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Abstract

It has been shown that lag-covariance based statistical measures, suggested by the
Fluctuation Dissipation Theorem (FDT), may allow estimation of climate sensitivity in a
climate model. Recently Schwartz (2007) has used measures of the decay of autocor-
relation in a global surface temperature time series to estimate the real world climate5

sensitivity. Here we use a simple climate model, and analysis of archived coupled cli-
mate model output from the IPCC AR runs, for which the climate sensitivity is known, to
test the utility of this approach. Our analysis of archived data show that estimates of cli-
mate sensitivity derived from century-long time scales typically grossly underestimate
the models’ true climate sensitivity. We analyze the behavior of the simple model with10

adjustable heat capacity in two surface layers, subject to various stochastic forcings
and for various climate sensitivities, modulated by albedo and water vapor feedbacks.
We use our simple climate model to demonstrate:

1. that a much longer time series would be required to accurately diagnose the
earth’s climate sensitivity than is presently available,15

2. that for shorter time series there is a systematic bias towards underpredicting
climate sensitivity,

3. that the addition of a second heat reservoir weakly coupled to the first greatly
reduces the decorrelation timescale of short temperature time series produced by
the model, aggravating the tendency to underestimate climate sensitivity, and20

4. that because of this it is possible to have a selection of models in which the climate
sensitivity is inversely related to the decorrelation time scale, as is true for the
IPCC models.
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1 Introduction

Leith (1975) and Bell (1980) introduced the idea that the climate sensitivity of the earth
or of a general circulation model (GCM) could be predicted using the Fluctuation Dis-
sipation Theorem (FDT) (Callen and Green, 1952). The FDT states that for systems
near equilibrium, the rate at which anomalies dissipate is related the sensitivity of the5

system to a finite change in forcing. Bell (1980) and Cionni et al. (2004) were able to
show that global climate sensitivity could in fact be predicted to useful accuracy for a
simplified climate model and for a highly complex chemical GCM, respectively using
measures based on the FDT, depending on the lag-autocorrelation matrix of the model
temperature. Langen and Alexeev (2005) used the FDT to predict the zonal mean10

response of a GCM to climate forcing, using 500 yr of model output data. North et
al. (1993) and von Storch (2004) considered the dissipation of fluctuations in a GCM
and discussed the applicability of the FDT to climate models. Great hopes have been
staked on the use of the FDT to diagnose sensitivity using satellite infrared radiance
data (Goody et al., 1998).15

In all of these discussions, two aspects of the potential use of the FDT for climate
sensitivity diagnoses have been neglected. First, there has been no explicit discussion
of the use of the FDT in the case where the heat capacity of the system is uncertain.
Second, there has been no thorough investigation of how the length of the time series
needed for an accurate diagnosis of climate sensitivity depends on the parameters20

(climate sensitivity, heat capacity, number of independent variables) of the system.
In this paper, we investigate the practical usefulness of the FDT for the purpose of
diagnosing climate sensitivity. To do so, we use an extremely simple climate model
that is nevertheless includes parameters controlling climate sensitivity, heat capacity
and internal heat transports.25

More recently, Schwartz (2007) has used analysis of lag-autocorrelation of the global
mean surface temperature time series for the last 150 yr along with analysis of ocean
heat storage over the last 50 yr, to simultaneously calculate the earth’s effective heat
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capacity and climate sensitivity. Schwartz (2007) diagnosed a value of the climate
sensitivity (≈0.3 K W−1 m2) that was quite low compared to other estimates of climate
sensitivity (≈0.75 K W−1 m2). Schwartz argued that the discrepancy was due to the
models’ over-estimate of the climate system’s decorrelation time scale, arguing that
while his results showed a decorrelation time scale of about 5 yr, climate models typ-5

ically required some 30 yr to fully adjust to a step change in climate forcing. We will
show that actual climate model time series typically show decorrelation time scales
similar to that found by Schwartz (2007) for observed global average surface air tem-
perature. Thus, application of Schwartz’s technique to climate model output results in
a substantial underestimate of the climate models’ climate sensitivity. We will use a10

simple heuristic climate model to show how a model with a relatively long adjustment
time may nevertheless exhibit a short decorrelation time-scale.

