Supplement to "Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns"

T. Stavrakou¹, J.-F. Müller¹, I. De Smedt¹, M. Van Roozendael¹, G. R. van der Werf², L. Giglio³, and A. Guenther⁴

¹Belgian Institute for Space Aeronomy, Avenue Circulaire 3, 1180, Brussels, Belgium
²Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

³Science Systems and Applications, Inc. NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
⁴National Center for Atmospheric Research, Boulder, CO 80303, U.S.A.

This supplement provides information about the chemical mechanism of the NMVOCs used in IMAGESv2 model. The NMVOC chemical species and the NMVOC chemical mechanism are presented in Tables 1 and 2. The photodissociations are summarized in Table 3.

References

- Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. G. Rossi, and J. Troe: Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry, Vol. 1 - gas phase reactions of Ox, HOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, 2004, www.iupac-kinetic.ch.cam.ac.uk.
- Brasseur, G. P., D. A. Hauglustaine, S. Walters, P. J. Rasch, J.-F. Müller, C. Granier, and X. Tie: MOZART, a global chemistry transport model for ozone ans related tracers, 1. Model description, J. Geophys. Res., 103, 28,265–28,289, 1998.
- Capouet, M., J. Peeters, B. Nozière, and J.-F. Müller: Alpha-pinene oxidation by OH: Simulations of laboratory experiments, Atmos. Chem. Phys., 4, 2285–2311, 2004.
- Dillon, D. J., A. Horowitz, D. Hölscher, J. N. Crowley, L. Vereecken, and J. Peeters: Reaction of HO with hydroxyacetone (HOCH₂C(O)CH₃): rate coefficients (233-363 K) and mechanism, Phys. Chem. Chem. Phys., 8, 236–246, 2006.
- Evans M. J., A. Fiore, and D. J. Jacob: The GEOS-Chem chemical mechanism version 5-07-8, Harvard University, Cambridge, MA, USA, http://homepages.see.leeds.ac.uk/~lecmje/GEOS-CHEM/geoschem_mech.pdf, 2003.
- Horowitz, L. W., S. Walters, D. L. Mauzerall, L. K. Emmons, P. J. Rasch, C. Granier, X. Tie, J.-F. Lamarque, M. G. Schultz, G. S. Tyndall, J. J. Orlando, and G. P. Brasseur: A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2, J. Geophys. Res., 108, D24, 4784, doi:10.1029/2002JD002853, 2003.
- Karunanandan, R., D. Hölscher, T. J. Dillon, A. Horowitz, J. N. Crowley, L. Vereecken, and J. Peeters: Reaction of HO with

glycolaldehyde HOCH₂CHO: Rate coefficients (240-362 K) and mechanism, J. Phys. Chem. A, 111(5), 897–908, 2007.

- Müller, J.-F. and G. Brasseur: A three-dimensional chemical transport model of the global troposphere, J. Geophys. Res., 100, 16445–16490, 1995.
- Müller, J.-F. and T. Stavrakou: Inversion of CO and NO_x emissions using the adjoint of the IMAGES model, Atmos. Chem. Phys., 5, 1157–1186, 2005.
- Pöschl, U., R. von Kuhlmann, N. Poisson, and P. J. Crutzen: Development and intercomparison of condensed isoprene oxidation mechanisms for global atmospheric modeling, J. Atmos. Chem., 37, 29–52, 2000.
- Sander, S. P., B. J. Finlayson-Pitts, R. R. Friedl, D. M. Golden, R. E. Huie, H. Keller-Rudek, C. E. Kolb, M. J. Kurylo, M. J. Molina, G. K. Moortgat, L. V. Orkin, A. R. Ravishankara, and P. H. Wine (2006), Chemical Kinetics and Photochemical data for use in atmospheric studies, Evaluation number 15, NASA Panel for data evaluation, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena.
- Saunders, S. M., M. E. Jenkin, R. G. Derwent, M. J. Pilling: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, 2003.
- Tyndall, G. S., R. A., Cox, C. Granier, R. Lesclaux, G. K. Moortgat, M. J. Pilling, A. R. Ravishankara, and T. J. Wallington: Atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res., 106, D11, 12,157–12,182, 2001.

