15

to the form of the Kalman smoother because each step through the smoother involves
both flux periods being estimated for the first time (with no prior flux estimate), and
months being estimated for at least the second time (with the latest flux estimates
used as priors).

We start with two populations of fluxes currently being estimated: sj are the fluxes20

that have already been estimated at least once, and sk are the fluxes that have not yet
been estimated. In Sect. 2.3.3, we will also refer to si , which represent one or more
months of fluxes which are no longer being estimated, but whose inferred covariance
with sj can be incorporated into the estimation. In the case where each iteration adds
one month and removes one month of fluxes from the active state (i.e. the set of fluxes25

being estimated in that step), the dimensions of sj are m (tm − 1)×1, and the dimen-
sions of sk are m×1. The latest estimate of sj is designated sp, whereas the model
for the mean behavior of fluxes not yet estimated is designated Xkβk . The latest esti-
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mate of the covariance of sj is designated Qjj , the prior covariance of sk is designated
Qkk , and the cross-covariance between sj and sk is designated Qjk . Jointly, these
covariances are defined as

Q=
[

Qjj Qjk
Qkj Qkk

]
(10)

Note that given that the fluxes sk have not yet been estimated in the inversion, Qjk and5

Qkj represent any prior information on the temporal covariance between fluxes sj and
sk . In subsequent steps of the Kalman smoother, the covariance between consecutive
months of fluxes will be determined based both on this prior information as well as
temporal covariance information derived from the atmospheric data. If no temporal
covariance is assumed a priori, Qjk=QT

kj=0. The objective function defining an inverse10

problem involving fluxes that have a prior estimate and others that do not can be written
as:

Lsj ,sk ,βk
=
(
zk−Hjsj−Hksk

)T R−1 (z − k − Hjsj−Hksk
)

+
([

sj
sk

]
−
[

sp
Xkβk

])T [Qjj Qjk
Qkj Qkk

]−1 ([
sj
sk

]
−
[

sp
Xkβk

])
(11)

where Hj is the sensitivity of fluxes sj to the new set of observations zk , and Hk is the15

sensitivity of fluxes sk to these same observations. Note that throughout this derivation,
the observations z have the background state (i.e. the effect of the months that we are
no longer estimating) pre-subtracted. In the next iteration, part of sj drops out of the
active state and its estimate is treated as the final best estimate, whereas sk becomes
part of sj . For the example presented in blue in Fig. 1, sj= {sl−1,sl } , and sk= {sl+1}.20

For the next iteration, presented in red, sj= {sl ,sl+1} , and sk= {sl+2}.
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2.3.1 Best estimate

First, let us define the inverse of Q as:

Q−1=
[

Qjj Qjk
Qkj Qkk

]−1

=


(

Q−1
)
jj

(
Q−1

)
jk(

Q−1
)
kj

(
Q−1

)
kk

 (12)

where
(

Q−1
)
jj

6= Q−1
jj . To obtain the best estimate of the fluxes, we take the first

derivative of the objective function with respect to sj , sk , and βk and set it to zero5

in order to minimize the objective function. Manipulating these three equations and
putting them into a system of equations we obtain: HTR−1H+Q−1 −


(

Q−1
)
jk(

Q−1
)
kk

Xk

−XT
k

[(
Q−1

)
kj

(
Q−1

)
kk

]
XT
k

(
Q−1

)
kk

Xk


 ŝj
ŝk

β̂k

=


HT
j R−1

y+
(

Q−1
)
jj
sp

HT
kR−1

y+
(

Q−1
)
kj
sp

−XT
k

(
Q−1

)
kj
sp

 (13)

where H=
[
Hj Hk

]
, the full sensitivity matrix of the observations to all the fluxes be-

ing estimated. This linear system of equations is then inverted to obtain the best10

estimates. The above system of equations requires the inversion of a matrix of di-
mensions ((tm ∗m)+p)× ((tm ∗m)+p). Following some linear algebra manipulations,
a form analogous to the batch geostatistical inverse problem can be derived, which
instead only requires the inversion of an ((tn ∗ n)+p)× ((tn ∗ n)+p) matrix:[