In Sect. 2 we review the use of lag-correlation analysis to estimate climate sensitivity.
In Sect. 3, we apply Schwartz (2007)’s method to the IPCC AR4 model runs, to test the
method on modeled climate systems whose climate sensitivity is known. In Sects. 415

and 5 we introduce our simple climate model and apply it to explain the systematic
underestimate of climate sensitivity by the lag-correlation method. These errors are
due both to the inadequate length of the time series involved, and to the assumption of
a single heat capacity for the climate system.

“Note added in proof: the author has recently become of aware of three comments20

on Schwartz (2007), some of which overlap with material in this paper (Foster et al.,
2008; Knutti et al., 2008; Scafetta, 2008), and a reply (Schwartz, 2008). In particular,
Knutti et al. (2008) perform a similar analysis of the IPCC model output data, with
similar results.”

1.1 Fluctuation dissipation and climate sensitivity25

To gain an intuitive understanding of the use of lag-correlation techniques to estimate
climate sensitivity, the reader should imagine the climate system as a linear oscilla-
tor. By observing unforced oscillations of the temperature, we hope to estimate the
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response of the climate system to a step change in climate forcing. We assume
that the unforced fluctuations, though in reality driven by internal instabilities, can be
treated as though they were driven by random fluctuations of the forcing. The system
tends to return to its equilibrium temperature because of the dominant blackbody feed-
back, whereby an increase in temperature leads to an increase in outgoing radiation,5

and thus a return to equilibrium. Thus, in a system with large climate sensitivity, a
small fluctuation in forcing leads to feedbacks that tend to slow the return of the sys-
tem to equilibrium. On the other hand, in a system with small climate sensitivity the
same fluctuation in forcing causes a smaller temperature change, and thus a more
rapid return to equilibrium. Thus a time series of surface temperature ought to show10

larger lag-autocorrelation in the system with larger climate sensitivity, and smaller lag-
autocorrelation in the system with smaller climate sensitivity.

There are a number of reasons to suspect that this relationship might not be so
simple in the real world. The relative importance of external and internal drivers of
global temperature is different at different time scales, and it is reasonable to suppose15

that feedbacks might therefore act differently at different time scales. For instance,
interannual variations of global mean surface temperature in the real climate system
are largely driven by internal oscillations of the system (e.g. ENSO), where the mean
temperature change is a small residual of large and nearly compensating patterns of
heating and cooling. In this case it is clear that any geographic dependence in the20

strength of climate feedbacks might make the global feedback have a different relation-
ship to the global temperature for these internally forced variations than for externally
forced climate change (e.g. by a secular trend in carbon dioxide concentration).

Keeping these caveats in mind, we now formalize our treatment of the relationship
between the lag-correlation and climate sensitivity for a purely linear system. Our25

discussion follows that of Penland and Sardeshmukh (1995). Consider a linear system
forced by white noise (ξ) and a fixed forcing f :

dx
dt

=Bx+ξ+f , (1)
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A change in f from f0 to f1 will result in a change in the long-term mean value of x of
(x̄1−x̄0)=−B−1(f1−f0)−1. Thus we call −B the sensitivity matrix. −B can be determined
by observation of the lag-covariances of the system, as follows:

