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Abstract

We have developed an ensemble Kalman Filter (EnKF) to estimate 8-day regional sur-
face fluxes of CO2 from space-borne CO2 dry-air mole fraction observations (XCO2

)
and evaluate the approach using a series of synthetic experiments, in preparation for
data from the NASA Orbiting Carbon Observatory (OCO). The 32-day duty cycle of5

OCO alternates every 16 days between nadir and glint measurements of backscat-
tered solar radiation at short-wave infrared wavelengths. The EnKF uses an ensemble
of states to represent the prior error covariance to estimate 8-day CO2 surface fluxes
over 144 geographical regions. We use a 12×8-day lag window, recognising that XCO2

measurements include surface flux information from prior time windows. The obser-10

vation operator that relates surface CO2 fluxes to atmospheric distributions of XCO2

includes: a) the GEOS-Chem transport model that relates surface fluxes to global 3-D
distributions of CO2 concentrations, which are sampled at the time and location of OCO
measurements that are cloud-free and have aerosol optical depths <0.3; and b) scene-
dependent averaging kernels that relate the CO2 profiles to XCO2

, accounting for differ-15

ences between nadir and glint measurements, and the associated scene-dependent
observation errors. We show that OCO XCO2

measurements significantly reduce the
uncertainties of surface CO2 flux estimates. Glint measurements are generally better at
constraining ocean CO2 flux estimates. Nadir XCO2

measurements over the terrestrial
tropics are sparse throughout the year because of either clouds or smoke. Glint mea-20

surements provide the most effective constraint for estimating tropical terrestrial CO2
fluxes by accurately sampling fresh continental outflow over neighbouring oceans. We
also present results from sensitivity experiments that investigate how flux estimates
change with 1) bias and unbiased errors, 2) alternative duty cycles, 3) measurement
density and correlations, 4) the spatial resolution of estimated flux estimates, and 5)25

reducing the length of the lag window and the size of the ensemble.
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1 Introduction

CO2 surface fluxes inferred from atmospheric CO2 concentrations by inverting models
of atmospheric transport have led to substantial improvements in our quantitative un-
derstanding of the contemporary carbon cycle (e.g., Bousquet et al., 2000). Previous
studies that employ these methods to estimate surface fluxes of CO2 have tended to5

use accurate, but spatially sparse and heterogeneous, in situ measurements, which
were not designed for the flux estimation problem, consequently limiting the extent
of spatial disaggregation of fluxes that can be achieved (e.g., Houweling et al., 1999;
Rödenbeck et al., 2003). Satellite measurements of CO2 offer new constraints for
estimating surface fluxes. The SCcanning Imaging Absorption spectroMeter for Atmo-10

spheric ChartographY (SCIAMACHY) satellite instrument (Bovensmann et al., 1999)
has measured short-wave infra-red wavelengths (SWIR), with greatest sensitivity to
CO2 in the lower troposphere, since its launch in 2002. Current CO2 column volume
mixing ratio products from SCIAMACHY have an estimated measurement accuracy of
between 1 and 5% (Schneising et al., 2008; Barkley et al., 2006, 2007). Uncharac-15

terized systematic and random errors (e.g., Houweling et al., 2005), while the subject
of ongoing research (Schneising et al., 2008), limit the application of these data for
surface flux estimation. Top-down studies that use satellite measurements of CO2 re-
trieved at thermal infra-red wavelengths, with greatest vertical sensitivity in the free
troposphere, have concluded that uncharacterized observation and model biases com-20

promise resulting surface flux estimates (Chevallier et al., 2005; Tiwari et al., 2006).
The NASA Orbiting Carbon Observatory (OCO) (Crisp et al., 2004) and the

Japanese Greenhouse Observing SATellite (GOSAT) (Maksyutov et al., 2008), both
due for launch in early 2009, will measure SWIR wavelengths, that are sensitive to
CO2 in the free and lower troposphere. OCO and GOSAT will operate two modes of25

observation: (1) nadir, and (2) glint, where the instrument boresight is directed off-nadir
to the angle of specular reflection. The glint mode increases the signal to noise of mea-
surements over the ocean. Dry-air CO2 mole fractions (XCO2

) will be retrieved from the
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observed spectra to a precision of 1−2 ppm (Crisp et al., 2004), a level of precision
necessary to improve upon constraints from existing in situ measurements (Rayner
et al., 2002; Patra et al., 2003; Miller et al., 2007). We focus on OCO measurements
of CO2, but the general assimilation approach described here can easily be applied to
GOSAT data.5

Recent studies have used variational data assimilation methods with synthetic OCO
observations to show that these data have the potential to estimate weekly and daily
surface CO2 fluxes at model grid scales of order 3.75◦×2.5◦ (Baker et al., 2006; Cheval-
lier et al., 2007a; Chevallier, 2007b). These studies (1) used a simple representation
of measurements, assuming only glint-mode (Chevallier et al., 2007a) or making no10

distinction between nadir and glint observations (Baker et al., 2006); or (2) assumed
a simple representation for measurement errors in which a uniform value is adopted
(Chevallier et al., 2007a).

We have developed an Ensemble Kalman Filter (EnKF) (Evensen, 1994, 2003;
Ehrendorfer, 2007) to estimate surface CO2 fluxes from space-borne measurements15

of XCO2
(Sect. 2). The EnKF, an independent and complementary approach to varia-

tional assimilation, has been developed in the physical oceanography and meteorology
communities (e.g., Evensen, 1994; Houtekamer and Mitchell, 1998; Lorenc, 2003), and
recently applied to carbon cycle research (Peters et al., 2005; Bruhwiler et al., 2005).
The EnKF methodology we use is outlined in Sect. 3. We use the GEOS-Chem chem-20

istry transport model to describe the relationship between surface CO2 fluxes and 3-D
atmospheric CO2 concentrations, which are then sampled along the proposed OCO
orbits and convolved with scene-dependent instrument averaging kernels as a function
of observation modes, surface types, solar zenith angles, and optical depths (Sect. 2).
This new, improved description of OCO measurements and their errors (Bösch et al.,25

2008, Sect. 2) is expected to provide more realistic descriptions of XCO2
distributions,

with which to infer more realistic flux estimates. We use the EnKF to explore the sen-
sitivity of the surface flux inverse problem to changes in instrument configurations and
the size of geographical regions over which fluxes are to be estimated (Sect. 4). We
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conclude the paper in Sect. 5.