HQHT+R HkXk

(HkXk)T 0

][
ΛT

M

]
=

[
HQ[
0 XT

k

]] (14)15

where the best estimate of the fluxes becomes:[
ŝj
ŝk

]
=
[
sp
0

]
+Λ

(
z − Hjsp

)
(15)
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In subsequent iterations through the smoother, ŝk and the portions of ŝj that will be
estimated again become the new priors sp.

2.3.2 Posterior covariance

The inverse of the Hessian is typically used in inversions as an estimate of the posterior
covariances and cross-covariances of fluxes. In this case, taking the second derivative5

of the objective function with respect to sj , sk , and βk , individually and in combination,
we obtain:

Vŝj,ŝj
Vŝj,ŝk

Vŝj,β̂

Vŝk,ŝj
Vŝk,ŝk

Vŝk,β̂

Vβ̂,ŝj
Vβ̂,ŝk

Vβ̂,β̂

=

 HTR−1H+Q−1 −


(

Q−1
)
jk(

Q−1
)
kk

Xk

−XT
k

[(
Q−1

)
kj

(
Q−1

)
kk

]
XT
k

(
Q−1

)
kk

Xk


−1

(16)

where V·,· represents the a posteriori covariance components of sj , sk , and βk . Follow-
ing algebraic manipulations, the posterior covariance of the fluxes can be expressed in10

terms of the solution to Eq. 14:

Vŝ=

[
Vŝj,ŝj

Vŝj,ŝk

Vŝk,ŝj
Vŝk,ŝk

]
= −

[
0

Xk

]
M+Q − QHTΛT (17)

In subsequent iterations through the smoother, the portion of Vŝ corresponding to
fluxes that will be estimated again becomes the new Qjj .

2.3.3 Covariance correction15

As discussed in Bruhwiler et al. (2005), we want to include the covariance between
fluxes no longer being estimated and those still being estimated to avoid underestimat-
ing the uncertainty associated with fluxes being estimated at each step. In order to do
so, we perform the derivation described above a second time, this time including the
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influence of fluxes no longer being estimated, si . First, let us define the inverse of Q
as:

Q−1=

 Qi i Qi j Qik
Qj i Qjj Qjk
Qki Qkj Qkk

−1

=


[(

Q−1
)
i i

] [(
Q−1

)
i j

(
Q−1

)
ik

]

(

Q−1
)
j i(

Q−1
)
ki

 
(

Q−1
)
jj

(
Q−1

)
jk(

Q−1
)
kj

(
Q−1

)
kk


 (18)

where Qi i represents the final covariance of fluxes that are no longer being estimated,
but that are temporally correlated to the current set of estimated fluxes. Qi j , Qik , Qj i ,5

and Qki represent the inferred or assumed covariance between these older fluxes and
the currently-estimated set. The portion of the inverse corresponding to the fluxes
currently being estimated is:

Q̃−1 =


(

Q−1
)
jj

(
Q−1

)
jk(

Q−1
)
kj

(
Q−1

)
kk


=
{[

Qjj Qjk
Qkj Qkk

]
−
([

Qj i
Qki

]
[Qi i ]

−1 [Qi j Qik
])}−1

(19)10

The corresponding objective function becomes:

Lsj ,sk ,βk
=
(
zk − Hisi−Hjsj − Hksk

)T R−1 (zk − Hisi−Hjsj − Hksk
)

(20)