B=
1
τ

ln Cxx(τ)C(0)−1, (2)

where Cxx(τ)=<x(t+τ)xT (t)>, and τ is an arbitrary time lag. By taking the exponent of5

both sides of Eq. (2), and then integrating over all time lags τ, one obtains∫ ∞

0
exp(τB)dτ=

∫ ∞

0
C(τ)B(0)−1dτ (3)

or

− Best
−1=

∫ ∞

0
C(τ)C(0)−1dτ, (4)

which is a form of the FDT. Note that no use is made in this estimate of the white10

noise forcing, ξ, and that the sensitivity is given in units of time: it is the time scale of
the equivalent restoring force of the system. In any practical application of the FDT to
climate sensitivity diagnosis, we must assert that the climate system can be approxi-
mated by a system like Eq. (1), and we must be able the calculate the forcing in units
of Kelvins per unit time. This requires independent knowledge of the heat capacity of15

the climate system.
One can use either Eqs. (2) or (4) to obtain B. Schwartz (2007) used a scalar

equivalent to Eq. (1), to estimate the relaxation time constant for the time series of
global mean temperature, −1

τ lnc(τ), by plotting its value versus τ for lags of up to 20 yr,
and looking for a tendency of the value of the relaxation time constant to asymptote to20

a fixed value as τ increased. He combined this estimate with a separate estimate of
global heat capacity to produce his estimate of climate sensitivity.
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Cionni et al. (2004) employed a method inspired by the FDT, where instead of cal-
culating the integral of the lag covariance matrix of the system x, they calculated the
integral of the lag covariance of the system x and the forcing ξ:

− Best
−1=

∫ τL

0
Rxξ(τ)dτ, (5)

where5

Rxξ(τ)=
∫ ∞

0
x(t + τ)ξ(t)Tdt/

∫ ∞

0
ξ(t)ξ(t)Tdt. (6)

τL, the upper limit of integration in Eq. (5) is the lag beyond which no significant correla-
tion is observed. One way to choose a value for this variable is to integrate Eq. (5) for a
sufficiently large τL that Best reaches a maximum, and then begins to decrease. Cionni
et al. (2004) accurately estimated climate sensitivity based on a 10 yr time series of10

model output data from a GCM run with fixed surface temperature and known forcings.
In their study, diagnosis of effective heat capacity was not needed because only the
small land surface heat capacity contributed to the decorrelation time. In the real world
the task becomes more difficult, due to short time series and a lack of accurate forcing
information.15

2 Application to IPCC AR4 model output

Here we apply the tools described above to test the ability of analysis based on lag-
correlation of temperature timeseries, combined with estimation of global heat capac-
ity by the methods of Schwartz (2007) to predict climate sensitivity in the IPCC AR4
model runs. Figure 1a shows the autocorrelation of the detrended global mean surface20

air temperature as function of lag (in years) for 18 coupled model simulations of the
20th century (the “20c3m” runs). The three curves shown in blue are three models ar-
bitrarily selected for having longer decorrelation time scales, while the three red curves
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have shorter decorrelation time scales. The curve for the GISS global mean surface
air temperature (Hansen et al., 1996) is shown in light blue, and is the same curve
shown in Schwartz (2007), Fig. 2c. Note the good agreement between the GISS curve
and the IPCC model curves. Figure 1b shows the relaxation time constant, −1

τ lnc(τ)
for the same global mean surface air temperature time series. Again, the light blue5

curve showing the GISS observations falls well within the range of the IPCC model lag
autocorrelation curves. We calculate the model relaxation time scale by finding the lag
for which the autocorrelation is less than zero, and averaging the relaxation time scale
either over all lags up to the lag with zero correlation, or the relaxation over the three
years prior to that lag, whichever is greater. Using this method, the average relaxation10

time scale for the models is 8.3 yr, with a standard deviation of 4.5 yr, and a range of
2.8–18.5 yr. Thus, Schwartz (2007)’s estimate of 5 yr falls in the range of the model
relaxation time scales.