2 Simulated OCO XCO2
observations and uncertainties

The OCO instrument will be launched in early 2009 into the NASA EOS Afternoon
Constellation (A-train), which is in a sun-synchronous polar orbit at an approximate al-
titude of 705 km. This orbit has 14.6 equator crossings per day, separated by 24.7◦ in5

longitude, resulting in a 16-day repeat cycle. OCO will have a local equatorial crossing
time of 13:18. The OCO platform includes three, high-resolution grating spectrome-
ters that measure absorptions of the reflected sunlight by using two CO2 bands (1.61
and 2.06µm) and the O2 A-Band (0.765µm) using nadir view geometry or glint view
geometry in which the instrument will be pointed to the spot where solar radiation is10

specular reflected from the surface (Crisp et al., 2004). The 32-day duty cycle of OCO
will alternate between 16-day cycles of nadir and glint modes.

We model OCO XCO2
measurements in a four-step process, which constitutes the

observation operator H that relates surface CO2 fluxes to global distributions of XCO2
.

First, we use the GEOS-Chem chemistry transport model (v7-03-06) to relate surface15

fluxes to global 3-D CO2 concentrations. For the purpose of these calculations we use
the same flux inventory as described in Palmer et al. (2008) for 2003. For the sake
of brevity, here we describe the model briefly and refer the reader to Appendix A and
Palmer et al. (2008) for further details. We use a 2◦×2.5◦ horizontal resolution for the
experiments described here, with meteorological analyses from version 4 of the GEOS20

model from the NASA Goddard Global Modelling and Assimilation Office. We include
CO2 estimates for daily biospheric fluxes (Potter et al., 1993), monthly oceanic fluxes
(Takahashi et al., 2002), monthly biomass burning fluxes from the second version of
the Global Fire Emission Database (GFEDv2) for 2003, a climatological distribution of
annual fossil fuel emissions that have been scaled to 2003 (Palmer et al., 2008), and25

climatological biofuel fluxes (Yevich and Logan, 2003).
Second, we sample the 3-D field of CO2 concentrations at the time and the location
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of each nadir and glint measurement using the orbits of the Aqua satellite in 2006,
which leads the A-train constellation with a local equatorial crossing time of 13:30. The
retrievals are assumed to be made from binned scan pixels, so that two consecutive
observations in one orbit are separated by 20 s, which corresponds to 1.2◦ in latitude.

Third, we use seasonal probability density functions (PDFs) of cloud and aerosol5

optical depths (AODs), derived from the MODIS and MISR instruments (Bösch et al.,
2008), to remove cloudy scenes and scenes with AOD >0.3 that will not be retrieved, at
least, initially from OCO. These restrictions remove about 50–60% of the daily available
nadir measurements, and 60–70% of the daily glint measurements. Hereinafter, we
refer to the resulting measurements as clear.10

Finally, we apply scene-dependent averaging kernels, which account for the vertical
sensitivity of OCO, to map from the 1-D CO2 concentrations profiles to XCO2

(Connor
et al., 2008):

XCO2
= XCO2,a + A

(
1

1 − w

)(
M(xt) − fa

)
. (1)

Lower case variables in bold denote vectors and upper case variables in bold denote15

matrices. The subscript a denotes a priori; M(xt) is the GEOS-Chem chemistry trans-
port model driven by “true” surface fluxes of CO2 (xt); w denotes GEOS-4 water mole
fractions that are used to map from CO2 concentrations to dry mole fraction; and fa is
climatological dry CO2 mole fractions that will be used to retrieve CO2 profile informa-
tion from OCO, and XCO2,a is the associated column amount. We use an annual zonal20

mean for fa. The column averaging kernel a is given by tTA, where A is the averaging
kernel, t is the column integration operator that integrates a vertical profile to a column
and superscript T denotes the matrix transpose operation.

We use averaging kernels as a function of two view modes (nadir and glint), five
surface types (snow, ocean, soil, conifer, and desert), ten solar zenith angles (SZA)25

(from 10◦ to 85◦ for nadir measurements, and from 10◦ to 72◦ for glint measurements),
and seven AODs from 0 to 0.3 (Bösch et al., 2008).
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Figure 1a and b shows averaging kernels for five different surface types at a solar
zenith angle of 10◦ under a clear-sky with an AOD of 0.1. In general, OCO averaging
kernels peak in the mid and lower troposphere. The instrument sensitivity to changes
in CO2 near the surface is particularly important for flux estimation. Using nadir view
geometry, the oceans are relatively dark at the SWIR wavelengths measured by OCO,5

and the resulting averaging kernels below 400 hPa are lower than over other surface
types. In contrast, glint view measurements over the oceans take advantage of specu-
lar reflection, resulting in a large signal to noise and an averaging kernel close to unity
below 400 hPa.

The uncertainty associated with the simulated XCO2
also depends on the scene char-10

acterization. Figure 1c and d shows observation errors over 5 different surface types
as a function of SZA. The error over land is usually <0.5 ppm for a single nadir mea-
surement at SZAs <40◦, but increases with SZA, eventually reaching 1.2 ppm at a SZA
of 85◦. Observation errors for nadir measurements over ocean are typically >3.0 ppm
for all SZAs. In contrast, the error for a single glint measurement over ocean is typically15

<0.4 ppm, smaller than nadir errors over land, which as we show later has important
implications for flux estimation using these data.