+

 si
sj
sk

 −

 sp,i
sp,j

Xkβk

T  Qi i Qi j Qik
Qj i Qjj Qjk
Qki Qkj Qkk

−1  si
sj
sk

 −

 sp,i
sp,j

Xkβk


where si are fluxes that we are no longer estimating but that are correlated with the
current set of fluxes. For the example presented in blue in Fig. 1, assuming that a single15

month is used for the covariance correction, si= {sl−2} , sj= {sl−1,sl } , and sk= {sl+1}.
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To obtain the best estimate of the fluxes, we minimize this objective function with re-
spect to si , sj , sk and βk . We then take into account the fact that, given that we are
no longer updating si , E

[
si − sp,i

]
=0, and manipulate the resulting three equations

as outlined in Sect. 2.3.1. to obtain:[
HQ̃HT+R HkXk

(HkXk)T 0

][
ΛT

M

]
=

[
HQ̃[
0 XT

k

]] (21)5

where

Q̃=
[

Qjj Qjk
Qkj Qkk

]
−
([

Qj i
Qki

]
[Qi i ]

−1 [Qi j Qik
])

(22)

and the estimated fluxes are:[
ŝj
ŝk

]
=
[
sp
0

]
+Λ

(
z − Hjsp

)
(23)

An analytical expression for the a posteriori uncertainty that takes into account the10

cross-correlation between fluxes no longer being estimated and those still being esti-
mated can be derived in a manner analogous to the method presented in Bruhwiler et
al. (2005). Given the influence of the uncertainty on βk on the uncertainty of the fluxes,
however, the resulting expression becomes exceedingly cumbersome. A computation-
ally equivalent but simpler solution is to present the resulting covariance as a subset of15

a larger covariance by solving the system in Eq. 14, but where H=
[
Hi Hj Hk

]
and Q

is as defined in Eq. 18. he solution of the system defines the posterior covariance:
[
Vŝi ,ŝi

] [
Vŝi ,ŝj

Vŝi ,ŝk

]
[

Vŝj,ŝi

Vŝk,ŝi

] [
Vŝj,ŝj

Vŝj,ŝk

Vŝk,ŝj
Vŝj,ŝk

]
= −

[
0

Xk

]
M+Q − QHTΛT (24)

where we only keep the lower right-hand block for future iterations because we are no
longer updating estimates of si and its covariance.20
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3 Sample Application

The following section presents a sample application of the geostatistical fixed-lag
Kalman smoother (GFLKS) to the estimation of global monthly-averaged surface fluxes
of CO2 on a 3.75◦ latitude by 5.0◦ longitude grid. Because the goal is to validate the
proposed method, we choose a setup that is sufficiently small such that a batch geo-5

statistical inversion can still be performed. We also use pseudodata (with added noise)
to evaluate the ability of the method to recover the actual fluxes.

3.1 Data and basis functions

Assumed flux distributions were used to generate the pseudodata for the experiment.
The flux data that were used to generate the pseudodata were selected to reflect a re-10

alistic set of fluxes for CO2. The estimates used for fossil fuel (FF), oceanic exchange
(OE), and net ecosystem production (NEP) were the same as those applied as pri-
ors in the Atmospheric Tracer Transport Model Intercomparison Project 3 (TransCom3)
(Gurney et al., 2002, 2003). All fluxes used to generate the pseudodata are constant
from year to year, but OE and NEP fluxes have monthly within-year variations whereas15

FF fluxes are assumed constant. Note that although the fluxes used to generate the
pseudodata do not exhibit year-to-year variability, the inversion does allow for such
variability to be inferred. All flux data were defined on a 3.75◦ latitude by 5.0◦ longitude
grid, which yields a 48×72 surface grid with a total of 3456 regions for which the sur-
face fluxes are defined and will be estimated. Over the five year period, this results in20

207,360 unknowns. Samples of the fluxes used to generate the pseudodata are pre-
sented in Fig. 2. Note that these fluxes are used only to generate the pseudodata and
are not used in any way in the inversion.