Correspondence to: T. Stavrakou (jenny@aeronomie.be)

Table 1. IMAGESv2 NMVOC chemistry species

Formula	Name
CoHo	acatulana
	ethene
C_2H_4	ethane
C ₂ H ₆	propene
C ₂ H ₂	propane
	isoprane
	acetolie
	methanol
MEK (CHaCOCaHa)	methalioi methylethyl katona
$(CH_{2}CO)_{2}$	2.3 butanadiona
$(CH_3CO)_2$	2,5-butaneurone
	gryoxal
	memoratic acid
	peracette actu
CH_3CU_3	acetylperoxy radical
$FAN\left(UH_3UU_3NU_2\right)$	ethod a cetyl mirate
$C_2H_5U_2$	ethyl peroxy radical
C_2H_5UUH	einyl nydroperoxide
C_2H_5OH	etnanol
$C_3H_7O_2$	propyl peroxy radical
C ₃ H ₇ OOH	propyl hydroperoxide
C ₂ H ₅ CHO	propanal
$C_2H_5CO_3$	peroxypropionyl radical
$PPN (C_2H_5CO_3NO_2)$	peroxypropionyl nitrate
$RP(C_2H_5COOOH)$	perproacid
$RO_2 (CH_3COCH_2O_2)$	peroxy radical from acetone
ROOH (CH ₃ COCH ₂ OOH)	hydroperoxide from acetone
MGLY (CH_3COCHO)	methylglyoxal
HYAC ($CH_2OHCOCH_3$)	hydroxyacetone
$PO_2 (C_3H_6OHO_2)$	peroxy radical from propylene
POOH (C ₃ H ₆ OHOOH)	hydroperoxide from propylene
$QO_2 (C_2H_4OHO_2)$	peroxy radical from ethene
$QOOH(C_2H_4OHOOH)$	hydroperoxide from ethene
GLYALD (CH ₂ OHCHO)	glycolaldehyde
ISOPO ₂ (C ₅ H ₈ OHO ₂)	peroxy radical from C ₅ H ₈
ISOPOOH (C5H8OHOOH)	hydroperoxide from C ₅ H ₈
ISON (C ₅ H ₈ OHONO ₂)	nitrates from ISOPO ₂ +NO
	and C ₅ H ₈ +NO ₃
MACR (CH ₂ CCH ₃ CHO)	methylacrolein
MACRO ₂	peroxy radical from
(CHOCH ₃ CO ₂ CH ₂ OH)	MACR+OH
MACROOH	hydroperoxide from MACR
(CH ₃ COCHOOHCH ₂ OH)	_
MPAN (CH ₂ CCH ₃ CO ₃ NO ₂)	peroxymethacrylic nitrate
GCO ₃ (HOCH ₂ CO ₃)	hydroxy peroxyacetyl radical
GP (HOCH ₂ COOOH)	hydroperoxide from GCO_3
GPAN (HOCH ₂ COOONO ₂)	peroxyacyl nitrate from GCO ₃
KO_2 (CH ₃ COC ₂ H ₅ OHO ₂)	peroxy radical from MEK
C ₄ H ₁₀	surrogate for the other NMVOCs
-	