Figure 2 summarises the resulting 2◦×2.5◦ distribution and uncertainties of nadir and
glint XCO2

measurements between 17th January and 1st February 2003. Continental
regions at mid and low latitudes typically have uncertainties of <0.2 ppm (Fig. 2b), well20

within the target precision of OCO (Crisp et al., 2004), while oceans have an obser-
vation error >3 ppm. Over tropical regions, scenes are frequently obscured by clouds
during the wet seasons, and frequently obscured by smoke aerosol from biomass burn-
ing during the dry seasons. Glint measurements are generally restricted to a smaller
latitude range (85◦ S to 55◦ N for the months shown) than nadir measurements because25

they are used over a small range of SZAs (<72◦ for glint versus <85◦ for nadir). There
are typically less glint observations than nadir over the tropics due to their larger view
spot ('25 km2 at the extreme view angles versus '3 km2 for the nadir view). The larger
view spot increases the probability of cloud obscuration. A similar method is used
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to define “model” XCO2
distributions for the observation system simulation experiment

(OSSE) in Sect. 4.

3 The Ensemble Kalman Filter

3.1 Basic formulation

We have developed an ensemble data assimilation system based on the Ensemble5

Transform Kalman Filter (ETKF) technique (Bishop et al., 2001) to simultaneously as-
similate consecutive XCO2

observations. At each assimilation cycle, we assimilate 8-
day OCO observations yobs to improve the prior estimation of regional surface CO2
fluxes via:

xa = xf + K[yobs − H(xf )] (2)10

K = Pf HT [HPf HT + R]−1, (3)

where xf is the a priori state vector; xa is the a posteriori; H is the observation operator
that describes the relationship between the state vector and the observations (Sect. 2);
and K is the Kalman gain matrix that determines the adjustment to the a priori based
on the difference between model and observations and their uncertainties. R is the15

observation error covariance matrix, and Pf is the a priori error covariance matrix. H,
the Jacobian of the observation operator H , maps Pf into observation space.

The observation error covariance R includes measurement (instrument+ retrieval)
error, model (transport) error and representation error (Peylin et al., 2002). Quantifying
model error is non-trivial, and for simplicity we have assumed uniform model and rep-20

resentation errors: 2.5 ppm over land regions and 1.5 ppm over oceans (Rödenbeck
et al., 2003), both of which are uncorrelated with the measurement errors. Also, we
assume that R is either diagonal (i.e., no observation correlation, Sect. 4.1), or has a
simple block structure for correlations between successive observations (Sect. 4.4).
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Here, the state vector includes 8-day mean CO2 surface fluxes from 144 regions that
span the globe (Fig. 3), based on the 22 regions used by TransCom-3 (T3) (Law et al.,
2003; Gurney et al., 2002). We divide each T3 land region into 9 near-equal areas
(resulting in 9×11 land regions), and divide each T3 ocean region into 4 near-equal
areas (resulting in 4×11 ocean regions). We have included one region (region 1) to5

represent all other low-emission regions, typically covered by snow. Recognising that
observed CO2 concentration variations contain a history of source/sink signatures, the
state vector x consists of these regional fluxes at the current assimilation timestep
and those from the previous 11 timesteps. This corresponds to solving the regional
fluxes over a 96-day period (3×32-day OCO duty cycles), resulting in 12×144 control10

variables.
We estimate the associated forecast error εi for an individual geographical region i

at the current assimilation step by rescaling the annual-mean T3 regional a priori error
εT3 (e.g., Patra et al., 2003) to an 8-day mean flux error over an area of 1/9 (for lands)
or 1/4 (for oceans) size of the parent T3 region:15

εi = εT3

(√
365

8

)√ Al

AT3

 , (4)

where the first bracketed term represents the scaling from the TransCom annual mean
error to the 8-day period, and the second bracketed term represents the scaling from
T3 area AT3 to the regional area Al . Table 1 summarises the forecast errors for the
regions 2 to 144. We assume that the snow region (region 1) has zero emissions with20

an uncertainty of 0.1 GtC yr−1. We also assume no spatial correlation between these
regional flux forecasts, so that their (sub) error covariance matrix is diagonal. The
other 11×144 variables (for previous 8-day periods), having passed through a number
of assimilation cycles, include spatial and temporal correlations.

To avoid computing the Jacobian of the observation operator H , the EnKF approxi-25

mates the a priori error covariance by introducing an ensemble of perturbation states
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∆Xf = [∆x1,∆x2, ...,∆xNe
] (Evensen, 1994), so that

Pf = ∆Xf (∆Xf )T , (5)

where we have absorbed the normalization factor 1/(Ne−1) into ∆Xf (Zupansi, 2005).
As a result, K can now be approximated by the ensemble gain matrix Ke:5

Ke = ∆Xf (∆Y)T [∆Y(∆Y)T + R]−1, (6)

∆Y = H(∆Xf ). (7)

In the above equations, we have made use of H(∆Xf )=H(xf+∆Xf )−H(xf ) for the linear
observation operator H .

Another advantage of the EnKF is its ability to directly calculate the analysis error10

covariance. We use the revised, unbiased Ensemble Transform Kalman Filter (ETKF)
algorithm (Wang et al., 2004; Livings et al., 2008) to determine the analysis ensemble
∆Xa and the a posteriori error covariance, Pa:

∆Xa = ∆Xf T, (8)

and15

Pa = ∆Xf T(∆Xf T)T . (9)

The transform matrix T given by

T(T)T = I − (∆Y)T [∆Y(∆Y)T + R]−1∆Y. (10)

We simplify the calculation of T, Ke, and [∆Y(∆Y)T+R], which is quite large due
to the dense OCO observations, by using singular value decomposition (SVD) of the20

scaled model observation ensemble ∆YTR−1/2 (Livings, 2005).
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3.2 A priori error and its representation

We construct an ensemble of perturbation states to reflect the a priori error covariance
matrix, using eigenvalue decomposition:

Pf = Vxp1/2
(

Vxp1/2
)T

, (11)

where Vx and p are the eigenvector matrix and the eigenvalue diagonal matrix of the5

error covariance, respectively.
At the limit of using the full rank matrix, as we do here, the ensemble of perturbation

states is defined as:

∆Xf = Vxp1/2, (12)

where the matrix ∆Xf has a size of Nx×Ne, with Nx=12×144, and the ensemble size10

Ne being equal to Nx.
The most time-consuming part in our flux inversions is the projection of these pertur-

bation states to the observation space by using the observation operator that includes
running a global transport model (Sect. 2). To avoid running the transport model for
every different observation configuration used in our experiments, we define one diago-15

nal matrix ∆Xf
0 of the same size as ∆Xf , with each column only specifying an emission

occurring in one of the twelve 8-day periods over one of the 144 regions. We then
calculate the variations in the observed XCO2

caused by these emissions through the
observation operator H

∆Y0 = H(∆Xf
0). (13)20

Because H is linear, we can calculate ∆Y for any given a priori ensemble ∆Xf by:

∆Y = H(∆Xf ) = ∆Y0

(
[∆Xf

0]−1∆Xf
)
. (14)
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In principle, we only need to retain part of column vectors given by Eq. (12) and
ignore those associated with small amplitudes to provide a good approximation of the
error covariance. However, such a reduced representation usually requires re-running
GEOS-Chem model for every different observation configuration (see Appendix B),
while tending to underestimate the a posteriori uncertainties (Sect. 4.6), on which this5

study is focused.