The sensitivity of the atmospheric measurements to surface fluxes (represented by
matrix H) is calculated using an adjoint implementation of the Tracer Model 3 (TM3)25

atmospheric transport model (Kaminski et al., 1999; Rödenbeck et al., 2003). Ba-
sis functions relating monthly averaged CO2 observations at a subset of the NOAA
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observation network sites to monthly averaged grid-scale fluxes were calculated by
Rödenbeck et al. (2003) for 1982–2001, and the 1997–2001 subset of these basis
functions were used for the work presented here. The model uses interannually vary-
ing ECMWF windfields.

In an effort to generate a set of pseudodata that is consistent with the amount of data5

typically used in inversion studies, the available basis functions were used to generate
pseudodata for months and ESRL sites where actual CO2 data are available. There-
fore, although the observational data have been numerically generated, their spatial
and temporal distribution represents a subset of the ESRL Cooperative Global Air Sam-
pling Network’s data collected for 1997 to 2001. Overall, the dataset consists of 227510

monthly-averaged datapoints, collected over 60 months at a total of 44 sites. Random
error with a standard deviation of σR=0.25 ppm was added to the pseudodata to sim-
ulate the effect of measurement and transport errors. Such a low error was selected
because it was found to magnify differences between the batch and Kalman smoother
results, which was the goal of the exercise. Note that not every station has data at15

every month. A map illustrating the sites at which data was modeled, as well as the
number of months for which these sites were sampled, is presented in Fig. 3. Given
the 2275 observations and the 207,360 fluxes to be estimated, the inversion is strongly
underdetermined.

3.2 Inversion setup20

We assume that the background concentration in the atmosphere prior to the start of
the inversion period is known, in order to avoid the “ramp-up” period typically neces-
sary where the first several months of estimated fluxes are nonsensical as they simply
represent the inversion’s attempts to reproduce the initial background concentration.
As was done in Michalak et al. (2004), surface fluxes are estimated using a constant25

mean model with a different mean for land and ocean fluxes. These constants, how-
ever, are allowed to vary month to month. The restricted maximum likelihood approach
(e.g. Michalak et al., 2004) can be used to estimate the covariance parameters in a
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geostatistical inversion, including the spatial and/or temporal covariance terms in Q
and the model-data mismatch covariance parameters in R. Given that this has been
demonstrated previously and that we are working with pseudodata, we chose here to
focus on the inversion step and have prescribed the covariance parameters based on
the variability of the fluxes used in generating the pseudodata. A priori, temporal co-5

variance is not considered in this case, land fluxes are assumed independent of ocean
fluxes, and the spatial covariance was modeled as an exponential decay, leading to:

Qu,v = σ2
Qexp

(
−
‖xu − xv‖

lQ

)
, if tu=tv and gu=gv (25)

Qu,v = 0, otherwise

where ‖xu − xv‖ is the great circle distance between gridcells at locations xu and xv ,10

tu and tv are the dates of the estimated fluxes, and g is a binary variable identifying
whether a particular gridcell is land or ocean. This setup leads to a block-diagonal Q
matrix. The covariance parameters were σ2

Q=0.40(µmol(m2s))2 and lQ=2700 km for
land fluxes, and σ2

Q=3.0×10−3(µmol(m2s))2 and lQ=5730 km for ocean fluxes. The
model-data mismatch was modeled as independent with a fixed error variance, equal15

to the variance of the errors actually added to the generated pseudodata:

R=σ2
R In (26)

where In is an identity matrix of dimensions n. Based on the work of Bruhwiler et
al. (2005), we chose to include 6 months of fluxes in the active state. This means that
each month of fluxes is constrained by the subsequent 6 months of available atmo-20

spheric data.