Table 2. IMAGESv2 NMVOC chemical mechanism

Reaction	Rate [Reference]
$C_2H_2+OH \rightarrow 0.364HCOOH+0.364CO$	$k_0 = 5.5(-30)$
+0.364HO ₂ +0.636GLY+0.636OH	$k_{\infty} = 8.3(-13)(\frac{300}{T})^2$ [1]
$C_2H_4+OH\rightarrow QO_2$	$k_0 = 1.0(-28)(\frac{300}{T})^{4.3}$
	$\kappa_{\infty} = 8.8(-12)\left(\frac{300}{T}\right)^{1000} [1]$
$C_2\Pi_4+O_3 \rightarrow 1.139\Pi C\Pi O+0.03CO+0.13\Pi O_2$	$1.9(-14) \exp(-2630/T)$ [1]
$+0.150H+0.251HC00H+0.159H_2O_2$	$1.2(-14)\exp(-2030/1)$ [1]
$\pm 1.5 \text{HCHO}_{\pm}0.25 \text{GLVALD}$	$2.0(-12)\exp(500/T)$ [2]
	$\frac{(1+0.45(-6)\exp(3870/T))}{2.0(-12)\exp(500/T)}$
$QO_2 + CH_3 + CH_3 + CH_3 + COOH + OLIALD$	$\frac{(1+2.2(+6)\exp(-3870/T))}{2.54(-12)\exp(360/T)}$ [2]
$QO_2 + NO \rightarrow HCHO + HO_2 + NO_2$	$\frac{1}{(1+8.14(-29)\exp(5528/T)[M])} [3]$
$QO_2+NO \rightarrow GLYALD+HO_2+NO_2$	$\frac{2.54(-12)\exp(500/1)}{(1+1.23(+28)\exp(-5528/T)/[M])}$ [3]
$QO_2 + HO_2 \rightarrow QOOH$	$2.0(-13) \exp(1250/T)$ [3]
$QOOH+OH \rightarrow QO_2$	$1.9(-12) \exp(190/T)$ [3]
$QOOH+OH \rightarrow GLYALD+OH$	1.38(-11) [3]
$C_2H_6+OH\rightarrow C_2H_5O_2+H_2O$	$8.7(-12) \exp(-1070/T)$ [1]
$C_2H_5O_2+NO \rightarrow CH_3CHO+HO_2+NO_2$	$2.0(-12) \exp(305/1)$ [1]
$C_2H_5O_2+NO_3 \rightarrow CH_3CHO+HO_2+NO_2$	2.5(-12) [5] 7.5(-13) ovp(700/T) [1]
$C_2H_5O_2+HO_2 \rightarrow C_2H_5OOH+O_2$ $C_2H_2O_2+CH_2O_2 \rightarrow 0.7HCHO+0.8CH_2CHO$	$1.5(-13)\exp(100/1)$ [1]
$+HO_2+0.3CH_2OH+0.2C_2HzOH$	2.0(-13) [5]
$C_2H_5OOH+OH\rightarrow 0.5C_2H_5O_2+0.5CH_3CHO+0.5OH$	$3.8(-12) \exp(200/T)$ [4]
$C_3H_6+OH\rightarrow PO_2$	$k_0 = 8.0(-27)(\frac{300}{300})^{3.5}$
	$k_{\infty} = 3.0(-11), F_c = 0.5$ [3]