4 Results

We evaluate our EnKF approach using an observing system simulation experiment
(OSSE) framework, which is illustrated in Fig. 4. Observed XCO2

distributions are de-
scribed in Sect. 2, which we regard as the “truth”. Model XCO2

distributions are defined10

similarly but we assume the prior flux estimates to be 80% higher than the “true” values.
First, we present results from a control experiment for a 7-month period from 1st Jan-

uary to 31st July 2003, during which the OCO instrument is assumed to operate at the
nominal 32-day duty cycle with alternating 16-day nadir and glint measurements. We
then assess the sensitivity of the a posteriori flux estimates to 1) systematic (bias) and15

random (unbiased) errors; 2) observation error, density and correlations; 3) alternative
duty cycles; 4) the spatial resolution of the state vectors; and 5) the length of the lag
window and the size of the ensemble.

We evaluate the performance of the EnKF by using an error reduction γ

γ = 1 − σa/σf , (15)20

where σf and σa denote the a priori and a posteriori variance uncertainties, respec-
tively. For each 8-day mean regional flux, we calculate its σf from the a priori error
covariance at the time when it first enters the lag window, and calculate σa from the a
posteriori error covariance at the time when it leaves the lag window.

In principle, the error reduction γ reflects only the quality of the observations, and not25

any assumption we have made about the “true” or prior fluxes. However, approxima-
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tions in EnKF approaches may lead to underestimation of the a posteriori uncertainties
(Livings et al., 2008), in particular, when a reduced representation of the error covari-
ance is used (see Sect. 4.6).

4.1 Control experiment

Figure 5 presents the error reduction in the estimates for 8-day mean fluxes over 144 re-5

gions. The results have been averaged over a 32-day period from 17th January to 17th
February 2003.

During the northern winter, nadir measurements cover the latitudes between 90◦ S
and 60◦ N, while glint measurements only reach 55◦ N. As a result, over most land
regions between 30◦ S and 50◦ N, OCO measurements reduce uncertainties in the flux10

estimates by more than 70% (Fig. 5a), while errors over the boreal latitudes decrease
by 20−65%. The widespread error reduction reflects the coverage and the precision of
nadir and glint measurements.

We find that most of the error reduction occurs when the continental signal is younger
than 3 weeks and still distinct from the slowly varying background. Over regions with a15

dense distribution of observations, the error reduction can reach saturation well within
three (8-day) assimilation cycles. Conversely, at the northern high latitudes during
winter, when there is a low observation density, saturation of error reduction requires
more time but is still within 5–6 assimilation cycles (<2 months). These results suggest
that our 3-month lag window is more than sufficient (Sect. 4.6).20

We find that OCO measurements reduce the uncertainties in oceanic CO2 flux esti-
mates by 10−60%, despite small a priori errors. Most of these reductions are attributed
to the accurate glint measurements over the oceans (Fig. 1). To highlight this point,
Fig. 5b shows the error reduction when the glint measurements over the oceans are
excluded from the assimilation. Without these measurements, the error reduction over25

ocean reaches 10−30%. We also find that omitting glint measurements over ocean
also leads to lower error reduction over tropical continents. For example, the error re-
duction for region 27 over tropical South America is 50%, compared to 70% with all
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clear glint measurements (Fig. 5a). The results reflect the additional constraints on
continental surface CO2 flux from accurate glint measurements of continental outflow
over the surrounding oceans.

The results for the time period from 1st May to 1st June 2003 (Fig. 5c) show similar
significant error reduction over lands. In particular, the northern high latitudes are now5

fully covered by OCO measurements, and the corresponding error reduction reaches
40−90%.

4.2 Sensitivity to bias and unbiased error

We generate a random observation error for each OCO measurement through ran-
domly sampling a Gaussian probability distribution function with the variance equal10

to the measurement uncertainty. Figure 6 shows that including random errors to the
“true” OCO observations (see Fig. 4) leads to departures from the control flux esti-
mates. These departures are well within the a posteriori errors, and usually become
even smaller when averaged over a longer period (not shown).

The impacts from small-scale or scene-dependent measurement biases on the15

source/sink estimation are of greater interest. Previous work has implemented coher-
ent bias by relating it with to the sub-micron aerosols (Chevallier et al., 2007a). We use
a similar approach to include an observation bias (in ppm) twice that of the obscured
AODs. This results in a maximum bias for clear observations of about 0.6 ppm, a mag-
nitude similar to the typical observation error. Using this approach, we find significant20

positive biases over Eurasia, and over Europe, accompanied by negative and positive
biases over Pacific, similar to Chevallier et al. (2007a). However, these systematic
differences in the estimated fluxes are still smaller than the a posteriori errors.