4 Results and discussion

The main goal of the proposed approach is to decrease the computational cost asso-
ciated with solving large-scale geostatistical inverse problems aimed at constraining
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budgets of atmospheric trace gases, while providing a best estimate and estimated
uncertainty equivalent to those obtained using a batch inversion, where all fluxes are
estimated using all available measurements. Past work by Bruhwiler et al. (2005) has
established that the vast majority of information about monthly-averaged fluxes can be
derived from the six months of subsequent observations. Therefore, even for inver-5

sions covering many years, the dimensions of the matrix to be inverted is limited to six
months of observations, making the problem computationally manageable.

Estimated gridscale fluxes for selected months of 2000 are presented in Fig. 4.
These fluxes were obtained using the proposed Geostatistical Fixed Lag Kalman
Smoother method. Equivalent fluxes obtained using a batch inversion are visually10

very similar to those in Fig. 4, and are therefore not presented here. This similarity
indicates that the proposed method is able to reproduce estimates obtained using the
geostatistical batch inversion in cases where a sufficient amount of observations (in
this case 6 months) are used to estimate each month of fluxes. The estimated fluxes
are smoother than the true fluxes presented in Fig. 2, which is indicative of the strongly15

underconstrained nature of the inverse problem.
Figure 5 presents a time series of the estimated fluxes aggregated for two of the

TransCom regions, Temperate North America and the South Atlantic. As presented
in panels (c) and (d), the difference in the best estimates and uncertainty estimates
relative to the batch inversion are very small relative to the magnitude of the estimated20

fluxes and their uncertainties. The best estimates obtained using the proposed ap-
proach are very similar to those obtained using the batch inversion approach. The
difference between these two sets of results could be further decreased by using addi-
tional months of observations to constrain each month of fluxes, if such a computational
tradeoff were deemed appropriate. The differences between estimates are more pro-25

nounced relative to the magnitude of the total flux for underconstrained regions such
as the South Atlantic, where more time is required for the flux signal to propagate to
observations. Importantly, the uncertainty estimated using the GFLKS with the covari-
ance correction reflects the information content of the observations used to constrain
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the fluxes. As such, the uncertainty estimated using the Kalman filter is always slightly
higher, correctly reflecting the slight loss of information content associated with using
only six months of observations to constrain each month of fluxes. Without the correc-
tion, the uncertainty estimated with the GFLKS would in some cases be erroneously
low, because it would ignore the inferred temporal covariance between fluxes.5

Figure 6 presents the estimated fluxes for two specific gridcells, to evaluate the im-
pact of the Kalman smoother approach on estimates at the grid scale. Similarly to
Fig. 5, the estimated fluxes and uncertainties are very similar to those obtained using
the batch inversion. At the grid scale, the inferred uncertainty is sometimes marginally
lower for the GFLKS, because the inferred temporal correlation at the grid scale spans10

more than a single month, whereas the implemented covariance correction included
only one month. If more months had been included in the covariance correction, we
could have achieved the intuitive result of the GFLKS uncertainty always being higher
than that from the batch inversion. The uncertainty at the gridscale is quite high overall,
due to the strongly underconstrained inversion setup used in this application. There-15

fore, results at the gridscale serve primarily as a basis for estimating fluxes at aggre-
gated scales (Fig. 5), where a single month covariance correction was sufficient to
accurately estimate the uncertainty.

5 Conclusions

The tools developed in this paper decrease the computational costs associated with20

the solution of a geostatistical inverse model aimed at estimating fluxes of atmospheric
trace gases. For each set of estimated fluxes, the method uses only observations that
provide significant constraints on flux distributions. The covariance between consecu-
tive sets of fluxes is directly incorporated into the estimation, including covariances with
flux periods for which estimates are no longer being updated using the most recent ob-25

servations. Overall, this method makes the solution of large-scale geostatistical inverse
problems feasible, paving the way for additional studies on gridscale flux estimation.
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Whereas past work on the application of geostatistical inverse modeling to trace gas
flux estimation focused on yearly-averaged fluxes, this example also demonstrates the
applicability of the geostatistical approach to inverse modeling for estimating monthly-
averaged fluxes. Results indicate that even the constant mean model yields flux esti-
mates that agree well with independent flux information for well-constrained areas of5

