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Abstract

We apply Bayesian model selection techniques on the statistical inversion problem of
the GOMOS instrument. The motif is to study which type of aerosol model best fits the
data and to show how the uncertainty of the aerosol model can be included in the error
estimates. The competing models consist of various formulations, each having different5

unknown parameter vectors. We have developed an Adaptive Automatic Reversible
Jump Markov chain Monte Carlo method (AARJ) for sampling values from the posterior
distributions of the unknowns of the models. The algorithm is easy to implement and
can readily be employed for model selection as well as for model averaging, to properly
take into account the uncertainty of the modelling.10

1 Introduction

Advances in computer resources and algorithms have made possible the use of in-
creasingly complicated models. In geophysical sciences the estimation of unknowns
in large models is commonly handled using linearizations and approximations that can
effect the uncertainty estimates of the retrievals. Bayesian inference provides a unified15

and natural framework to consider uncertainty in the estimated values as well as the
model uncertainty. In many cases, classical approximative estimation methods can
be seen as special cases of some more general Bayesian analyses, see for example
Kaipio and Somersalo (2004).

In Bayesian inference, the uncertainty of the estimated value is a primary target of the20

investigation. Whenever computationally possible, the result of the analysis is the full
multi-dimensional posterior probability density of the unknowns. The approach allow
the study of many kinds of uncertainties, including uncertainty in the model itself. Prior
information from different sources can be pooled and incorporated statistically correctly
and the correlation structure of the unknowns can be fully explored. Practical tools for25

applying Bayesian inference to modelling problems are provided by the Markov chain
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Monte Carlo (MCMC) methods. MCMC is a common title for algorithms that simulate
values from a probability distribution known only up to a normalizing constant. A typical
case of such a task is to find the posterior distribution of the unknown parameters of a
geophysical model. For application examples and more details on applying Bayesian
MCMC methods in geophysical research see, for example, Tamminen and Kyrl (2001);5

Tamminen (2004); Haario et al. (2004).
In this article the Bayesian model selection and averaging is applied to the GOMOS

(ESA 2007) aerosol model selection problem. GOMOS (Global Ozone Monitoring by
Occultation of Stars) is an instrument on board the Envisat satellite that uses stellar oc-
cultation to measure the atmosphere (http://envisat.esa.int/instruments/gomos/). The10

aerosol cross-section model in the GOMOS retrieval algorithm is just an approximation
of the underlying aerosol extinction process. Indeed, several alternative formulations
are possible, depending on the types of the aerosols at a given location. Consequently,
it is advisable to allow for different types of models and let the data decide which one
to use. By adaptive MCMC methods this can be done as a part of general estimation15

procedure in a statistically correct manner.
This article introduces an adaptive MCMC method, called AARJ, for model selec-

tion problems. AARJ is an easy to use and efficient version of the Reversibe Jump
MCMC algorithm. We demonstrate the technique in the aerosol model selection of
the GOMOS remote sensing instrument, but we emphasize that the method is gen-20

eral and applicable to general model selection problems. The structure of this article
is the following. In Sect. 2 the basics of Bayesian model selection are reviewed. In
Sect. 3 the MCMC method for simulating from a posterior distribution of model param-
eters is explained and an adaptive automatic reversible jump MCMC algorithm (AARJ)
is introduced. The algorithm can be used for model determination problems where a25

number of different models are fitted and compared. The application example of GO-
MOS aerosol model selection is explained and the results of computer experiments are
given in Sects. 4 and 5.
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2 Bayesian model selection

Choosing the right model is a complicated matter. The problem can not, clearly, be
solved by purely statistical considerations. The researchers insight into the subject
matter will always be the most valuable resource. Statistical methods can, however,
tell if the chosen models and modelling assumptions are highly unprobable for the situ-5

ation and calculate relative merits of different modelling approaches. Here we present
statistical methods that are able to tell which of the possible solutions offer the best fit
given the set of models to consider, the data observed, and the prior information that
is available.

In many cases the ground truth is unknown. We could have several speculative alter-10

natives about the physical behavior of the system, e.g. depending on some unknown
state of nature at the location under consideration. Then it is reasonable to model also
the uncertainty in the model, for example by introducing several alternative models and
let the data decide which of them to use. A problem, similar to a point estimation (or
maximum a posteriori estimation) in parameter estimation, would then be the selection15

of the best model. If no single model stands out, then this uncertainty can be taken into
account in the results by averaging the predictions over the models according to their
posterior weights.

We briefly introduce the main concepts of model determination in the Bayesian
framework and discuss various probability distributions of the unknowns concerned.20

Let x stand for a vector of unknown variables of primary interest and η(k) for extra un-
known model parameters in the k:th model. We assume that x is common to all the
models. We want to use the observed data, y , to estimate the unknowns x and η(k)

and also make inference about the unknown model k. In our case, the model index k
is a label for a finite set of pre-selected models. In the GOMOS example presented in25

Sect. 4 symbol x will stand for the constituent the line densities and η(k) contains the
aerosol cross-section parameters for four cross-section models k=1, . . . ,4.

To apply Bayesian inference we need to assign prior probabilities jointly for all the
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unknowns, p(x, η(k), k). It can be written as a product of conditional probabilities

p(x, η(k), k) = p(x|η(k), k)p(η(k)|k)p(k). (1)

This formulation reveals the hierarchical structure of the unknowns. Priors can be given
sequentially by first assigning prior probabilities for different models, p(k), then prior
distributions for the model parameters p(η(k)|k) in each model and lastly the priors for5

the unknown variables p(x|η(k)). In addition, we must formulate the likelihood function,
p(y |x, η(k), k), giving the distribution of the observations, using the forward model and
the statistical description of the observational error.

The joint posterior distribution of the unknowns x, η(k) and k conditional to the ob-
served data y is written by the aid of the Bayes formula and is expressed as a product10

of the likelihood and the priors:

p(x, η(k), k |y) =
p(y |x, η(k), k)p(x|η(k), k)p(η(k)|k)p(k)

p(y)
. (2)

For the actual calculation of the posterior density we must solve the well known problem
of computing the unconditional probability of the observations p(y) in the denominator
of the Bayes formula. As the observed data y are fixed, the term p(y) can be seen15

as a normalizing constant that makes the product of likelihood and prior to become a
probability density function. This means that we can write

p(y) =
∫
p(y |x, η(k), k)p(x|η(k), k)p(η(k)|k)p(k)d (x, η(k), k) (3)

and the calculation involves averaging over all the unknown variables of the model,
making it into an integration problem with dimension equal to the number of unknowns20

in the model. This integration is, in general, impossible without advanced Monte Carlo
simulation techniques, like the MCMC.
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Let us next consider the problem of selecting the best model k from a set of compet-
ing models. Different models can be judged according to the evidence they give to the
observations, i.e. we consider the probabilities:

p(y |k) =
∫
p(y |θ(k), k)p(θ(k)|k)p(k)dθ(k), (4)

where θ(k) = (x, η(k)) is used as a shorthand for the vector of all unknowns of the model5

k. The posterior model probabilities can be written using the Bayes formula as

p(k |y) =
p(y |k)p(k)

p(y)
. (5)

If the values above are available, then model comparisons can be done using posterior
odds:

p(k1|y)

p(k2|y)
=

p(y |k1)

p(y |k2)

p(k1)

p(k2)
, (6)10

where the first term in the right, p(y |k1)/p(y |k2), is called the Bayes factor, the relative
evidence of model k1 wrt. model k2 given by the data y and p(k1)/p(k2) is the ratio of
prior model probabilities.