4.3 Sensitivity to measurement duty cycle

The OCO satellite repeats its sun-synchronous orbit every 16 days and the current25

instrument configuration is to switch between nadir and glint mode at the same fre-
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quency (Crisp et al., 2004), which can be reprogrammed within orbit, if necessary.
Consequently, there are a number of nadir-glint measurement combinations that could
form a 32-day duty cycle over the nominal two-year OCO mission. Here we assess the
impact of two alternative duty cycles on estimating surface CO2 fluxes: the nadir-only
cycle and the glint-only cycle.5

Figure 7a compares the results for the nadir-only and glint-only duty cycles with the
control experiment. We have averaged the results over a 32-day cycle from 17th Jan-
uary to 17th February 2003. For all the three duty cycles, the geographical pattern of
the resulting error reduction is similar, showing significant reductions (40−85%) over
lands, and moderate reductions (10−65%) over oceans. Because of the wider observa-10

tion coverage, the nadir-only cycle has better performance over northern high latitudes
than the other duty cycles. However, glint-only measurements lead to slightly larger
error reductions over the terrestrial tropics, although nadir measurements theoretically
represent better constraints for terrestrial sources and sinks by sampling overhead. As
mentioned previously, we generally find that tropical land masses are typically charac-15

terized by extensive and persistent cloud cover during the wet season and by smoke
aerosol during the dry season so the observation density of nadir measurements is
low. High-precision glint measurements, sampling continental outflow over the oceans,
provide important constraints for estimating land flux estimates.

Nadir measurements provide little constraint on ocean CO2 flux estimates, as ex-20

pected. Glint measurements lead to significant reductions of flux errors over the
oceans, reaching 40−60% over the tropics. The 16-day nadir/glint switch leads to a
moderate performance between the glint-only and nadir-only duty cycles.

4.4 Sensitivity to observation density and correlation

Figure 7b shows that because of the high observation density, reducing the clear ob-25

servation number by 20% only slightly degrades (i.e., increases) the uncertainties of
the estimated fluxes.

To investigate the impact of measurement correlations, we assume a distance-
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dependent spatial correlation between observations from the same satellite orbits so
that the off-diagonal term R(m1,m2) for two measurements m1 and m2 in one orbit is
given as

R(m1,m2) =
√
R(m1,m1)R(m2,m2) exp

(
−l (m1,m2)/lcor

)
, (16)

where lcor=300 km is the characteristic spatial correlation length scale, and l (m1,m2) is5

the distance between the two measurements m1 and m2. Here we assume that these
correlations between successive XCO2

arise from both the model and observation er-
rors. Figure 7b shows that imposing a spatial correlation weakens the measurement
constraint on flux estimations, as expected. We find the largest impacts from including
observation correlations are over the oceans where there is a greater density of cloud10

and aerosol-free measurements, in agreement with Chevallier (2007b). Successive
clear measurements over most land regions are sparse and consequently strong cor-
relations are rare. The shown degradation reflects a weaker but possibly more realistic
measurement constraint, but does not suggest that it is a beneficial practice to ignore
the existing observation correlations in data assimilation (Stewart et al., 2008).15

4.5 Sensitivity of state vector resolution

To investigate the sensitivity of our results to the spatial resolution of the state vec-
tor, we estimate 8-day surface fluxes over South American tropical region during Jan-
uary 17th to 17th February 2003 at 4 different spatial resolutions: 1) the standard T3
region, 2) the 1/4 T3 region (about 2 300 000 km2), and 3) the 1/9 T3 region (about20

1 100 000 km2), and 4) at 4◦×5◦ resolution grid boxes (about 220 000 km2). To reduce
the computational costs, we represent the rest of world using the other standard T3
regions (plus one low emission region, see Sect. 3).

Figure 8 shows that the mean error reduction (i.e., the averaged error reduction over
tropical South America) decreases rapidly as the the spatial resolution increases. All25

these experiments lead to almost the same spatial pattern in the aggregated errors
over T3 regions as our control run with 144 regions (not shown here).
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4.6 Sensitivity to lag window and ensemble size

Figure 9a compares the estimated fluxes in the control experiment with the results
for the inversions with a shorter lag window (8×8 days vs. 12×8), or with a smaller
ensemble size (6×144 vs. 12×144, see Appendix B). The differences in the resulting
fluxes are typically smaller than 0.05 GtC yr−1.5

Figure 9b shows that when the lag window shrinks to 8×8 days, the error reductions
reach almost the same values as the control run, indicating our results are not sensitive
to the length of the lag time window. When the size of the a priori ensemble is halved
from 12×144 to 6×144, the error reduction is generally overestimated, due to the loss
of the a posteriori variations by gradually removing perturbation states associated with10

small flux uncertainties.

5 Conclusions

We developed an ensemble Kalman Filter (EnKF) to estimate 8-day regional surface
fluxes of CO2 from space-borne CO2 dry-air mole fraction observations (XCO2

) and
evaluated the approach using a series of synthetic experiments, in preparation for data15

from the NASA Orbiting Carbon Observatory (OCO). The 32-day duty cycle of OCO al-
ternates between nadir and glint (specular reflection) measurements of backscattered
solar radiation at short-wave infrared wavelengths. Our EnKF represents a comple-
mentary approach to the variational techniques that have already been developed for
interpreting the space-borne XCO2

data (e.g., Chevallier et al., 2007a). The main ad-20

vantages of the EnKF is that it does not require the linearized versions of the forecast
and observation operators and provides a framework to estimate the uncertainty of
a posteriori fluxes. We use the ensemble transform Kalman Filter algorithm to deter-
mine the ensemble analysis and its error covariance.

For this work, we estimate 8-day CO2 surface fluxes over 144 geographical regions25

(corresponding to 1 100 000 km2 over land), based on the TransCom-3 experiments
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(Gurney et al., 2002). We use a 12×8-day lag window, taking into account that XCO2

measurements include surface flux information from prior time windows. The obser-
vation operator relates surface CO2 fluxes to the global distributions of the “observed”
XCO2