Following Schwartz (2007) we calculate the models’ effective heat capacity using two
methods: by regressing the global heat storage against the global temperature, and by15

taking the ratio of the trends of heat storage and temperature. Heat storage is obtained
by integrating the global downward flux of heat at the atmosphere’s lower boundary,
which is the sum of the latent and sensible heat fluxes, and the net downward long
and shortwave fluxes. Scatter plots of annual and global mean heat storage anomaly
versus annual and global mean temperature anomaly are shown in Fig. 2, offset from20

zero mean for clarity. The light blue points refer the observed ocean heat storage,
and were taken by digitizing the lower right panel of Fig. 4 in Schwartz (2007). That
figure plots GISS surface temperatures against ocean heat storage from the surface
to 3000 m from the Levitus data set (Levitus et al., 2005), scaled upwards to account
for the heat capacity of land. It is apparent that the slope of the dependence of heat25

storage on surface temperature (shown in light blue) for the observed data is small
(12 W yr m−2) compared to the range of values found for the models. The average
slope for the model data is 90 W yr m−2 K−1, with a minimum of 10 W yr m−2 K−1, and a
standard deviation of 81 W yr m−2 K−1.
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With these two quantities calculated, we can now, following Schwartz (2007), make
an estimate of the equilibrium climate sensitivity, and see how well it predicts the actual
model sensitivity. One difficulty with this procedure concerns the definition of climate
sensitivity. Since the theory underlying the use of the decorrelation time scale to predict
climate sensitivity assumes a linear model of climate dynamics, the estimate ought to5

work best for a very small climate forcing perturbation. However, for reasons of practical
interest, climate models are generally run for finite periods using finite forcing. For the
IPCC AR4 coupled model runs, we can define climate sensitivity as either:

1. the full response to a doubling of carbon dioxide, where the doubling occurs over
a period of 150 yr, and the models are then run for an additional 100 yr allowing10

an approximate allowing an approximate equilibration,

2. as the transient response during a 1 percent per year increase of carbon dioxide,
or

3. as the transient response to one of several particular emission scenarios in which
a range of greenhouse gases increase monotonically over the course of the model15

runs.

In Fig. 3, we show that these sensitivities are related but different. Here, transient
sensitivity of the models (in K/100 yr) derived from a linear fit to the trend of global
mean temperature for the first 50 yr of runs with carbon dioxide increasing 1% yr−1 is
compared with climate sensitivity derived from the temperature difference for the years20

2000 to 2100 in the “SRESa1b” climate forcing scenario. Among the nineteen models
with output for both experiments stored in the PCMDI archive, the correlation coefficient
of these two measures of climate sensitivity is 0.57, indicating that important aspects of
the climate system (whether the effective climate forcing due to the imposed changes
in greenhouse gas forcing, the climate feedbacks or the effective heat capacities of25

different components of the climate system) respond differently to these two forcing
scenarios. In the following discussion we will present results comparing the climate
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sensitivity derived using the procedure of Schwartz (2007) with the transient climate
response of the models in the 1% yr−1 forcing scenario. The reader should note how-
ever, that similar comparisons have been done with the SRESa1b-derived sensitivities,
with broadly similar results (not shown).

In Fig. 4a, we confirm that the estimates of global effective heat capacity derived5

from regression of global heat storage against global heat temperature in the 20c3m
model runs are reasonably well correlated (r=0.70) with the estimates derived from
the ratio of the trends of the two numbers. Heat capacity is shown in units of equiv-
alent mixed layer depth (m), calculated by dividing the heat storage per unit area by
the heat capacity of 1 m3 of sea water. Having established this, we proceed using the10

average of the two methods. Figure 4b shows the relationship between the decor-
relation time scale and the effective global heat capacity. Contrary to the prediction
of a linear, single heat reservoir theory of climate dynamics, the relationship is weak,
and anticorrelated (r=−0.48): models with large decorrelation time scales tend to have
small heat storage. When we compare decorrelation time with model sensitivity derived15