The calculation of model probability p(k |y), and that of the evidence p(y |k), poses
challenges, especially if the class of models considered is large and if there is no15

natural hierarchy between the models that could be exploited. Several methods for
the calculations have been proposed, either by using approximations that avoid the
problems of high dimensional integration, or by using results of the MCMC runs on
the individual models. The adaptive RJMCMC method, AARJ, presented below allows
for a simple method of calculating the model posterior probabilities from an MCMC20

simulation done simultaneously over all the selected models.
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3 Markov chain Monte Carlo – MCMC

In the most general setting we are interested in the whole posterior distribution of all
the unknowns. Sometimes we are satisfied with some statistics of the distribution,
such as the mean and standard deviation. The calculation of most statistics will lead,
in general, to a high dimensional integration problem that has no closed form solutions.5

The Monte Carlo methods use random numbers to replace the integrals with sample
averages that are easy to calculate. But even the standard Monte Carlo techniques
using independent random variables are in trouble when the dimension is higher than
3 or 4. The solution offered by the Markov chain Monte Carlo (MCMC) methods is to
use high dimensional random walks.10

The most important MCMC algorithm is the Metropolis-Hasting (MH) algorithm. It
has several useful generalizations and important special cases for different purposes.
The MH algorithm for sampling from a posterior distribution p(θ|y) can be described
as follows. Again, we let θ stand for all the unknowns of our model, including unknown
state variables, model parameters and the model index, θ=(x, η(k), k). Starting from15

an initial guess θ0 we generate a chain of possible parameter realizations θ0, θ1, . . . .
In each step i with a current value θi we propose a new value θ∗ using a proposal
distribution q(θi , ·). As the notation suggests, this proposal can depend on the current
value θi . The proposal could be, for example, a multi dimensional Gaussian distribution
centered at the current value θi . The new value is accepted using an acceptance20

probability α(θi , θ
∗) that depends on the ratio of the posteriors and on the chosen

proposal distribution:

α(θi , θ
∗) = min

(
1,

p(θ∗|y)q(θ∗, θi )

p(θi |y)q(θi , θ∗)

)
= min

(
1,

p(y |θ∗)p(θ∗)q(θ∗, θi )

p(y |θi )p(θi )q(θi , θ∗)

)
. (7)

If θ∗ is accepted, we set θi+1=θ
∗, otherwise the chain stays at the current value, that

is θi+1=θi . If the proposal is symmetric, q(θi , θ
∗)=q(θ∗, θi ), as it is the case with the25

Gaussian density, the q functions cancel out in Eq. (7). A new value θ∗ is then accepted
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unconditionally if it is better than the previous value, i.e., if p(θ∗|y)/p(θi |y)>1. If it is
not better in the above sense, then θ∗ is accepted with a probability that is equal to the
posterior ratio p(θ∗|y)/p(θi |y). The MH algorithm can be thought as a random walker
travelling uphill towards the peak of the posterior distribution, but frequently taking steps
downhill, too.5

The basic idea behind the MH algorithm is that instead of computing the values of
the posterior p(θ|y) directly, we only need to compute ratios of the posteriors at two
distinct parameter values, p(θ2|y)/p(θ1|y). This cancels out the normalizing constant
p(y) and the parts of the likelihood function p(y |θ) that do not depend on θ. Using
standard Markov chain theory (for example Gamerman, 1997), it can be shown that10

this algorithm produces a chain of values whose distribution approaches the target
posterior distribution p(θ|y). We might need to allow some burn-in time to let the chain
reach the limiting distribution.

After the MCMC run we have a chain of values of the parameter vector at our dis-
posal. The inference about the unknowns is done with statistics calculated by the15

chain. The mean of the chain is a Bayesian point estimate for the unknown, a his-
togram or a kernel density gives an estimate for the marginal posterior density. If we
think of the generated chain as a matrix where the number of rows corresponds to the
size of the MCMC sample and the number of columns corresponds to the number of
unknowns in the model, then each row is a possible realization of the model and these20

appear in correct proportions corresponding to the posterior distribution. Plotting one-
dimensional or two-dimensional scatter plots of the sampled parameter values from the
chain produces representations of the respective marginal posterior densities.

3.1 Reversible jump MCMC

To include model selection into the MCMC framework a modification to the basic25

Metropolis-Hastings algorithm outlined above is needed. If we want the MCMC chain
to explore different models and parametrizations, we must somehow allow the dimen-
sion of the unknown to change. This is the motivation behind the Reversible Jump
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MCMC (RJMCMC) algorithm by Green (1995). In the RJMCMC algorithm the proposal
distribution and the acceptance probability are formulated in such a way that the chain
can perform reversible jumps between spaces of different dimensions. This means, es-
pecially, that the random walk of the MH algorithm can simultaneously explore different
models for the same data.5

The RJMCMC algorithm can be presented in theoretical framework that extends
the standard MH algorithm to a more general state space of the unknowns. We will
not present the general theory, but refer to Green (1995). Instead, we show how the
method can be succesfully implemented in a situation where we consider several dif-
ferent models for the same data. This approach is also based on the work of Green10

(2003) and is called automatic RJMCMC.
In automatic RJMCMC a special MCMC sampler is constructed that can jump be-

tween different models. For the MCMC chain to move from one model to another, we
need a way to transform the model parameters. A simple but general way to do this this
is the following. Suppose that for each model k, the target posterior distributions can15

be approximated by a mean vector µk and a covariance matrix Ck=R
T
kRk , where Rk

denotes the Cholesky decomposition factor. These approximations are used to trans-
form the unknowns in each model into approximately independent Gaussian variables
and they thus provide a common scale to perform the between model transformations
of the parameters. Additionally, as seen below, the covariance matrix Ck can be used20

to form the proposal distribution of the Metropolis-Hastings step of the algorithm.
Let again θ(k) stand for the vector of all the unknowns in the model k and let the

dimension of θ(k) be nk . Assume that the chain is currently in the model i . Using the
vector µi and the matrix Ri , we can compute a scaled and normalized version of the
current chain value as25

zi = (θ(i ) − µi )R
−1
i . (8)

The components of zi are now approximately independent Gaussian with unit vari-
ances. If the model j has the same dimension as the model i , we have a simple
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transformation from the model space i to the model space j as

θ(j ) = µj + ziRj . (9)

If the dimensions of the two models do not match, we either drop some columns of zi or
add new dimensions to it using independent Gaussian random numbers, u ∼ N(0, I).
The transformations can be written as5

θ(j ) =


µj + [zi ]

nj
1 Rj if ni > nj

µj + ziRj if ni = nj

µj +

[
zi
u

]
Rj if ni < nj .