. First, we use the GEOS-Chem transport model to relate surface fluxes to global
3-D distributions of CO2 concentrations. Second, these distributions are sampled at the5

time and location of OCO measurements, using geolocation data from the Aqua satel-
lite that precedes OCO by 15 min. Third, we use seasonal probability density functions,
determined from MODIS and MISR, to remove cloudy scenes and scenes with aerosol
optical depth (AOD)>0.3. Finally, we use scene-dependent averaging kernels, deter-
mined using detailed radiative transfer modelling specific to OCO (Bösch et al., 2008),10

to relate the CO2 profiles to XCO2
as a function of land-type, AOD, solar zenith angle,

and nadir and glint view modes. We use the scene-dependent measurement errors
that correspond to the averaging kernels. These scene-dependent calculations pro-
vide us with the most realistic simulation of XCO2

distributions to date, with which to
understand potential of OCO to estimate surface CO2 fluxes. We use the same obser-15

vation operator to model atmospheric distributions of XCO2
, but with an 80% bias in the

prior surface emissions.
We show that OCO XCO2

measurements significantly reduce the uncertainty of sur-
face CO2 flux estimates. We find that nadir measurements are better at estimating
land-based fluxes and glint measurements are generally better at constraining ocean20

fluxes. Nadir XCO2
measurements over the terrestrial tropics are typically sparse

throughout the year because of either widespread and persistent cloud cover during
the wet season or smoke aerosol associated with extensive biomass burning during
the dry season. We find that glint measurements over the oceans provide the most
effective constraint for estimating terrestrial CO2 fluxes by accurately sampling fresh25

continental outflow over neighbouring oceans.
We also presented the results from sensitivity experiments to investigate how flux

estimates change with 1) bias and unbiased errors, 2) alternative duty cycles, 3) mea-
surement density and correlations, 4) the spatial resolution of estimated flux estimates,
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and 5) reducing the length of the lag window and the size of the ensemble. We find
that biases in the observations, which we introduce by scaling the error from AOD (by a
factor of two), cause large perturbations to some of the a posteriori fluxes but they are
still within the a posteriori uncertainty of the control experiment. We find that either the
current 32-day duty cycle (alternating 16-day cycle between glint and nadir measure-5

ments) or one that uses only glint view measurements will address the primary science
objectives of the OCO mission, a reflection of the importance of glint measurements in
constraining tropical terrestrial fluxes. A modest 20% reduction in the number of avail-
able clear observations does not affect a posteriori flux estimates, reflecting the high
measurement density. Introducing a spatial correlation between successive measure-10

ments effectively reduces the number of independent observations. We find that spatial
correlations mainly affect glint measurements over the oceans where there is a greater
number of neighbouring scenes that are cloud-free and have AODs <0.3. We find that
reducing the size of the geographical regions over which to estimate surface fluxes
much below 1 million km2 introduces large correlations between neighbouring regional15

estimates. In the control experiment, we simultaneously estimate surface fluxes at the
time of the assimilation and at times up to 3 months prior. We find that surface flux
estimates for a particular 8-day period typically converge after ingesting 4–6 weeks of
data. To improve the speed of the EnKF we halved the number of ensemble states
used to determine the a priori error covariance and showed that the flux estimates20

were close to the control experiment but using a reduced number of ensemble states,
we generally underestimated the associated error.

The analysis we presented here can easily be applied to CO2 and CH4 data from
the Japanese Greenhouse gas Observing SATellite (GOSAT). Implementing the EnKF
for GOSAT will require detailed information about the orbit, averaging kernels, and25

associated error characteristics. Using OCO and GOSAT data together would improve
the spatial and temporal coverage of the atmosphere and would likely 1) reduce the
assimilation lag window and 2) increase the spatial resolution of resulting independent
flux distributions.
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Appendix A

Description of the GEOS-Chem Model of Atmospheric CO2

We use the GEOS-Chem global 3-D chemistry transport model (v7-03-06) to calculate
column concentrations of CO2 from prescribed surface CO2 fluxes described below.5

We used the model with a horizontal resolution of 2◦×2.5◦, and 30 vertical levels (de-
rived from the native 48 levels) ranging from the surface to the mesosphere, 20 of which
are below 12 km. The model is driven by GEOS-4 assimilated meteorology data from
the Global Modeling and Assimilation Office Global Circulation Model based at NASA
Goddard. The 3-D meteorological data is updated every six hours, and the mixing10

depths and surface fields are updated every three hours. The CO2 simulation is based
on Suntharalingam et al. (2005) and Palmer et al. (2006, 2008).

We use gridded fossil fuel emission distributions, representative of 1995 (Sunthar-
alingam et al., 2005), which we have scaled to 2003 values using regional budget
estimates for the top 20 emitting countries in 2003 from the Carbon Dioxide Informa-15

tion Analysis Center (Marland et al., 2007). Biofuel emission estimates are taken from
Yevich and Logan (2003) and represent climatological values. Monthly mean biomass
burning emission estimates are taken from the second version of the Global Fire Emis-
sion Database (GFEDv2) for 2003 (van der Werf et al., 2006), which are derived from
ground-based and satellite observations. Daily mean land biosphere fluxes are taken20

from the CASA model for 2001 (Randerson et al., 1997), in the absence of correspond-
ing fluxes for 2003. We do not explicitly account for the contribution of fuel combustion
CO2 from the oxidation of reduced carbon species (Suntharalingam et al., 2005) as
they make only a small contribution to the CO2 column. Monthly mean air-sea fluxes
of CO2 are taken from Takahashi et al. (1999).25

CO2 concentrations for January 2002 were initialized from a previously evaluated
model run (Palmer et al., 2006), which we integrate forward to January 2003. We
include an additional initialization to correction for the model bias introduced by not

19936

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/19917/2008/acpd-8-19917-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/19917/2008/acpd-8-19917-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
8, 19917–19955, 2008

Estimating surface
flux

L. Feng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

accounting for the net uptake of CO2 from the terrestrial biosphere. We make this
downward correct by comparing the difference between GLOBALVIEW CO2 data
(GLOBALVIEW-CO2) and model concentrations over the Pacific during January 2003.
Differences range from 1 to 4 ppmv with a median of 3.5 ppmv, and we subtract this
value globally, following Suntharalingam et al. (2005). From January 2003 the total5

CO2 tracer becomes the “background” CO2 concentration and is only subject to atmo-
spheric transport. At that time, we also introduce additional model tracers, initialized
with a uniform value (for numerical reasons and which is subtracted in subsequent
analyses), that account for the monthly production and loss of CO2 originating from
specific geographical regions and surface processes (“tagged” tracers). The linear10

sum of these monthly tagged tracers (and the “background”) is equivalent to the total
CO2.