the Earth (e.g. temperate North America). Ongoing work is exploring the use of aux-
iliary environmental data to inform a more sophisticated model of the trend, which will
allow the geostatistical approach to represent more fine-scale spatial structure in the
flux distribution, while still avoiding the use of prior flux estimates.
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Hl2,1  Hl2,l2 Hl2,l1 Hl2,l Hl2,l1 Hl2,l2 0  0
Hl3,1  Hl3,l2 Hl3,l1 Hl3,l Hl3,l1 Hl3,l2 Hl3,l3  0
Hl4,1  Hl4,l2 Hl4,l1 Hl4,l Hl4,l1 Hl4,l2 Hl4,l3  0
Hl5,1  Hl5,l2 Hl5,l1 Hl5,l Hl5,l1 Hl5,l2 Hl5,l3  0
         

HN,1  HN,l2 HN,l1 HN,l HN,l1 HN,l2 HN,l3  HN,M

s1


sl2
sl1
sl
sl1
sl2
sl3


sM

Fig. 1. Representation of time stepping through fixed-lag Kalman smoother. The subscripts
indicate month numbers.Notice that observations are only sensitive to fluxes occurring in the
same or previous months, and the l ’th month of observations is therefore used to constrain
fluxes for months l − tm+1 through l .
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Fig. 2. Sample fluxes used in generating pseudodata.These fluxes represent the sum of the
fossil fuel, oceanic exchange and net ecosystem production fluxes. Fluxes vary monthly, but
only January, April, July, and October fluxes are presented here. Units are µmol/(m2s).
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Fig. 3. Locations of pseudodata measurements. The numbers indicate the number of monthly
averaged measurements available at each location. Note that the two locations listing a sum
are areas where two observation locations are too close to one another to be resolved on the
plot. This occurs for (i) St. Davids Head, Bermuda (BME), and Tudor Hill, Bermuda (BMW), and
(ii) Mauna Loa, Hawaii (MLO), and Cape Kumukahi, Hawaii (KUM). Black squares designate
gridcells for which flux estimates are compared to prescribed fluxes in Fig. 6. Shaded areas
represent the Temperate North America and South Atlantic TransCom3 regions, for which flux
estimates are compared to prescribed fluxes in Fig. 5.
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Fig. 4. Sample gridscale fluxes recovered using geostatistical fixed-lag Kalman smoother.
Fluxes vary monthly, but only January 2000, April 2000, July 2000, and October 2000 fluxes
are presented here. Units are µmol/(m2s). The corresponding fluxes obtained using a batch
inversion were visually very similar to those obtained using the Kalman smoother. (a) Flux best
estimates. (b) A posteriori uncertainties expressed as the standard deviation of the estimation
error.
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Fig. 5. Monthly recovered flux estimates and uncertainties for the year 2000 aggregated to the
TransCom3 regions. Results for Temperate North America and South Atlantic are presented
in panels (a) and (b). Uncertainties on the GFLKS are in dashed line; uncertainties for the
batch inversion are shaded. Panels (c) and (d) represent the difference between estimates and
uncertainties obtained using the Kalman smoother, those obtained using a batch inversion, and
the true fluxes used in generating the pseudodata.
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Fig. 6. Monthly recovered flux intensity estimates and uncertainties for the year 2000 for two
sample gridcells. (a) Latitude=[41.25 N,45.00 N], Longitude=[85.00 W,80.00 W], surrounding
Ann Arbor, Michigan. (b) Latitude=[33.75 S,30.00 S], Longitude=[10.00 W,5.00 W] South At-
lantic. Uncertainties on the GFLKS are in dashed line; uncertainties for the batch inversion
are shaded. Panels (c) and (d) represent the difference between estimates and uncertainties
obtained using the Kalman smoother and those obtained using a batch inversion.
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