(10)

Here [z]i1 means the first i components of the vector z.
The Metropolis-Hastings acceptance probability for a move from the model i to the

model j and from a parameter value θ(i ) to that of θ(j ) is calculated according to the
RJMCMC theory. Let p(i , j ) be the probability to propose a jump to the model j when10

the chain is currently at the model i , i.e., if the current model is i then the next model is
chosen with a draw from a proposal distribution p(i , ·). If the model j is selected, then
the current parameter vector is transformed to the new model according to Eq. (10).
The acceptance probability for the RJMCMC sampler can be written as

α(θ(i ), θ(j )) = max

(
1,

p(y |θ(j ), j )p(θ(j ), j )p(j, i )

p(y |θ(i ), i )p(θ(i ), i )p(i , j )

∣∣Rj

∣∣
|Ri |

g

)
, (11)15

where |R | is the determinant of the matrix R and the last term g depends on the extra
variable u and is given as

g = φ(u) if ni > nj , (12)

1 if ni = nj , (13)

φ(u)−1 if ni < nj , (14)20
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where φ is the probability density function of independent multi dimensional Gaussian
values, N(0, I). Figure 1 illustrates the model moves. Note that when moving from
one model to another with equal dimension, the transformation is totally deterministic,
no random variables are used to make the move. To introduce more randomness,
Green (2003) suggests a random permutation of the components of the normalized5

z variables at each step. This permutation, if used, does not change the acceptance
probability.

For a move inside the same model we use a Gaussian proposal distribution and
the standard MH acceptance probability Eq. (7). The approximation of the posterior
provided by the matrix Ci=R

T
i Ri is used to make the proposal to have a correlation10

structure similar to that of the target distribution. If ξ is a random vector of independent
Gaussian random variables ξ ∼ N(0, Ini ), then the proposed value can be written as

θ(i )∗ = θ(i ) + ξRi
√
s, (15)

where s=2.42/ni is a scaling factor. The acceptance probability Eq. (11) simplifies to
that of the standard MH algorithm for symmetric proposal.15

This sampler is easy to implement. The success of it depends on how well the
Gaussian approximations are able to provide decent proposals for moves from model
to model. It is, however, typical in many geophysical applications to have parameter
posteriors close to Gaussian. This also is the reason why the classical estimation
methods often work quite well. But the use of RJMCMC allows us to incorporate model20

selection methods together with prior information, such as positivity or smoothness
constraints, in a statistically sound manner. Also, we are able to properly deal with
nonlinear correlation structures that usually are not found by the classical methods.

3.2 Adaptive automatic RJMCMC – AARJ

From a practical point of view the problem with the standard MCMC algorithms is that,25

in spite of the apparent simplicity of the basic algorithm, it still needs some problem
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specific tuning. The most important aspect is the choice of the proposal distributions
q. In the Metropolis-Hastings algorithm the proposal can, at least in theory, be quite
arbitrary. Choosing a distribution that closely resembles the true posterior distribution
can dramatically speed up the convergence of the generated values to the right distri-
bution. The closer the proposal distribution is to the actual posterior distribution p(θ|y),5

the better the chain “mixes” and the better a short sequence represents a draw from
the posterior. This is especially true in multidimensional cases and when the compo-
nents of the parameter vector are correlated. A general and computationally efficient
choice for the proposal distribution is the multidimensional Gaussian density. As the
shape of the Gaussian density is determined by its covariance matrix, the tuning of the10

algorithm in this case means the selection of the covariance.
In the basic MH algorithm the proposal distribution must not depend on the values

generated so far, except for the current value. This is the requirement behind the
Markov property of the stochastic process that the MCMC sampler defines. If we allow
for adaptation depending on the history, the convergence theorems based on Markov15

chain theory must be checked. Numerous adaptive strategies for the choice of the
proposal distribution have been suggested. In our experiences, the Adaptive Metropolis
(AM) and the Delayed Rejection Adaptive Metropolis (DRAM) have proved to perform
well in several geophysical and environmental modelling applications (Haario et al.,
2001, 2006, 2004). These two methods are the building blocks for the new adaptive20

RJMCMC method presented below, for which we use the acronym AARJ.
In the AM adaptation the Gaussian proposal distribution is tuned using an increasing

part of the chain values generated so far. In Haario et al. (2001) this method is shown
to be ergodic, so it can be used to accurately sample from the target distribution. A
recursive formula for the covariance matrix can be used to ease the computations. The25

DRAM adaptation (Haario et al., 2006) adds a new component to the AM method that is
called Delayed Rejection (DR, Mira, 2001). In the DR method, instead of one proposal
distribution we can have several proposals. These can be used in turn, until a new value
is accepted. The DR acceptance probability formulation ensures that the generated
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chain is Markovian and that the so called reversibility condition holds. This means that
all the standard MH distributional convergence statements hold. In the DRAM method
the DR algorithm is used together with several different adaptive Gaussian proposals.
This helps the algorithm in two ways. Firstly, it enhances the adaptation by providing
accepted values that make the adaptation start earlier. Secondly, it allows the sampler5

to work better for non Gaussian targets and with non linear correlations between the
components. The ergodicity of the DRAM method is proven by Haario et al. (2006).

A new feature presented in this article is the combination of the DRAM and AM
adaptations with the automatic RJMCMC. The practical application presented is the
aerosol model selection in the GOMOS inversion. We want to note that Hastie (2005)10

has also suggested a combination of adaptation and automatic RJMCMC of Green.
The adaptation method (so called Adaptive Acceptance Probability, AAP) used in his
work is, however, different from the adaptation employed here. We regard our AARJ
method to be more general and easily applicable to high dimensional nonlinear models
typical in geophysical problems.15

3.3 The AARJ algorithm

Here we present a schema for the algorithm for AARJ, an Adaptive Automatic Re-
versible Jump MCMC for model selection and model averagingl problems with a fixed
number of models M1, . . . ,Mk .

3.3.1 The algorithm20

1. Run separate adaptive MCMC chains using the DRAM method for all the pro-
posed models. Collect the mean vectors µ(i ) and the Cholesky factors R(i ) of the
covariance matrices of the chains, i=1, . . . , k.

2. Run automatic RJMCMC using the target approximations calculated in step (1).

3. If the current model is kept, use the standard random walk MH with Gaussian pro-25
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posal distribution such that the proposal covariance depends on Ri in the current
model.

4. After given (random or fixed) intervals, adapt each model approximation by the
AM method using those parts of the chain generated so far that belong to the
particular model.5

The AARJ method is easy to implement. For example, a computer program running
the basic Metropolis-Hasting MCMC simulation can readily be extended to do both
DRAM and AARJ. The GOMOS application example below has been coded in Matlab
programming environment, using a MCMC toolbox for Matlab (Laine, 2008).