Appendix B

Description of the reduced representation of a priori error covariance15

The most computationally expensive part in our approach is the projection of the a pri-
ori ensemble to the observation space. Such cost can be reduced by using a smaller
ensemble to approximate the a priori error covariance. Because in this study, we have
adopted a lag window of 12×8 days, the algorithm to construct the perturbation states
(of a reduced number) at the beginning of each assimilation cycle from previous analy-20

sis and the current forecasts is eventually required to be equally applicable in construct-
ing the corresponding variations in the 3-D CO2 distributions at this time being to avoid
rerunning the GEOS-Chem model from 12×8 days ago for these newly constructed
perturbation states.

To construct the prior ensemble of size Ne for one assimilation cycle j to assimilate25

observations during day d to d+8, we start with the analysis ensemble at the end of
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the previous assimilation cycle j−1, which is given by Eq. (8):

∆Xa
j−1 = ∆Xf

j−1Tj−1. (B1)

For clarification, we have explicitly given the subscript j−1 to denote the assimilation
cycle. The resulting matrix ∆Xa

j−1 has the same size of the matrix ∆Xf
j−1, and consists

of Ne perturbation states, each of which has Nx=12×144 elements for perturbations in5

fluxes during the past 12×8 days.
To maintain the ensemble size Ne at the following assimilation cycle j , we rewrite

∆Xa
j−1 by using the singular value decomposition

∆Xa
j−1 = Ua

j−1Σ
a
j−1(Va

j−1)T , (B2)

where Ua
j−1, and Va

j−1 are two orthogonal matrices of size Nx×Nx and Ne×Ne, respec-10

tively, and Σa
j−1 is a diagonal matrix of size Nx×Ne, with non-zero diagonal elements

representing singular values of matrix ∆Xa
j−1 in the descending order. We can now

obtain a base matrix ∆Xb by applying Va
j−1 to Eq. (B2),

∆Xb = ∆Xa
j−1Va

j−1 = Ua
j−1Σ

a
j−1. (B3)

Note that the matrix ∆Xb has the same size as ∆Xa
j−1, and satisfies15

Pa
j−1 = ∆Xj−1(∆Xj−1)T = ∆Xb(∆Xb)T (B4)

The first Ne−144 columns of the matrix ∆Xb have the largest amplitudes, and form
the basis to represent the error covariances for flux estimates before day d . By con-
catenating them with other 144 new perturbation vectors for the uncertainties associ-
ated with flux forecasts for day d to d+8, we can now generate the required the a priori20

ensemble of size Ne for assimilation cycle j .
The GEOS-Chem model simulations for the source/sink perturbations represented

by ∆Xf
j−1 also provide an ensemble of variations in the 3-D CO2 distributions at day
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d , i.e., the beginning of the new assimilation cycle j . Due to the linearity of the atmo-
spheric transport processes, the transformation by matrix Tj−1Va

j−1 can be applied to
these atmospheric CO2 variations, and the resulting first Ne−144 fields are attributed
to the source/sink perturbations represented by the first Ne−144 columns in ∆Xb.

During the new assimilation cycle j , these Ne−144 perturbed atmospheric CO2 dis-5

tributions are first added to the atmospheric CO2 “analysis” f CO2

d−1 , which corresponds
to the sources/sinks represented by the a posteriori fluxes xa

j−1, and then are propa-
gated from from day d till day d+8 by using the GEOS-Chem model forced with the
new (day d to day d+8) surface flux forecasts. We also make another set of model

simulations from a common initial atmospheric CO2 distribution f CO2

d−1 from day d till day10

d+8. These simulations are forced by the new surface flux forecast or by one of the
associated 144 perturbation states. As a result, at each assimilation cycle, we run the
GEOS-Chem model simulations for only Ne+1 tagged “tracers”, instead of the Nx+1
ones, to obtain required perturbation model observations ∆Y, as well as the initial con-
ditions for the following assimilation cycles.15

Acknowledgements. This study is funded by the UK Natural Environment Research Council
under NE/F000014/1. Work at the Jet Propulsion Laboratory (JPL), California Institute of Tech-
nology was carried out under a contract with the National Aeronautics and Space Administra-
tion.

References20

Baker, D. F., Doney, S. C., and Schimel, D. S.: Variational data assimilation for atmospheric
CO2, Tellus Ser. B, 58, 359–365, 2006. 19920

Barkley, M. P., Monks, P. S., Frieß, U., Mittermeier, R. L., Fast, H., Körner, S., and Heimann, M.:
Comparisons between SCIAMACHY atmospheric CO2 retrieved using (FSI) WFM-DOAS to
ground based FTIR data and the TM3 chemistry transport model, Atmos. Chem. Phys., 6,25

4483–4498, 2006, http://www.atmos-chem-phys.net/6/4483/2006/. 19919
Barkley, M. P., Monks, P. S., Hewitt, A. J., Machida, T., Desai, A., Vinnichenko, N., Nakazawa,

19939

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/19917/2008/acpd-8-19917-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/19917/2008/acpd-8-19917-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atmos-chem-phys.net/6/4483/2006/


ACPD
8, 19917–19955, 2008

Estimating surface
flux

L. Feng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

T., Yu Arshinov, M., Fedoseev, N., and Watai, T.: Assessing the near surface sensitivity of
SCIAMACHY atmospheric CO2 retrieved using (FSI) WFM-DOAS, Atmos. Chem. Phys., 7,
3597–3619, 2007, http://www.atmos-chem-phys.net/7/3597/2007/. 19919

Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive Sampling with the Ensemble
Transform Kalman Filter. Part I: Theoretical Aspects, Mon. Weather Rev., 129, 420–436,5

2001. 19924
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Table 1. Uncertainty (in GtC yr−1) associated with TransCom-3 (T3) continental and ocean
regions that have been subdivided for our EnKF inversion

T3 Region Err EnKF Region Err

North American Boreal 0.73 Reg (002–010) 1.64
North American Temperate 1.50 Reg (011–019) 3.38

South American Tropical 1.41 Reg (020–028) 3.18
South American Temperate 1.23 Reg (029–037) 2.76