$C_{3}H_{6}+O_{3}\rightarrow 0.54HCHO+0.19HO_{2}+0.33OH$	
$+0.08 CH_{4}+0.56 CO+0.5 CH_{3} CHO+0.31 CH_{3} O_{2}$	
+0.25CH ₃ COOH	$6.5(-15)\exp(-1900/T)$ [3]
$PO_2+CH_3CO_3 \rightarrow CH_3O_2+CH_3CHO$	
$+HCHO+HO_2$	$\frac{2.0(-12)\exp(500/T)}{(1+0.45(-6)\exp(3870/T))}$ [2]
$PO_2+CH_3CO_3 \rightarrow CH_3COOH$	
$+0.35C_2H_5CHO+0.65HYAC$	$\frac{2.0(-12)\exp(500/T)}{(1+2.2(+6)\exp(-3870/T))}$ [2]
$PO_2+CH_3O_2 \rightarrow HO_2+0.5CH_3CHO$	
+1.25HCHO+0.16HYAC	
+0.09C ₂ H ₅ CHO+0.25CH ₃ OH+0.25ROH	5.92(-13) [6]
$PO_2+NO \rightarrow CH_3CHO+HCHO+HO_2+NO_2$	$2.7(-12) \exp(350/T)$ [2]
$PO_2+NO_3 \rightarrow CH_3CHO+HCHO+HO_2+NO_2$	2.5(-12) [3]
$PO_2+HO_2 \rightarrow POOH+O_2$	$7.5(-13) \exp(700/T)$ [5]
$POOH+OH \rightarrow PO_2$ $POOH+OH \rightarrow HVAC+OH$	$1.9(-12) \exp(190/1)$ [5]
$C_0H_0+OH \rightarrow C_0H_0$	2.44(-11) [5] 8 7(-12) $\exp(-615/T)$ [1]
$C_3H_8 + OH \rightarrow C_3H_7O_2$	$\frac{2.7(-12)\exp(-013/T)}{2.7(-12)\exp(350/T)}$ [2.10]
$C_{3117}O_{2}$ + NO_{2} + NO_{2} + O_{2} + $C_{13}C_{2}$ COCH3	$(1+5.87 \exp(-816/T)(300/T)^{0.64})$ [2,10] 2.7(-12) $\exp(350/T)$ [2,10]
$C_3H_7O_2+NO \rightarrow NO_2+HO_2+C_2H_5CHO$	$\frac{(1+0.17\exp(816/T)(T/300)^{0.64})}{(1+0.17\exp(816/T)(T/300)^{0.64})}$ [2,10]
$C_3H_7O_2+HO_2\rightarrow C_3H_7OOH$	$1.513(-13) \exp(1300/T)$ [3]
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$2.0(-12)\exp(500/T)$ [21]
+0.74CH ₃ COCH ₃ $+0.26$ C ₂ H ₅ CHO	$\frac{1}{(1+0.45(-6)\exp(3870/T))}$ [2]
$C_3H_7O_2+CH_3CO_3\rightarrow CH3COOH$	$2.0(-12) \exp(500/T)$
+0.74CH ₃ COCH ₃ +0.26C ₂ H ₅ CHO	$\frac{1}{(1+2.2(+6)\exp(-3870/T))} [2]$
$C_3H_7OOH+OH\rightarrow C_3H_7O_2$	$1.9(-12)\exp(190/T)$ [3]