4 Application: GOMOS aerosol model10

To demonstrate the use of MCMC in model selection, we apply the AARJ method to
aerosol modelling in the GOMOS retrieval. The forward model is the standard GOMOS
model for the spectral transmission according to the Beers law. It is described for
example by Bertaux et al. (2000). The cross section that is used for aerosol line density
is, however, only an approximation of the underlying aerosol extinction process that15

actually depends on many unknown factors. The cross-section is typically modelled by
using a function that behaves like 1/λ, where λ is the wavelength. See Vanhellemont
et al. (2006) for a comparison of different aerosol extinction models for the GOMOS
inversion studied using simulated transmission data.

Here we consider four different aerosol cross section models: the standard (oper-20

ational) 1/λ model (model 1), a second degree polynomial on λ (model 2), 1/λ2 de-
pendence (model 3), and a second degree polynomial on 1/λ (model 4). The aerosol
models are parametrized using the aerosol extinction at 500 nm (models 1 and 2) or at
300, 500 and 600 nm (models 3 and 4), see Fig. 2. A positivity prior constrains these
values. We concentrate on inverting the integrated line densities from the transmission25

spectra. This is called the spectral inversion step in the GOMOS literature. The so
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called vertical inversion of transforming the line densities to the actual constituent den-
sities is a linear operation that is done after the line densities for all the heights have
been inverted and is not considered here.

Let N be the vector of integrated line densities of the constituents to be retrieved
(O3, NO2, NO3, air, aerosols) and matrix α the corresponding cross sections. The5

cross section of aerosol depends on the model parameters η(k). The forward model for
the observed transmission T is written as

T (λ, z) =
I(λ, z)

I0(λ)
= exp

(
−α(η(k))N

)
+ ε(λ),

with ε(λ) ∼ N(0, σ2
kw

2
λ ).

(16)

Here I0(λ) is the spectral intensity measured at a reference height above the atmo-
sphere and I(λ, z) is the intensity measured at the tangent height z. As the chosen10

aerosol model will affect the size of the residuals, the error variance is assumed to
be of form σ2

kw
2
λ , with known weights wλ for each wavelength λ and model dependent

unknown scalars σ2
k , which are also estimated by the MCMC.

The likelihood function assumes the form

p(T |N, η(k), σ2
k ) ∝ exp

(
− 1

2σ2
k

SS(N, η(k))

)
, (17)15

where SS(N, η(k)) is the weighted sum of squares,

SS(N, η(k)) =
∑
λ

T (λ) − exp
(
α(η(k))N

)
wλ


2

. (18)

As for priors, only positivity constraints for the line densities is used. For the unknown
error variance factors, σ2

k , a weakly informative inverse Gamma prior is used (Gamer-
man, 1997). All the four models are taken, a priori, to be equally likely. A prior for the20
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neutral air would probably help the identification of the aerosol model as the aerosol
and neutral air cross-sections resemble each other and thus produce correlated esti-
mates. Note that in the operational GOMOS processing air density is fixed to values
provided by European Centre for Medium-Range Weather Forecasts (ECMWF).

5 Results5

For each line of sight (tangent height), and given one fixed aerosol model, the problem
of inverting the line densities from the transmittance is a nonlinear problem with 5 un-
knowns. This is a fairly easy problem, assuming we have appropriate initial guesses
and the noise level in the transmission spectra is low. The estimation problem can be
solved in a least-squares sense as a nonlinear optimization problem using, e.g., the10

Levenberg-Marquardt method. This is basically the method used in the operational
GOMOS algorithm. In this article we use MCMC to replace the operational inversion
and take in account the model uncertainty. The MCMC method can also be extended
to a one step solution, where all the heights are solved simultaneously, with regulariza-
tion (smoothness) priors on the vertical structure of the profiles, see e.g. Haario et al.15

(2004).
To use the AARJ method for model selection we use the following strategy. Firstly,

for each occultation height and for each aerosol model, separate MCMC runs are per-
formed using the DRAM method (Haario et al., 2006) to find the individual posterior
distributions. From the MCMC chains of these runs the mean vectors and covariance20

matrices together with their Cholesky factors are calculated to produce the mean vec-
tors µi , and Cholesky factor matrices Ri , i = 1, . . . ,4 needed in the RJMCMC stage.
Secondly, an MCMC run is done for a chain of length 50 000 using the AARJ algorithm
for further adaptation of the approximations. The resulting chains are visually investi-
gated using 1-D plots like those in Fig. 4, in order to judge if the chains have converged.25

Some automatic convergence criteria could be used as well.
For the model selection, we calculate the relative times the MCMC chain has spent
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in each model. In Fig. 3 the results for each altitude of one GOMOS occultation are
shown. For most of the heights one model stands out as the main candidate, but no
single model can be used for all the heights. For altitudes from 14 to 22 km the second
order polynomial (Model 2, coloured green) is prevailing. Each of the four models
become selected as the most probable one at some of the altitudes. The second5

order polynomial over 1/λ2 (Model 4, magenta) seems to be less favoured. Certainly,
a more thorough investigation would be needed to determine the relative merits of
different aerosol models for the GOMOS inversion algorithm, but it can already be
seen that the choice of the aerosol model can significantly affect the retrievals of the
other constituents.10

As an illustration of the model averaging we select one altitude at about 18 km where
all the four models have gained some posterior probability. Figures 4, 5 and 6 show the
MCMC chains, the estimated posterior distributions and the fitted cross-sections for this
selected altitude. Model averaging is useful when we are not able to get the best model.
The model used for estimation is then a mixture of different models each weighted ac-15

cording to its posterior weight. The uncertainty in the model is taken into account in the
predictions and in the posterior inference for the constituents. In Fig. 6 the uncertainty
in the cross-section of each model is illustrated. The cross-section curve is calculated
for each model parameter in the MCMC chain. Then the corresponding posterior distri-
bution for each wavelength is estimated. Together these provide predictive envelopes20

of the aerosol extinctions. These are drawn as different grey regions in the plots.
Figure 5 reveals the effect of the aerosol model on other retrievals. The plots show

the marginal posterior distributions of the constituent line densities separately for each
model and the posterior distribution of the averaged model. For the retrieval of ozone
the difference between posterior mean of Model 2 and of the other models is about25

twice the estimated posterior standard deviation of the estimated value. The most
notable effect is seen on the estimated neutral air density (the lower right plot in Fig. 5).
The averaged uncertainty of neutral air over all the models is a distribution with two
distinct modes. This comes mostly from the similarity of the cross-section of air and
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that of the aerosols models. An accurate prior for neutral air, if available, would help
this unidentifiability.

The study of aerosols in the GOMOS inversion is further complicated by the fact that,
in addition to aerosols, parts of the unmodelled variations in the GOMOS spectra are
due to the scintillation effects caused by turbulence. These effects are actively studied5

at Finnish Meteorological Institute, and the methods presented in this article will give
useful methodological tools for these studies, too.