North Africa 1.33 Reg (038–046) 3.00
South Africa 1.41 Reg (047–055) 3.18

Eurasia Boreal 1.51 Reg (056–064) 3.41
Eurasia Temperate 1.73 Reg (065–073) 3.89

Tropical Asia 0.87 Reg(074–082) 1.95
Australia 0.59 Reg (083–091) 1.34

Europe 1.42 Reg (092–100) 3.20
North Pacific Temperate 0.27 Reg (101–104) 0.61

West Pacific Tropics 0.39 Reg (105–108) 0.88
East Pacific Tropics 0.37 Reg (109–112) 0.83

South Pacific Temperate 0.63 Reg (113–116) 1.42
Northern Ocean 0.35 Reg (117–120) 0.79

Northen Atlantic Temperate 0.27 Reg (121–124) 0.61
Atlantic Tropics 0.41 Reg (125–128) 0.92

South Atlantic Temperate 0.55 Reg (129–132) 1.24
South Ocean 0.72 Reg (133–136) 1.62

Indian Tropical 0.48 Reg (137–140) 1.08
South Indian Temperate 0.41 Reg (141–144) 0.92
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Fig. 1. Orbiting Carbon Observatory (OCO) instrument averaging kernels (dimensionless) as-
sociated with (a) nadir and (b) glint SWIR XCO2

measurements as a function of pressure (hPa)
for different land types, at a solar zenith angle (SZA) of 10◦ and an aerosol optical depth (AOD)
of 0.1. Observation errors (ppm) associated with (c) nadir and (d) glint XCO2

measurements as
function of SZA for different land types and an AOD of 0.1.
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Fig. 2. Number of clear observations (aerosol optical depth <0.3 and cloud-free) and for (a)
nadir and (b) glint XCO2

measurements averaged over 16 days from 17th January to 1st Febru-
ary 2003, on a horizontal grid of 2◦×2.5◦. Associated aggregated errors (ppm) for the (c) nadir
and (d) glint XCO2

measurements
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Fig. 3. The continental and ocean regions used to estimate CO2 source and sinks, based on
a coarser distribution from the TransCom-3 experiment (see Table 1 in the text and Gurney et
al., 2002).
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Fig. 4. Schematic diagram of the OCO XCO2
Observing System Simulation Experiment (OSSE).

The left column describes the simulation of OCO XCO2
measurements: xt denotes the “true”

fluxes; and H is the observation operator for mapping surface fluxes to XCO2
observations

yobs. H includes the GEOS-Chem transport model that relates surface fluxes to global 3-D
CO2 distributions, which are then sampled along OCO orbits. Scenes with cloud or aerosol
optical depths >0.3 are removed. The resulting profiles are mapped to XCO2

using scene-
specific averaging kernels, with associated scene-specific error R. The right column describe
the simulation of model XCO2

measurements using prior fluxes xf (80% larger than xt) and

the associated error covariance Pf , which is approximated by the perturbation state vector
ensemble ∆Xf . Mapping xf and ∆Xf to the observation space by observation operator H results
in the model observation y, and the associated variations ∆Y. The middle column shows that
the Ensemble Transform Kalman Filter (ETKF) algorithm generates the optimal estimate xa,
and the a posteriori error covariance Pa by comparing the model forecasts with observations.
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Fig. 5. (a) aposteriori error
reduction, γ=1−σa/σf , associ-
ated with CO2 flux estimation
using OCO XCO2

observations
over one duty cycle, including
alternate 16-day period of nadir
and glint measurements. (a)
Over 17th January – 17th Febru-
ary 2003; (b) over 17th Jan-
uary – 17th February 2003 with-
out glint measurements over the
ocean; and (c) over 1st May –
1st June 2003
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Fig. 6. CO2 flux errors (GtC yr−1) over one duty cycle from 17th January to 17th February 2003.
The results have been aggregated from 144 regions (Fig. 3) to the 22 TransCom-3 regions (see
Table 1 in the text and Gurney et al., 2002). Grey and black lines denote a priori and a posteriori
errors. Vertical lines denote the standard deviation of the error. Dashed and dotted lines are
the a posteriori flux errors associated estimates that include systematic and (larger) random
errors. The vertical dashed line separates land and ocean fluxes.
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Fig. 7. Regional a posteriori er-
ror reduction, γ=1−σa/σf , as-
sociated with CO2 flux estima-
tion using OCO XCO2

observa-
tions over one 32-day duty cy-
cle (17th January – 17th Febru-
ary 2003). Results have been
aggregated from 144 regions
(Fig. 3) to the 22 TransCom-3
regions (see Table 1 in the text
and Gurney et al., 2002). The
vertical line separates land and
ocean flux estimates. Significant
error reduction is above the hor-
izontal line at γ=0.5. (a) Cir-
cles denote results from the con-
trol run, squares denote results
from using only nadir measure-
ments, and triangles denote re-
sults from using only glint mea-
surements; (b) squares denote
results from using 80% of avail-
able measurements, and trian-
gles denote results from includ-
ing spatial correlations in the
measurement error covariance
R with an e-folding length scale
of 300 km.

19953

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/19917/2008/acpd-8-19917-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/19917/2008/acpd-8-19917-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
8, 19917–19955, 2008

Estimating surface
flux

L. Feng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 8. The sensitivity of error reduction, γ=1−σa/σf , associated with CO2 flux estimation
using OCO XCO2

observations over one 32-day duty cycle (17th January – 17th February 2003)
to changes in the spatial resolution of the state vector. T3 denotes TransCom-3 regions that
are approximately 9 500 000 km2
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Fig. 9. (a) CO2 flux errors
(GtC yr−1) over one duty cy-
cle from 17th January to 17th
February 2003. The results
have been aggregated from
144 regions (Fig. 3) to the 22
TransCom-3 regions (see Ta-
ble 1 in the text and Gur-
ney et al., 2002). The cir-
cles denote the results for the
control experiment, the squares
the experiment with a shorter
(8×8 days vs. 12×8 days) lag
window, and the triangles the ex-
periment using half the ensem-
ble size (6×144 vs. 12×144); (b)
the a posteriori error reduction,
γ=1−σa/σf , associated with re-
gional fluxes shown in (a).
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