from the first 100 yr of the SRESa1b runs (Fig. 4c), the correlation is very weak and
marginally negative (r= − 0.20). Finally we compare the estimate of climate sensitivity
calculated by dividing the decorrelation timescale by the effective heat global heat ca-
pacity, as calculated by Schwartz (2007). We find that the estimate of climate sensitivity
made by Schwartz (0.30 K W−1 m2) fall squarely within the range of climate sensitivity20

derived from the IPCC AR4 models (mean=0.22 K W−1 m2, min=9.9×10−4 K W−1 m2,
max=1.8 K W−1 m2). When the estimated climate sensitivity is compared with the ac-
tual climate sensitivity derived from the SRESa1b runs (Fig. 4d), the relationship is,
again, weak and negative (r= − 0.18).

These results show that contra Schwartz (2007), the decorrelation time scale of the25

global mean temperature time series is not in conflict with the range of model estimates,
but that the global effective heat capacity is overestimated by the great majority of the
IPCC AR4 models. Since climate sensitivity is predicted by simple linear theory to
be equal to the decorrelation time scale divided by the ocean heat uptake, excessive
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heat uptake combined with a realistic decorrelation timescale should lead the models
to underestimate climate sensitivity. However, the fact that the models themselves
do not obey this relationship (i.e. the ratio of decorrelation time scale over effective
heat capacity is slightly negatively correlated with model climate sensitivity) is a strong
argument against the use of the simple linear theory to estimate the earth’s climate5

sensitivity. In the next two sections we use a very simple model of the climate system
to explore why the theory might fail for climate system models, and for the real climate
system.

3 Model description

For simplicity and ease of integration, we make use of a global mean climate model10

with a single atmospheric layer and purely radiative interactions between the surface
and the atmosphere. The features needed include rapid integration, an ability to simu-
late arbitrary climate sensitivity, and simulation of both radiative and dynamical energy
fluxes. The model includes two ocean mixed layers (upper and lower) with an ad-
justable linear coupling, to simulate heat storage in the ocean, a single atmospheric15

layer to account for greenhouse warming, and gray-body radiation. Feedbacks include
a temperature-dependent atmospheric infrared emissivity (intended to represent the
water vapor feedback), and a temperature-dependent surface albedo (intended to rep-
resent ice-albedo and low cloud feedbacks). The model is forced with modified red
noise applied to either the solar variability or the infrared emissivity.20

The thermodynamic equations for the lower and upper mixed layers, and for the
atmosphere are:

Cs2
dTs2

dt
= −γ(Ts − Ts2) (7)

Cs
dTs
dt

= −γ(Ts2 − Ts) +
1
4
S(1 − εS )(1 − α) − σT 4

s + εσT 4
a (8)
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Ca
dTa
dt

=
1
4
εSS(1 + α) + εσT 4

s − 2εσT 4
a (9)

where Cs and Cs2 are the heat capacities of the upper and lower mixed layers, Ts and
Ts2 are their respective temperatures, Ca and Ta are the heat capacity and temperature
of the atmosphere, γ is the coupling time constant between the upper and lower mixed
layers, S is the solar constant, εS is the solar absorption of the atmosphere, α is the5

surface albedo, σ is the Stefan-Boltzmann constant, and ε is the infrared emissivity of
the atmosphere.

The atmospheric emissivity and the surface albedo are subject to linear feedbacks
on atmospheric and surface temperature, respectively:

ε = ε0 + fε(Ta − Tε) + cεAε (10)10

α = α0 + fα(Ts − Tα) (11)

where ε0 and α0 are the basic state emissivity and surface albedo, respectively, Tε and
Tα are the basic state atmosphere and surface temperatures, respectively, and fε and
fα are the feedback parameters. Aε is a red-noise forcing, and cα is a constant that
controls its magnitude. The solar constant can also be forced with red noise:15

S = S0 + cSAS , (12)

where cS is a constant controlling the magnitude of the forcing. Aε and AS are gener-
ated using:

xi+1 = βxi + r (13)