6 Conclusions

The adaptive automatic RJMCMC method, AARJ, is a novel combination of previous
adaptive methodologies that have been found to work reliably in various modelling ap-10

plications. AARJ provides an easy-to-use adaptive reversible jump MCMC method for
Bayesian model selection. It can be used as a tool for automatic model determination
and for making simultaneous inference about the model and the model parameters.
If one model clearly stands out, we can select it as the “true” model. If the data do
not give any definite indication on the right model, and no accurate prior for the model15

is available, the uncertainty in the modelling can be taken into account in the model
predictions by using a weighted mixture of the models. The method itself is a general
one and not limited to geophysical applications. It can be used to solve the model se-
lection problem for a set of models having different parameters of different dimensions.
The new algorithm will make it possible to use Bayesian methods in more realistic20

modelling settings than before, thus further widening the scope of statistical inversion
methodology.

The GOMOS aerosol model selection problem can be successfully studied with the
AARJ method. For the GOMOS inversion problem it is natural to consider a set of
competing aerosol cross section models, as the most suitable model will depend on25

the unknown type of aerosols present in the corresponding location. In the present
example the number of aerosol cross-section models is four, but the method could
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as well be used to study a larger number of models. The current operational GOMOS
algorithm uses a fixed aerosol model. It would be advisable to further study the effect of
the chosen aerosol model of the retrieval of various gas constituents. Different aerosol
models could be used depending on the location.

This model selection technique can be used in different applications. The inversion5

algorithm of the OMI ozone instrument onboard EOS-Aura satellite, for example, has
five main aerosol models, each having several sub models (Veihelmann et al., 2007).
In the OMI inversion the aerosol model is chosen from a few (2–3) pre-selected models
according to the minimum χ2 statistic criteria. Both the GOMOS and OMI inversions
could benefit from the model averaging approach that takes into account the uncer-10

tainty in the model selection.
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Bertaux, J. L., Kyrölä, E., and Wehr, T.: Stellar Occultation Technique for Atmospheric Ozone15

Monitoring: GOMOS on Envisat, Earth Observation Quarterly, 67, 17–20, 2000. 10804
ESA 2007: GOMOS Product Handbook Issue 3.0, European Space Agency, http://envisat.esa.

int/dataproducts/, 2007. 10793
Gamerman, D.: Markov Chain Monte Carlo – Stochastic simulation for Bayesian inference,

Chapman & Hall, 1997. 10798, 1080520

Green, P. J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination, Biometrika, 82, 711–732, 1995. 10799

Green, P. J.: Trans-dimensional Markov chain Monte Carlo, in: Highly Structured Stochastic
Systems, edited by: Green, P. J., Hjort, N. L., and Richardson, S., 27, in Oxford Statistical
Science Series, Oxford University Press, 179–198, 2003. 10799, 1080125

Haario, H., Saksman, E., and Tamminen, J.: An adaptive Metropolis algorithm, Bernoulli, 7,
223–242, 2001. 10802

Haario, H., Laine, M., Lehtinen, M., Saksman, E., and Tamminen, J.: MCMC methods for

10809

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/10791/2008/acpd-8-10791-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/10791/2008/acpd-8-10791-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://envisat.esa.int/dataproducts/
http://envisat.esa.int/dataproducts/
http://envisat.esa.int/dataproducts/


ACPD
8, 10791–10816, 2008

Aerosol model
selection

M. Laine and
J. Tamminen

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

high dimensional inversion in remote sensing, J. R. Stat. Soc. Ser., Series B, 66, 591–607,
doi:10.1111/j.1467-9868.2004.02053.x, 2004. 10793, 10802, 10806

Haario, H., Laine, M., Mira, A., and Saksman, E.: DRAM: Efficient adaptive MCMC, Statistics
and Computing, 16, 339–354, doi:10.1007/s11222-006-9438-0, 2006. 10802, 10803, 10806

Hastie, D.: Towards Automatic Reversible Jump Markov Chain Monte Carlo, Ph.D. thesis, Uni-5

versity of Bristol Department of Mathematics, 2005. 10803
Kaipio, J. P. and Somersalo, E.: Computational and Statistical Methods for Inverse Problems,

Springer, 339 pp., 2004. 10792
Laine, M.: MCMC toolbox for Matlab website, http://www.helsinki.fi/∼mjlaine/mcmc/, 2008.

1080410

Mira, A.: On Metropolis-Hastings algorithms with delayed rejection, Metron, LIX, 231–241,
2001. 10802

Tamminen, J.: Adaptive Markov chain Monte Carlo algorithms with geophysical applications,
Finnish Meteorological Institute Contributions, 47, Finnish Meteorological Institute, Helsinki,
2004. 1079315
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Model 1 Model 2

 

 
95% contour of the target
Gaussian approximation

Model 3

 

 
target density
Gaussian approximation

Fig. 1. Illustration of the model to model transformations in the au-
tomatic RJMCMC algorithm. The contours in 2-dimensional Mod-
els 1 and 2 represent 95% probability limits of the distributions.
Model 3 is 1-dimensional and is illustrated by its density function.
Solid lines give the (unknown in applications) true non-Gaussian
density and broken lines the corresponding Gaussian approxima-
tions. The dots are values that have the same canonical coordinates
given by the covariance matrix of the Gaussian approximation. The
arrows shown one possible path from Model 1 to Model 2 and from
Model 2 to Model 3. In the AARJ method these approximations are
updated as more information on the true target becomes available
from the generated MCMC chain.

sequence represents a draw from the posterior. This is espe-
cially true in multidimensional cases and when the compo-
nents of the parameter vector are correlated. A general and
computationally efficient choice for the proposal distribution
is the multidimensional Gaussian density. As the shape of
the Gaussian density is determined by its covariance matrix,
the tuning of the algorithm in this case means the selection
of the covariance.

In the basic MH algorithm the proposal distribution must
not depend on the values generated so far, except for the cur-
rent value. This is the requirement behind the Markov prop-
erty of the stochastic process that the MCMC sampler de-
fines. If we allow for adaptation depending on the history, the
convergence theorems based on Markov chain theory must
be checked. Numerous adaptive strategies for the choice of
the proposal distribution have been suggested. In our ex-
periences, the Adaptive Metropolis (AM) and the Delayed
Rejection Adaptive Metropolis (DRAM) have proved to per-
form well in several geophysical and environmental mod-
elling applications (Haario et al., 2001, 2006, 2004). These
two methods are the building blocks for the new adaptive
RJMCMC method presented below, for which we use the
acronym AARJ.

In the AM adaptation the Gaussian proposal distribution is

tuned using an increasing part of the chain values generated
so far. In Haario et al. (2001) this method is shown to be er-
godic, so it can be used to accurately sample from the target
distribution. A recursive formula for the covariance matrix
can be used to ease the computations. The DRAM adapta-
tion (Haario et al., 2006) adds a new component to the AM
method that is called Delayed Rejection (DR, Mira (2001)).
In the DR method, instead of one proposal distribution we
can have several proposals. These can be used in turn, until
a new value is accepted. The DR acceptance probability for-
mulation ensures that the generated chain is Markovian and
that the so called reversibility condition holds. This means
that all the standard MH distributional convergence state-
ments hold. In the DRAM method the DR algorithm is used
together with several different adaptive Gaussian proposals.
This helps the algorithm in two ways. Firstly, it enhances the
adaptation by providing accepted values that make the adap-
tation start earlier. Secondly, it allows the sampler to work
better for non Gaussian targets and with non linear correla-
tions between the components. The ergodicity of the DRAM
method is proven by Haario et al. (2006).