Table 2. IMAGESv2 NMVOC chemical mechanism (cont'd)

Reaction	Rate [Reference]
$C_3H_7OOH+OH\rightarrow 0.74CH_3COCH_3$	
$+0.26C_2H_5CHO+OH$	1.8(-11) [3,8]
$C_2H_5CHO+OH\rightarrow C_2H_5CO_3+H_2O$	$4.9(-12) \exp(405/T)$ [1]
$C_2H_5CHO+NO_3 \rightarrow HNO_3+C_2H_5CO_3$	$3.46(-12) \exp(-1862/T)$ [3]
$C_2H_5CO_3+CH_3O_2 \rightarrow HCHO+HO_2+C_2H_5O_2$	$1.68(-12) \exp(500/T)$ [6]
$C_2H_5CO_3+CH_3O_2 \rightarrow KCOOH+HCHO$	$1.87(-13) \exp(500/T)$ [6]
$C_2\Pi_5CO_3+C\Pi_3CO_3\rightarrow C\Pi_3O_2+C_2\Pi_5O_2$	$2.50(-12) \exp(500/T) [2]$ $h_{2} = 0.0(-28)(200/T)^{8.9}$
$C_2H_5CO_3+NO_2 \rightarrow PPN$	$k_0 = 9.0(-28)(300/T)$ $k_{\infty} = 7.7(-12)(300/T)^{0.2}$ [1]
$PPN \rightarrow C_2H_5CO_3 + NO_2$	$K_{eq} = 9.0(-29) \exp(14000/T)$ [1]
$C_2H_5CO_3+NO \rightarrow NO_2+C_2H_5O_2$	$8.1(-12)\exp(270/T)$ [2]
$C_2H_5CO_3+HO_2\rightarrow RP$	$\frac{4.3(-13)\exp(1040/T)}{(1+0.002)(1420/T)}$ [2]
$C_2H_{\pm}CO_2 + HO_2 \rightarrow RCOOH_{\pm}O_2$	$\frac{(1+0.003 \exp(1430/T))}{4.3(-13) \exp(1040/T)}$ [2]
$RP+OH \rightarrow C_{2}H_{2}CO_{2}$	$(1+330 \exp(-1430/T))$ ^[2] $(1+330 \exp(-1430/T))$ ^[2]
$RCOOH+OH \rightarrow C_2H_2O_2+CO_2+H_2O_3$	1.16(-12) [3]
$C_5H_8+OH \rightarrow ISOPO_2$	$2.54(-11) \exp(410/T)$ [7]
$C_5H_8+O_3\rightarrow 0.65MACR+0.58HCHO+0.1MACRO_2$	2.01(11) 0.1p(110/1) [/]
+0.1CH ₃ CO ₃ +0.08CH ₃ O ₂ +0.28HCOOH	
+0.14CO+0.09H ₂ O ₂ +0.25HO ₂ +0.25OH	$7.86(-15) \exp(-1913/T)$ [7]
$C_5H_8+NO_3 \rightarrow ISON$	$3.03(-12) \exp(-446/T)$ [7]
$ISOPO_2 + NO \rightarrow NO_2 + MACR + HCHO + HO_2$	$2.43(-12) \exp(360/T)$ [7]
$ISOPO_2+NO \rightarrow ISON$	$0.11(-12)\exp(360/T)$ [7]
$ISOPO_2 + HO_2 \rightarrow ISOPOOH$	$2.05(-13)\exp(1300/T)$ [7]