A =
[
x − 1

2(1 − β)

]√
1 − β2 (14)20

where r is a random variable with a flat distribution over the range [0 1], β is the
parameter that determines the autocorrelation of the red-noise forcing, and the scaling
is performed after x has been calculated for as many time steps as necessary.
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Solving Eqs. (7)–(9) for equilibrium conditions, with feedbacks and stochastic forcing
assumed to be zero yields

Ts =
4

√√√√S0[1 − α + εS
2 (3α − 1 − εSα)]

σ(1 − ε
2 )

(15)

Ta =
4

√
1
2
T 4
s + εS

S0

4

1 + α − εSα
2εσ

(16)

Figure 5a shows the equilibrium climate sensitivity of the surface temperature for5

a range of feedback parameter settings, when the solar constant is increased from
1360 W m−2 to 1370 W m−2. Depending on the values of the parameter settings, the
climate sensitivity for this forcing varies from 0.04 to 1.6 K W−1 m2, where the surface
temperature has been divided by the change in solar forcing adjusted for albedo and
geometry, ∆S

4 (1 − α).10

Figure 5b shows that as the feedback parameters increase, the time required for the
temperature to reach 90% of its equilibrium value is increased. This increase appears
at first glance to be very similar to that of the climate sensitivity. However, as shown
in Fig. 5c, the ratio of the response time to the climate sensitivity is not constant, but
increases with increasing emissivity feedback. This lack of proportionality of the climate15

sensitivity and the adjustment timescale is due to the fact that the emissivity feedback
parameter acts on Ta, rather than on Ts. For a lag-autocorrelation based methodology
to accurately predict the climate sensitivity, the fluctuations of both Ta and Ts would
have to be observed. Nevertheless, for a modest range of possible climate sensitivities
(e.g. over a factor of 3), the ratio of the climate sensitivity to the adjustment time varies20

only by about 20%. The more serious obstacles to the use of lag-autocorrelations to
predict sensitivity arise from the possibility of multiple heat reservoirs, as we discuss in
the next section.
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4 Simple model results and sensitivity experiments

We now turn to the results of a series of experiments designed to show how statistics
like those used by Schwartz (2007) can give misleading results about climate sensi-
tivity. Figure 6 shows the simple model’s response to changes in the solar constant.
In Fig. 6a, the solar constant is increased by step change of 10 W m−2. The feedback5

parameters are set to fε=0.002 K−1 and fα=0.002 K−1. Three settings for heat capacity
are compared: a single ocean mixed layer 25 m deep, a single layer 1000 m deep, and
an upper layer of 25 m coupled to a lower layer of 1000 m, with a coupling constant of
50 W m−2 K−1 s−1. Note that the relaxation time scale of the coupled case is identical
to that of the 1000 m mixed layer case, except that there is an initial rapid approach to10

equilibrium in the time scale of the upper 25 m layer before the coupling between the
layers acts to move the heat to the lower layer. In Fig. 6b, the solar constant varies
randomly for the same parameter settings. The rapid oscillations of the coupled case
indicates that the shallow upper mixed layer controls the time scale of the response.
This behavior suggests that a diagnostic method based on decorrelation time scale15

will have trouble distinguishing between a system with low heat capacity on short time
scales and one with low heat capacity on all time scales.

Pursuing this thread of argument, we now apply Schwartz (2007)’s methodology
to much longer synthetic time series, in order to test its ability to extract the model’s
true dynamics from finite time series. Figure 7 shows the lag autocorrelation r(∆t) for20

two model parameter settings. Figure 7a shows results for a single 25 m mixed layer.
Figure 7b shows results for a 25 m mixed upper layer, and a 1000 m mixed lower layer.
In each case, the model was run for 10 000 yr, forced by white noise solar variability, and
the time series of annual mean Ts was calculated. Red curves show r(∆t) calculated
separately for 100 100-year chunks of data. The black curve shows r(∆t) calculated25