A new feature presented in this article is the combina-
tion of the DRAM and AM adaptations with the automatic
RJMCMC. The practical application presented is the aerosol
model selection in the GOMOS inversion. We want to note
that Hastie (2005) has also suggested a combination of adap-
tation and automatic RJMCMC of Green. The adaptation
method (so called Adaptive Acceptance Probability, AAP)
used in his work is, however, different from the adaptation
employed here. We regard our AARJ method to be more
general and easily applicable to high dimensional nonlinear
models typical in geophysical problems.

3.3 The AARJ algorithm

Here we present a schema for the algorithm for AARJ, an
Adaptive Automatic Reversible Jump MCMC for model se-
lection and model averaging problems with a fixed number
of modelsM1, . . . , Mk .

The algorithm

1. Run separate adaptive MCMC chains using the DRAM
method for all the proposed models. Collect the mean
vectorsµ(i) and the Cholesky factorsR(i) of the covari-
ance matrices of the chains,i = 1, . . . , k.

2. Run automatic RJMCMC using the target approxima-
tions calculated in step (1).

3. If the current model is kept, use the standard random
walk MH with Gaussian proposal distribution such that
the proposal covariance depends onRi in the current
model.

4. After given (random or fixed) intervals, adapt each
model approximation by the AM method using those

Fig. 1. Illustration of the model to model transformations in the automatic RJMCMC algorithm.
The contours in 2-dimensional Models 1 and 2 represent 95% probability limits of the distri-
butions. Model 3 is 1-dimensional and is illustrated by its density function. Solid lines give
the (unknown in applications) true non-Gaussian density and broken lines the corresponding
Gaussian approximations. The dots are values that have the same canonical coordinates given
by the covariance matrix of the Gaussian approximation. The arrows shown one possible path
from Model 1 to Model 2 and from Model 2 to Model 3. In the AARJ method these approxima-
tions are updated as more information on the true target becomes available from the generated
MCMC chain.
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6 M. Laine and J. Tamminen: Aerosol model selection

parts of the chain generated so far that belong to the
particular model.

The AARJ method is easy to implement. For exam-
ple, a computer program running the basic Metropolis-
Hasting MCMC simulation can readily be extended to do
both DRAM and AARJ. The GOMOS application example
below has been coded in Matlab programming environment,
using a MCMC toolbox for Matlab (Laine, 2008).

4 Application: GOMOS aerosol model

To demonstrate the use of MCMC in model selection, we ap-
ply the AARJ method to aerosol modelling in the GOMOS
retrieval. The forward model is the standard GOMOS model
for the spectral transmission according to the Beers law. It
is described for example by Bertaux et al. (2000). The cross
section that is used for aerosol line density is, however, only
an approximation of the underlying aerosol extinction pro-
cess that actually depends on many unknown factors. The
cross-section is typically modelled by using a function that
behaves like 1/λ, whereλ is the wavelength. See Vanhelle-
mont et al. (2006) for a comparison of different aerosol ex-
tinction models for the GOMOS inversion studied using sim-
ulated transmission data.

Here we consider four different aerosol cross section mod-
els: the standard (operational) 1/λ model (model 1), a sec-
ond degree polynomial onλ (model 2), 1/λ2 dependence
(model 3), and a second degree polynomial on 1/λ (model 4).
The aerosol models are parametrized using the aerosol ex-
tinction at 500 nm (models 1 and 2) or at 300, 500 and
600 nm (models 3 and 4), see Figure 2. A positivity prior
constrains these values. We concentrate on inverting the in-
tegrated line densities from the transmission spectra. This is
called the spectral inversion step in the GOMOS literature.
The so called vertical inversion of transforming the line den-
sities to the actual constituent densities is a linear operation
that is done after the line densities for all the heights have
been inverted and is not considered here.

Let N be the vector of integrated line densities of the con-
stituents to be retrieved (O3, NO2, NO3, air, aerosols) and
matrix α the corresponding cross sections. The cross sec-
tion of aerosol depends on the model parametersη(k). The
forward model for the observed transmissionT is written as

T (λ, z) =
I (λ, z)

I0(λ)
= exp

(

−α(η(k))N
)

+ ǫ(λ),

with ǫ(λ) ∼ N(0, σ 2
k w2

λ).

(14)

Here I0(λ) is the spectral intensity measured at a reference
height above the atmosphere andI (λ, z) is the intensity mea-
sured at the tangent heightz. As the chosen aerosol model
will affect the size of the residuals, the error variance is
assumed to be of formσ 2

k w2
λ, with known weightswλ for

each wavelengthλ and model dependent unknown scalars
σ 2

k , which are also estimated by the MCMC.

λ
1

λ
ref

λ
2

a
1

a
0

a
2

Aerosol cross section parametrization

Fig. 2. Aerosol model parametrization. Each model is parametrised
in such way that the parameters correspond to aerosol extinction at
one selected wavelength, 300, 500 and 600 nm for three parameter
models and 500 nm for one parameter model. This way we can
also require positivity for these values and assure that theresulting
estimates provide physically meaningful values.

The likelihood function assumes the form

p(T |N, η(k), σ 2
k ) ∝ exp

(

−
1

2σ 2
k

SS(N, η(k))

)

, (15)

whereSS(N, η(k)) is the weighted sum of squares,

SS(N, η(k)) =
∑

λ

(

T (λ) − exp
(

α(η(k))N
)

wλ

)2

. (16)

As for priors, only positivity constraints for the line densities
is used. For the unknown error variance factors,σ 2

k , a weakly
informative inverse Gamma prior is used (Gamerman, 1997).
All the four models are taken, a priori, to be equally likely.
A prior for the neutral air would probably help the identi-
fication of the aerosol model as the aerosol and neutral air
cross-sections resemble each other and thus produce corre-
lated estimates. Note that in the operational GOMOS pro-
cessing air density is fixed to values provided by European
Centre for Medium-Range Weather Forecasts (ECMWF).

5 Results

For each line of sight (tangent height), and given one fixed
aerosol model, the problem of inverting the line densities
from the transmittance is a nonlinear problem with 5 un-
knowns. This is a fairly easy problem, assuming we have
appropriate initial guesses and the noise level in the trans-
mission spectra is low. The estimation problem can be solved
in a least-squares sense as a nonlinear optimization problem
using, e.g., the Levenberg-Marquardt method. This is basi-
cally the method used in the operational GOMOS algorithm.