$ISOPO_2 + ISOPO_2 \rightarrow 2MACR + HCHO + HO_2$	2.0(-12) [7]
ISOPOOH+OH→MACR+OH	1.0(-10) [7]
ISON+OH \rightarrow MACR+0.5CO+0.5HO ₂ +HNO ₃	1.5(-11) [3,8]
$MACR+OH \rightarrow MACRO_2$	$2.065(-12)\exp(452/T) +$
	$0.93(-11) \exp(175/T)$ [7]
$MACR+O_3 \rightarrow 0.9MGLY+0.45HCOOH+0.32HO_2$	$0.08(-15) \exp(-2112/T) + 2.755(-16) \exp(-1521/T)$ [7]
$+0.22CO+0.19OH+0.1CH_3CO_3$	$3.135(-10)\exp(-1321/1)$ [7]
± 0.25 CH ₂ CO ₂ ± 0.25 MGI V ± 0.61 HCHO	
+0.75HO ₂ +0.5GLYALD+0.04GLY	$2.54(-12) \exp(360/T)$ [7.8]
$MACRO_2 + HO_2 \rightarrow MACROOH$	$1.82(-13) \exp(1300/T)$ [7]
$MACRO_2 + MACRO_2 \rightarrow HYAC$	()
+CH ₃ COCHO+0.5HCHO+0.5CO+HO ₂	2.0(-12) [7]
$MACRO_2 + NO_2 \rightarrow MPAN$	$k_0 = 1.2(-29)(\frac{300}{T})^{5.6}$
	$k_{\infty} = 1.1(-12)(\frac{300}{T})^{1.5}$ [8]
$MPAN {\rightarrow} MACRO_2 {+} NO_2$	$k_0 = 9.7(-29)(300/T)^{5.6}$
	$k_{\infty} = 9.3(-12)(300/T)^{1.5}$
	$K_{eq} = 9.0(-29) \exp(14000/T)$ [7]
$MPAN+OH \rightarrow 0.5 HYAC+NO_2+0.5 CO+GLYALD$	3.6(-12) [7,8]
$MACROOH+OH \rightarrow MACRO_2$	2.82(-11) [3]
$HYAC+OH \rightarrow CH_3COCHO+HO_2$	$2.15(-12) \exp(305/T)$ [9]
$MGLY+OH \rightarrow CH_3CO_3+CO+H_2O$	$8.4(-13) \exp(830/T)$ [5]
$MOLI + MO_3 \rightarrow HMO_3 + CO + CH_3 CO_3$	$3.40(-12) \exp(-1802/1)$ [5] 1.22(-12) + 2.82(-11) cm (-2000/77) [6]
$\mathbf{RO}_{2} + \mathbf{NO}_{3} + \mathbf{OO}_{1} \rightarrow \mathbf{NO}_{2} + \mathbf{RO}_{2} + \mathbf{RO}_{2}$	$1.55(-15) + 5.62(-11) \exp(-2000/1)$ [0] 2 8(-12) exp(300/T) [2]
$RO_2 + HO_2 \rightarrow ROOH + O_2$	$8.6(-13) \exp(500/T) [2]$
$RO_2 + RO_2 \rightarrow 0.3 CH_3 CO_2 + 0.5 HCHO_4 0.2 HO_3$	0.0(10) cxp(100/1) [2]
+0.2HYAC+0.5MGLY+0.5CH ₃ OH	$7.5(-13) \exp(500/T)$ [2.6]
	X / L X / / L 7 * J