for the full 10 000 yr record. These results demonstrate two key points.
First, the uncertainty with which one can establish the value of the autocorrelation of

a given 100 yr time series is not the relevant uncertainty for the calculation of climate
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sensitivity. It is clear from panel Fig. 7a that a single curve of autocorrelation versus lag
derived from a 100 yr time series can give only a poor estimate of the true curve. For
instance, while the autocorrelation curve derived from the 10 000 yr time series crosses
zero at 10 yr lag, the mean of the 100 yr autocorrelation curves’ zero crossing is 8.4
yaers, with a standard deviation of 5.7 yr. Even for a model with a single heat capacity,5

analysis of the lag-autocorrelation of hundred year temperature time series results in
both large negative bias in estimating the true decorrelation time scale (−∆t/ ln(r(∆t),
averaged over lags from 8 to 12 yr), and large variance of the decorrelation time scale
of randomly selected hundred year segments. Thus, our simple model run with a single
heat capacity, and with parameters yielding real decorrelation time scales ranging from10

5 yr up to 25 yr, produces 100 yr segments within a standard deviation of the mean that
have decorrelation time scales of 5 yr or less. In particular, for a 25 yr decorrelation
time scale, the expected mean decorrelation time scale of a randomly selected 100 yr
segment is 15 yr, with a standard deviation of 10 yr. Thus, the fact that the observed
temperature time series of the last 50 yr of global temperature exhibits a decorrelation15

time scale of 5 yr (Schwartz, 2007), means only that the true value could be anywhere
from 3 yr to 25 yr, and have the observed value within a single standard deviation of the
expected value.

Second, when the model has more than a single heat reservoir, autocorrelations
based on a hundred year sample can substantially underestimate both the true decor-20

relation time scale and the adjustment timescale. This is clear from panel Fig. 7b
where the lag autocorrelation curve based on 10 000 yr of data exceeds 95% of the
curves based on 100 yr segments out to 30 yr lag.

Finally we demonstrate how our simple model with a fast surface heat
reservoir coupled to a large deep heat reservoir can fool the method of25

Schwartz (2007) into falsely ranking the climate sensitivities of the model
run for various parameter choices. In Fig. 8, results in black are for
parameter choices that give high climate sensitivity (fα=fε=0.002, Sensitiv-
ity: 0.4 K W−1 m2) and relatively weak coupling between the two mixed
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layers (Cs=1×108 J m−2 K−1 (25m), Cs2=1.3×109 J m−2 K−1 (333 m), γ=5 W m−2 K−1).
Results in red are for parameter choices that give low climate sensitiv-
ity (fα=fε=−0.01, Sensitivity: 0.1 K W−1 m2) and a single deep mixed layer
(Cs=1.3×109 J m−2 K−1 (333 m), γ=0 W m−2 K−1). Panel a shows the response of each
model to a step change in climate forcing. The high sensitivity, weakly coupled model5

jumps up rapidly, but after the temperature difference between the upper and lower
mixed layers increases, the flux of heat from the upper to the lower layer slows the
temperature rise until equilibrium is reached. The low sensitivity, single mixed layer
model approaches equilibrium at the same constant e-folding rate. Panel b shows the
lag autocorrelation curves for 100 100-yr segments of model output forced by noise.10

The lag autocorrelation curves show higher autocorrelation for the low climate sensi-
tivity model, just the opposite of the result predicted by Schwartz (2007), even though
the climate sensitivities vary by a factor of 4.