Fig. 2. Aerosol model parametrization. Each model is parametrised in such way that the
parameters correspond to aerosol extinction at one selected wavelength, 300, 500 and 600 nm
for three parameter models and 500 nm for one parameter model. This way we can also require
positivity for these values and assure that the resulting estimates provide physically meaningful
values.
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Fig. 3. An AARJ run is performed for each height in one GOMOS
occultation. The posterior model probabilities are calculated for the
four models at each height. The colours show how the different
cross sections models are preferred depending on the altitude. The
colouring is the same as in figures 4 and 5, Model 1:red, model 2
green, model 3blue, model 4magenta.

In this article we use MCMC to replace the operational inver-
sion and take in account the model uncertainty. The MCMC
method can also be extended to a one step solution, where
all the heights are solved simultaneously, with regularization
(smoothness) priors on the vertical structure of the profiles,
see e.g. Haario et al. (2004).

To use the AARJ method for model selection we use
the following strategy. Firstly, for each occultation height
and for each aerosol model, separate MCMC runs are per-
formed using the DRAM method (Haario et al., 2006) to
find the individual posterior distributions. From the MCMC
chains of these runs the mean vectors and covariance ma-
trices together with their Cholesky factors are calculatedto
produce the mean vectorsµi , and Cholesky factor matrices
Ri , i = 1, . . . , 4 needed in the RJMCMC stage. Secondly,
an MCMC run is done for a chain of length 50 000 using
the AARJ algorithm for further adaptation of the approxi-
mations. The resulting chains are visually investigated using
1-D plots like those in Figure 4, in order to judge if the chains
have converged. Some automatic convergence criteria could
be used as well.

For the model selection, we calculate the relative times the
MCMC chain has spent in each model. In Figure 3 the results
for each altitude of one GOMOS occultation are shown. For
most of the heights one model stands out as the main can-
didate, but no single model can be used for all the heights.
For altitudes from 14 to 22 km the second order polynomial
(Model 2, coloured green) is prevailing. Each of the four
models become selected as the most probable one at some

of the altitudes. The second order polynomial over 1/λ2

(Model 4, magenta) seems to be less favoured. Certainly,
a more thorough investigation would be needed to determine
the relative merits of different aerosol models for the GO-
MOS inversion algorithm, but it can already be seen that the
choice of the aerosol model can significantly affect the re-
trievals of the other constituents.

As an illustration of the model averaging we select one al-
titude at about 18 km where all the four models have gained
some posterior probability. Figures 4, 5 and 6 show the
MCMC chains, the estimated posterior distributions and the
fitted cross-sections for this selected altitude. Model aver-
aging is useful when we are not able to get the best model.
The model used for estimation is then a mixture of different
models each weighted according to its posterior weight. The
uncertainty in the model is taken into account in the predic-
tions and in the posterior inference for the constituents. In
Figure 6 the uncertainty in the cross-section of each model
is illustrated. The cross-section curve is calculated for each
model parameter in the MCMC chain. Then the correspond-
ing posterior distribution for each wavelength is estimated.
Together these provide predictive envelopes of the aerosol
extinctions. These are drawn as different grey regions in the
plots.

Figure 5 reveals the effect of the aerosol model on other re-
trievals. The plots show the marginal posterior distributions
of the constituent line densities separately for each model
and the posterior distribution of the averaged model. For the
retrieval of ozone the difference between posterior mean of
Model 2 and of the other models is about twice the estimated
posterior standard deviation of the estimated value. The most
notable effect is seen on the estimated neutral air density (the
lower right plot in Figure 5). The averaged uncertainty of
neutral air over all the models is a distribution with two dis-
tinct modes. This comes mostly from the similarity of the
cross-section of air and that of the aerosols models. An accu-
rate prior for neutral air, if available, would help this uniden-
tifiability.

The study of aerosols in the GOMOS inversion is further
complicated by the fact that, in addition to aerosols, partsof
the unmodelled variations in the GOMOS spectra are due to
the scintillation effects caused by turbulence. These effects
are actively studied at Finnish Meteorological Institute,and
the methods presented in this article will give useful method-
ological tools for these studies, too.

6 Conclusions

The adaptive automatic RJMCMC method, AARJ, is a novel
combination of previous adaptive methodologies that have
been found to work reliably in various modelling applica-
tions. AARJ provides an easy-to-use adaptive reversible
jump MCMC method for Bayesian model selection. It can
be used as a tool for automatic model determination and

Fig. 3. An AARJ run is performed for each height in one GOMOS occultation. The posterior
model probabilities are calculated for the four models at each height. The colours show how
the different cross sections models are preferred depending on the altitude. The colouring is
the same as in Figs. 4 and 5, Model 1: red, model 2 green, model 3 blue, model 4 magenta.
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Fig. 4. The MCMC chains for the line densities for one selected
GOMOS occultation. The horizontal axis runs with the simulation
indexes, vertical axis being the simulated and accepted values for
the line density for each constituent. The color indicates in witch
model the algorithm is in each step. Plot on the lower left corner la-
beled "Aerosol" show the relative aerosol extinction at 500nm for
all models. The last plot shows relative times spent in each model.
Of the total 50 000 MCMC simulations of this particular run the
models 1, 2, 3 and 4 are visited 129, 16035, 31679 and 2157 times,
which makes the corresponding marginal model posterior probabil-
ities p(ki |y), i = 1, . . . , 4 to be 0.003, 0.321, 0.634, and 0.043.

for making simultaneous inference about the model and the
model parameters. If one model clearly stands out, we can
select it as the "true" model. If the data do not give any def-
inite indication on the right model, and no accurate prior for
the model is available, the uncertainty in the modelling can
be taken into account in the model predictions by using a
weighted mixture of the models. The method itself is a gen-
eral one and not limited to geophysical applications. It canbe
used to solve the model selection problem for a set of mod-
els having different parameters of different dimensions. The
new algorithm will make it possible to use Bayesian methods
in more realistic modelling settings than before, thus further
widening the scope of statistical inversion methodology.

The GOMOS aerosol model selection problem can be suc-
cessfully studied with the AARJ method. For the GOMOS
inversion problem it is natural to consider a set of compet-
ing aerosol cross section models, as the most suitable model
will depend on the unknown type of aerosols present in the
corresponding location. In the present example the number
of aerosol cross-section models is four, but the method could
as well be used to study a larger number of models. The
current operational GOMOS algorithm uses a fixed aerosol
model. It would be advisable to further study the effect of
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Fig. 5. Marginal posterior density estimates of the constituent
line densities calculated from the MCMC chains of Figure 4. The
thicker line is the uncertainty coming from the averaged model that
takes into account the model uncertainty. The posterior probabili-
ties of the models are the relative times the chain has spent on each
model. This depend on given prior weights for each model and on
how well each different model fit the data compared to other mod-
els. In the present example, all the models are taken a priorito be
equally likely , sop(k) = 1/4 for k = 1, . . . , 4. Thex axis value is
the integrated number density [1/cm3].
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Fig. 6. Estimated aerosol extinctions for the selected altitude of
the example given in the text. Solid line is the fitted median cross
section. Grey areas correspond to 50%, 95% and 95% posterior
limits of the extinctions. The model are the following. Model 1:
linear for 1/λ, Model 2: a second degree polynomial onλ, Model 3:
linear for 1/λ2, Model 4: a second degree polynomial on 1/λ.