Stavrakou et al.: Supplement

Table 2. IMAGESv2 NMVOC chemical mechanism (cont'd)

Reaction	Rate [Reference]
	2.8(-12) area $(200/77)$ [11.2]
$ROOH+OH \rightarrow RO_2+H_2O$	$3.8(-12) \exp(200/1) [11,3]$
$ROOH+OH \rightarrow MGLY+OH$	8.39(-12) [3]
$CH_3CHO+OH \rightarrow CH_3CO_3+H_2O$	$4.4(-12) \exp(305/T)$ [10]
$CH_3CHO+NO_3 \rightarrow CH_3CO_3+HNO_3$	$1.4(-12) \exp(-1860/T)$ [10] $4.3(-13) \exp(1040/T)$ [20]
$CH_3CO_3+HO_2\rightarrow CH_3COOOH$	$\frac{4.6(-10)\exp(1040/T)}{(1+0.003\exp(1430/T))}$ [2]
$CH_3CO_3+HO_2\rightarrow CH_3COOH+O_3$	$\frac{4.3(-13)\exp(1040/T)}{(1+330\exp(-1430/T))}$ [2]
$CH_3CO_3 + NO \rightarrow CH_3O_2 + NO_2 + CO_2$	$8.1(-12)\exp(270/T)$ [2]
$CH_3CO_3+NO_2 \rightarrow PAN$	$k_0 = 9.7(-29)(\frac{300}{700})^{5.6}$
	$k_{\infty} = 9.3(-12)(\frac{300}{T})^{1.5} [1]$
$PAN \rightarrow CH_3CO_3 + NO_2$	$K_{eq} = 9.0(-29) \exp(14000/T)$ [1]
$PAN+OH \rightarrow HCHO+NO_2$	4.0(-14) [7]
$CH_3CO_3 + CH_3O_2 \rightarrow HCHO + HO_2 + CH_3O_2$	$\frac{2.0(-12)\exp(300/T)}{(1+0.45(-6)\exp(3870/T))}$ [2]
$CH_{3}CO_{3}+CH_{3}O_{2}\rightarrow CH_{3}COOH+HCHO$	$\frac{2.0(-12)\exp(500/T)}{(1+2.2(+6)\exp(-3870/T))}$ [2]
$CH_3CO_3 + CH_3CO_3 \rightarrow 2CH_3O_2 + 2CO_2$	$2.5(-12) \exp(500/T)$ [2]
$CH_3CO_3+NO_3 \rightarrow CH_3O_2+NO_2$	4.0(-12) [3]
$CH_3COOOH+OH\rightarrow CH_3CO_3$	3.7(-12) [3]
$CH_3COOH+OH \rightarrow CH_3O_2$	$4.2(-14)\exp(855/T)$ [10]
$CH_3OH+OH \rightarrow HO_2+HCHO$	$2.9(-12)\exp(-345/T)$ [1]
$MEK+OH \rightarrow KO_2+H_2O$	$1.3(-12)\exp(-25/T)$ [10]
$MEK+NO_3 \rightarrow HNO_3+KO_2$	8.0(-16) [6]
$\mathrm{KO}_2\mathrm{+}\mathrm{CH}_3\mathrm{CO}_3\mathrm{\rightarrow}\mathrm{CH}_3\mathrm{O}_2\mathrm{+}\mathrm{CH}_3\mathrm{CHO}\mathrm{+}\mathrm{CH}_3\mathrm{CO}_3$	$\frac{2.0(-12)\exp(500/T)}{(1+0.45(-6)\exp(3870/T))}$ [2]
$KO_2+CH_3CO_3 \rightarrow MEK+CH_3COOH$	$\frac{2.0(-12)\exp(500/T)}{(1+2.2(+6)\exp(-3870/T))}$ [2]
$KO_2+NO \rightarrow NO_2+CH_3CHO+CH_3CO_3$	$2.7(-12)\exp(350/T)$ [2]
$KO_2+HO_2 \rightarrow CH_3O_2+CH_3COCHO$	$7.4(-13)\exp(700/T)$ [2]
$KO_2 + CH_3O_2 \rightarrow 0.5CH_3CHO + 0.5CH_3CO_3$	
+0.25 MEK+0.75HCHO+0.25CH ₃ OH	
+0.25ROH+0.5HO ₂	8.37(-14) [6]
$GLYALD+OH \rightarrow 0.8GCO_3+0.2GLY+0.2HO_2$	8.0(-12) [12]
$GCO_3+CH3O_2 \rightarrow 2HCHO+2HO_2$	$1.68(-12)\exp(500/T)$ [6]
$GCO_3+CH3O_2 \rightarrow RCOOH+HCHO$	$1.87(-13)\exp(500/T)$ [6]
$GCO_3+CH_3CO_3\rightarrow CH_3O_2+HO_2+HCHO$	$2.5(-12) \exp(500/T)$ [2]
$GCO_3+HO_2\rightarrow GP$	$\frac{4.3(-13)\exp(1040/T)}{(1+0.003\exp(1430/T))}$ [2]
$\text{GCO}_3\text{+}\text{HO}_2 \rightarrow \text{RCOOH}\text{+}\text{O}_3$	$\frac{4.3(-13)\exp(1040/T)}{(1+330\exp(-1430/T))}$ [2]
$GCO_3+NO \rightarrow NO_2+HO_2+HCHO$	$6.7(-12) \exp(340/T)$ [6]
$GCO_3+NO_2 \rightarrow GPAN$	$k_0 = 9.0(-28)(\frac{300}{T})^{8.9}$
	$k_{\infty} = 7.7(-12)(\frac{300}{T})^{0.2}$ [1]
$GPAN \rightarrow GCO_3 + NO_2$	$K_{eq} = 9.0(-29) \exp(14000/T)$ [1]
$GP+OH{\rightarrow}0.5OH+0.5GCO_{3}+0.5HCHO$	$3.8(-12)\exp(200/T)$ [6]
$GLY+OH \rightarrow HO_2+1.6CO$	1.14(-11) [3]
$GLY+NO_{3}\rightarrow HNO_{3}+HO_{2}+1.6CO$	$1.44(-12)\exp(-1862/T)$ [3,8]
C_4H_{10} +OH \rightarrow 0.8ISOPO ₂	$6.0(-11)\exp(-540/T)$ [13]
Notes: Read 2.14(-11) as $2.14 \cdot 10^{-11}$; T: temp	erature (K); $[M]$: the air density (mol. cm ⁻³).
	$k_0[M] = {1 + [\log_{10}(k_0[M]/k_\infty)]^2}^{-1}$