5 Discussion and conclusions

Some clear conclusions may be drawn from our work.15

1. The FDT is poorly suited to the evaluation of model sensitivity in practice. Al-
though it can produce precise, accurate estimates, given sufficient time, the time
required for accurate evaluation of model sensitivity is in general several times
longer than a model would require to come to equilibrium with a step-change in
forcing.20

2. Estimates of climate sensitivity using real global mean temperature variations
are consistent with those using output data from the 20c3m IPCC AR4 model
runs. There is no inconsistency between the model climate sensitivities and
the observed global mean temperature decorrelation timescales, as claimed by
Schwartz (2007).25
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3. Analysis of output from a simple climate model shows that the existence of multi-
ple heat capacities in a climate system introduces systematic errors to the estima-
tion of decorrelation time scale from the temperature time series. This may largely
account for the systematic underestimate of IPCC model climate sensitivity by the
lag-correlation method.5

4. The large variability of the estimated climate sensitivity derived from these runs,
even for multiple runs of the same model, confirms our prediction that estimation
of climate sensitivity from a time series of a single variable requires much longer
climate records than exist for the real world.
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Fig. 1. (a) Lag autocorrelation of global mean temperatures from the GISS surface air temper-
ature record (light blue), and from the IPCC AR4 20th Century runs (black). (b) De-correlation
timescale τ/log(rτ)) for the time global mean time series, and the same color-coding.
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Fig. 2. Integrated net downward surface Heat Flux (in units of W yr m−2) plotted versus Global
mean surface air temperature anomaly. IPCC Models output data are shown in black as in
Fig. 1, with the GISS temperature and Levitus et al. (2005) heat storage figures taken by digi-
tizing Fig. 4 of Schwartz (2007), shown in light blue. The green lines show linear regression fits
of the heat storage to the temperature.
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Fig. 3. Climate sensitivity from a linear fit to the first 50 yr of the IPCC AR4 runs with 1% per
year increasing CO2 versus climate sensitivity derived from the temperature difference between
the years 2100 and 2100 in the SRESa1b runs.
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Fig. 4. (a) Scatter plot of heat capacity (in units of meters of sea water) calculated for the
IPCC AR4 twentieth century (20c3m) model runs by direct correlation of heat storage and
temperature versus heat capacity calculated by the ratio of the trends of heat storage and
temperature over the 20th century. Colors are the same as those used in Fig. 1. (b) Heat
capacity from the mean of the two methods used in (a) versus decorrelation time scale. (c)
Climate sensitivity derived from the trend of the first 50 yr of the runs forced with a 1 percent
per year increase in carbon dioxide versus decorrelation time scale. (d) Climate sensitivity
predicted by the method of Schwartz (2007) from the IPCC AR4 20th century runs, versus
actual climate sensitivity derived from the SRESa1b scenario temperature difference between
the years 2100 and 2000. Schwartzs (2007) estimate of climate sensitivity is indicated with the
light blue line.
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Fig. 5. (a) Equilibrium climate sensitivity of the simple climate model for a range of values of
the feedback parameters fε and fα. (b) Adjustment timescale (time to 90% of response) for the
same feedbacks (c) and for forcing by changes in the solar constant (a and c) and and in the
emissivity (b and d).
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Fig. 6. (a) Response of the simple climate model to an instantaneous increase in the model
solar constant for three different cases: a single 25 m ocean mixed layer (blue), a single 1000 m
ocean mixed layer (green) and a 25 m ocean mixed layer coupled to 1000 m deeper mixed layer
(red). (b) Response of the same model, with the same color-coded configurations, to random
fluctuations in the solar forcing.
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Fig. 7. (a) Lag autocorrelation for a ten thousand-year run of the simple model with a 25 m
ocean mixed layer (black) and for a hundred hundred-year subsamples of the same run (red).
(b) As for (a), for run with a 25 m ocean mixed layer coupled with a 1000 m lower mixed layer.
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Fig. 8. (a) Response of the simple climate model to an instantaneous increase in the model
solar constant for two different cases, one with low climate sensitivity and a single 1000 m
ocean mixed layer, and one with high climate sensitivity and a 25 m mixed layer coupled to a
333 m deep mixed layer. (b) Lag autocorrelations of the surface temperature of the same two
models, for 100 100- yr runs each.
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