Fig. 4. The MCMC chains for the line densities for one selected GOMOS occultation. The
horizontal axis runs with the simulation indexes, vertical axis being the simulated and accepted
values for the line density for each constituent. The color indicates in witch model the algo-
rithm is in each step. Plot on the lower left corner labeled “Aerosol” show the relative aerosol
extinction at 500 nm for all models. The last plot shows relative times spent in each model. Of
the total 50 000 MCMC simulations of this particular run the models 1, 2, 3 and 4 are visited
129, 16 035, 31 679 and 2157 times, which makes the corresponding marginal model posterior
probabilities p(ki |y), i=1, . . . ,4 to be 0.003, 0.321, 0.634, and 0.043.
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Fig. 4. The MCMC chains for the line densities for one selected
GOMOS occultation. The horizontal axis runs with the simulation
indexes, vertical axis being the simulated and accepted values for
the line density for each constituent. The color indicates in witch
model the algorithm is in each step. Plot on the lower left corner la-
beled "Aerosol" show the relative aerosol extinction at 500nm for
all models. The last plot shows relative times spent in each model.
Of the total 50 000 MCMC simulations of this particular run the
models 1, 2, 3 and 4 are visited 129, 16035, 31679 and 2157 times,
which makes the corresponding marginal model posterior probabil-
ities p(ki |y), i = 1, . . . , 4 to be 0.003, 0.321, 0.634, and 0.043.

for making simultaneous inference about the model and the
model parameters. If one model clearly stands out, we can
select it as the "true" model. If the data do not give any def-
inite indication on the right model, and no accurate prior for
the model is available, the uncertainty in the modelling can
be taken into account in the model predictions by using a
weighted mixture of the models. The method itself is a gen-
eral one and not limited to geophysical applications. It canbe
used to solve the model selection problem for a set of mod-
els having different parameters of different dimensions. The
new algorithm will make it possible to use Bayesian methods
in more realistic modelling settings than before, thus further
widening the scope of statistical inversion methodology.

The GOMOS aerosol model selection problem can be suc-
cessfully studied with the AARJ method. For the GOMOS
inversion problem it is natural to consider a set of compet-
ing aerosol cross section models, as the most suitable model
will depend on the unknown type of aerosols present in the
corresponding location. In the present example the number
of aerosol cross-section models is four, but the method could
as well be used to study a larger number of models. The
current operational GOMOS algorithm uses a fixed aerosol
model. It would be advisable to further study the effect of
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Fig. 5. Marginal posterior density estimates of the constituent
line densities calculated from the MCMC chains of Figure 4. The
thicker line is the uncertainty coming from the averaged model that
takes into account the model uncertainty. The posterior probabili-
ties of the models are the relative times the chain has spent on each
model. This depend on given prior weights for each model and on
how well each different model fit the data compared to other mod-
els. In the present example, all the models are taken a priorito be
equally likely , sop(k) = 1/4 for k = 1, . . . , 4. Thex axis value is
the integrated number density [1/cm3].
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Fig. 6. Estimated aerosol extinctions for the selected altitude of
the example given in the text. Solid line is the fitted median cross
section. Grey areas correspond to 50%, 95% and 95% posterior
limits of the extinctions. The model are the following. Model 1:
linear for 1/λ, Model 2: a second degree polynomial onλ, Model 3:
linear for 1/λ2, Model 4: a second degree polynomial on 1/λ.

Fig. 5. Marginal posterior density estimates of the constituent line densities calculated from
the MCMC chains of Fig. 4. The thicker line is the uncertainty coming from the averaged model
that takes into account the model uncertainty. The posterior probabilities of the models are
the relative times the chain has spent on each model. This depend on given prior weights for
each model and on how well each different model fit the data compared to other models. In
the present example, all the models are taken a priori to be equally likely , so p(k)=1/4 for
k=1, . . . ,4. The x axis value is the integrated number density [1/cm3].
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Fig. 4. The MCMC chains for the line densities for one selected
GOMOS occultation. The horizontal axis runs with the simulation
indexes, vertical axis being the simulated and accepted values for
the line density for each constituent. The color indicates in witch
model the algorithm is in each step. Plot on the lower left corner la-
beled "Aerosol" show the relative aerosol extinction at 500nm for
all models. The last plot shows relative times spent in each model.
Of the total 50 000 MCMC simulations of this particular run the
models 1, 2, 3 and 4 are visited 129, 16035, 31679 and 2157 times,
which makes the corresponding marginal model posterior probabil-
ities p(ki |y), i = 1, . . . , 4 to be 0.003, 0.321, 0.634, and 0.043.

for making simultaneous inference about the model and the
model parameters. If one model clearly stands out, we can
select it as the "true" model. If the data do not give any def-
inite indication on the right model, and no accurate prior for
the model is available, the uncertainty in the modelling can
be taken into account in the model predictions by using a
weighted mixture of the models. The method itself is a gen-
eral one and not limited to geophysical applications. It canbe
used to solve the model selection problem for a set of mod-
els having different parameters of different dimensions. The
new algorithm will make it possible to use Bayesian methods
in more realistic modelling settings than before, thus further
widening the scope of statistical inversion methodology.

The GOMOS aerosol model selection problem can be suc-
cessfully studied with the AARJ method. For the GOMOS
inversion problem it is natural to consider a set of compet-
ing aerosol cross section models, as the most suitable model
will depend on the unknown type of aerosols present in the
corresponding location. In the present example the number
of aerosol cross-section models is four, but the method could
as well be used to study a larger number of models. The
current operational GOMOS algorithm uses a fixed aerosol
model. It would be advisable to further study the effect of
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Fig. 5. Marginal posterior density estimates of the constituent
line densities calculated from the MCMC chains of Figure 4. The
thicker line is the uncertainty coming from the averaged model that
takes into account the model uncertainty. The posterior probabili-
ties of the models are the relative times the chain has spent on each
model. This depend on given prior weights for each model and on
how well each different model fit the data compared to other mod-
els. In the present example, all the models are taken a priorito be
equally likely , sop(k) = 1/4 for k = 1, . . . , 4. Thex axis value is
the integrated number density [1/cm3].
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Fig. 6. Estimated aerosol extinctions for the selected altitude of
the example given in the text. Solid line is the fitted median cross
section. Grey areas correspond to 50%, 95% and 95% posterior
limits of the extinctions. The model are the following. Model 1:
linear for 1/λ, Model 2: a second degree polynomial onλ, Model 3:
linear for 1/λ2, Model 4: a second degree polynomial on 1/λ.

Fig. 6. Estimated aerosol extinctions for the selected altitude of the example given in the
text. Solid line is the fitted median cross section. Grey areas correspond to 50%, 95% and
95% posterior limits of the extinctions. The model are the following. Model 1: linear for 1/λ,
Model 2: a second degree polynomial on λ, Model 3: linear for 1/λ2, Model 4: a second degree
polynomial on 1/λ.
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