Three-body reaction rates are calculated with $k = \frac{k_0[M]}{1+k_0[M]/k_{\infty}} F_c^{\{1+\lfloor \log_{10}(k_0[M]/k_{\infty})]^{-}\}}$, $F_c = 0.6$, unless otherwise stated. Units for first-, second-, and third-order reactions are sec⁻¹, cm³mol.⁻¹sec⁻¹ and cm⁶mol.⁻²sec⁻¹, respectively. Rates for equilibrium reactions calculated as $k = k_f/K_{eq}$, k_f being the rate of the formation reaction and K_{eq} the equilibrium constant. References: [1], Sander et al. (2006); [2], Tyndall et al. (2001); [3], Saunders et al. (2003); [4], Müller and Brasseur (1995); [5], Horowitz et al. (2003); [6], Evans et al. (2003); [7], Pöschl et al. (2000); [8], this work; [9], Dillon et al. (2006); [10], Atkinson et al. (2004), [11], Brasseur et al. (1998); [12], Karunanandan et al. (2006); [13], Müller and Stavrakou (2005). Formic acid (HCOOH), propanol (ROH) and propacid (RCOOH) are not treated.

	Cross section /	
Reaction	Quantum yield /	
	Products (Refs.)	
$HCHO \rightarrow CO+2HO_2$	[5]/[5]/[1]	
$HCHO \rightarrow CO+H_2$	[5]/[5]/[1]	
$CH_{3}COOOH \rightarrow CH_{3}O_{2} + OH + CO_{2}$	[5]/[c]/[1]	
$CH_3OOH \rightarrow HCHO + HO_2 + OH$	[5]/[c]/[1]	
$CH_{3}CHO \rightarrow CH_{3}O_{2} + CO + HO_{2}$	[5]/[5]/[1]	
$C_2H_5CHO{\rightarrow}C_2H_5O_2{+}HO_2{+}CO$	[5]/[5]/[1]	
$GLYALD \rightarrow HCHO + CO + 2HO_2$	[5]/[5]/[1]	
$GLY \rightarrow 2CO + 2HO_2$	[5]/[5]/[1]	
$GLY \rightarrow 2CO + H_2$	[5]/[5]/[1]	
$GLY \rightarrow HCHO + CO$	[5]/[5]/[1]	
$CH_{3}COCH_{3} {\rightarrow} CH_{3}CO_{3} {+} CH_{3}O_{2}$	[5]/[5]/[1]	
$HYAC \rightarrow CH_3CO_3 + HCHO + HO_2$	[5]/[1]	
$MGLY \rightarrow CH_3CO_3 + CO + HO_2$	[5]/[5]/[1]	
$MACR \rightarrow CH_3CO_3 + HCHO + CO + HO_2$	[5]/[5,d]/[3]	
$MEK \rightarrow CH_3CO_3 + C_2H_5O_2$	[6]/[6]/[1]	
$(CH_3CO)_2 \rightarrow 2CH_3CO_3$	[a]/[1]	
$ISON \rightarrow MACR + HCHO + HO_2 + NO_2$	[4,b]/[4,c]/[3]	
QOOH→0.17GLYALD+1.66HCHO		
$+HO_2+OH$	[e]/[e]/[1,2]	
$C_2H_5OOH \rightarrow CH_3CHO + HO_2 + OH$	[e]/[e]/[1]	
$POOH \rightarrow CH_{3}CHO + HCHO + HO_{2} + OH$	[e]/[e]/[1]	
$C_3H_7OOH \rightarrow 0.74CH_3COCH_3$		
$+0.26C_2H_5CHO+HO_2+OH$	[e]/[e]/[1]	
$ISOPOOH {\rightarrow} MACR {+} HCHO {+} HO_2 {+} OH$	[e]/[e]/[3]	
$MACROOH \rightarrow OH+0.5HYAC+0.5CO$		
$+0.5MGLY+0.5HCHO+HO_2$	[e]/[e]/[3]	
$ROOH \rightarrow CH_3CO_3 + HCHO + OH$	[f]/[f]/[1]	
$PAN \rightarrow CH_3CO_3 + NO_2$	[5]/[c]/[7]	
$PPN {\rightarrow} C_2 H_5 CO_3 {+} NO_2$	[g]/[g]/[g]	
$MPAN {\rightarrow} MACRO_2 {+} NO_2$	[g]/[g]/[g]	
$GPAN {\rightarrow} GCO_3 {+} NO_2$	[g]/[g]/[g]	
$RP {\rightarrow} C_2 H_5 O_2 {+} OH$	[h]/[h]/[1]	
$GP \rightarrow HCHO + OH + HO_2$	[h]/[h]/[1]	

Table 3. Photodissociations considered in the MNVOC chemistry meachanism of IMAGESv2

References: [1], Saunders et al. (2003); [2], this work; [3], Pöschl et al. (2000); [4], Atkinson et al. (2004); [5], Sander et al. (2006); [6], Capouet et al. (2004); [7], Müller and Stavrakou (2005). Notes: a) $J=2 \cdot J(MGLY)$, based on MCM; b) Assumed to photolyse as $n-C_4H_9ONO_2$; c) Quantum yield is taken equal to 1; d) Quantum yield is equal to 0.005; e) $J=J(CH_3OOH)$; f) $J=J(CH_3OOH)+J(MEK)$; g) J=J(PAN); h) $J=J(CH_3COOOH)$; i) Same as for acetone.