Atmos. Chem. Phys. Discuss., 7, S7447–S7450, 2007 www.atmos-chem-phys-discuss.net/7/S7447/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

ACPD

7, S7447–S7450, 2007

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

EGU

Interactive comment on "Does the threshold representation associated with the autoconversion process matter?" by H. Guo et al.

R. Wood (Referee)

robwood@atmos.washington.edu

Received and published: 5 December 2007

Review of "Does the threshold representation associated with the autoconversion process matter?" by Guo, Liu and Penner

Robert Wood, University of Washington robwood@atmos.washington.edu

Summary:

This paper addresses, within the framework of a high-resolution eddy resolving cloud model of stratocumulus, whether the model's cloud cover, liquid water path, and aerosol indirect effect are sensitive to whether the autoconversion has a strong threshold function. To do this, the authors use a previous theoretical relationship between the threshold function T and the dispersion of the cloud droplet size distribution and then vary the

assumed dispersion to vary the nature of T. I think the model results are useful in highlighting that the thresholding function can have a major impact upon the autoconversion rates and therefore the aerosol indirect effects in the model. This is an important finding and one with relevance to a broad audience. The manuscript is worthy of publication in ACP subject to some issues I discuss below.

Comments

1. The authors should me careful to make clear that the effect of dispersion being explored here is upon the threshold function not upon its impact upon the rate term P_0 . In the manuscript as it stands this is only emphasized at the end. The use of a threshold function itself makes sense because the autoconversion construct itself has an implicit threshold, autoconversion being the rate of flow of mass by coalescence across a particular droplet size threshold. For a monodisperse size distribution there will be no autoconversion unless the droplet resulting from collisions between two droplets exceeds the size threshold (typically a radius threshold of 20-25 microns is used). Thus, in this case, a step function form of T would be appropriate. For a broad size distribution on the other hand, the threshold function would be expected to be much smoother. Thus, the type of threshold function is strongly tied to the assumed dispersion, which the authors use to determine T. The effect upon the rate term is not explored here.

2. The results demonstrate that the choice of threshold function is important (comparing an assumed dispersion of 0.4 with a monodisperse size distribution makes a big difference to the AIE). However, the range of dispersion used is enormous, with only values 0.1-0.4 being appropriate in the parts of clouds in which autoconversion matters (high liquid water contents rather than in decaying evaporating parts of the cloud). In my view, comparing with a monodisperse size distribution serves to demonstrate just how inadequate the Kessler-type thresholding really is. Further, doesn't the comparison of a dispersion of 0.4 with a dispersion of infinity (differences between red and green dots in Fig. 1) suggest that it might be better to disregard the threshold function altogether (i.e. assume T=1)? Would it not be more useful to compare a dispersion of

ACPD

7, S7447–S7450, 2007

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

0.1 and 0.4 rather than infinity with 0.4 and zero with 0.4?

In other words, the use of a threshold function may only be important when the autoconversion rate is very low and therefore irrelevant for the formation of precipitation needed to significantly affect LWP and therefore produce a significant second (i.e. feedback) AIE. The results of Wood (2005, Fig 4) clearly demonstrate that unless the autoconversion rate (derived by applying the stochastic collection equation (SCE) to observed size distributions in polluted and clean clouds) is lower than approximately 10^{-9} kg m⁻³ s⁻¹ (i.e. less than 0.1 g kg⁻¹ day⁻¹ of drizzle production!) then the basic analytical rate function of Liu and Daum (2004) is an adequate descriptor of the autoconversion rate (subject to modification by a constant factor as discussed in Wood and Blossey 2005)).

Unless I missed it the authors should state what rate function P_0 they are using. From Guo et al. (2007) it appears to be the Liu and Daum formulation which tests very well against observations.

3. A general comment on the use of the threshold function T: It is straightforward in principle to calculate the autoconversion rate by integrating over both the collector and collected drop, with the limits of the inner integral being a function of the outer variable (see Beheng and Doms 1986, for example). If one could solve the autoconversion integral analytically for an arbitrary cloud droplet size distribution then there would be absolutely no need for a separation between the rate and the thresholding functions (i.e. P and T) at all. So the use of a threshold function comes about because the approximate formulations of the autoconversion integral that are used (e.g. the work of Liu and coauthors cited in this work) are problematic because they are evaluating a different integral. The integral being evaluated is one in which the integral's limits permit any coalescence event between droplets to be counted as contributing to the autoconversion rate regardless of whether the collision passes the threshold radius. Unfortunately, this integral is not the autoconversion rate. This issue is discussed in Wood and Blossey (2005).

ACPD

7, S7447–S7450, 2007

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

It is my opinion therefore that the theoretical work in this area is therefore not yet complete because the effect of dispersion is split unphysically between T and P_0 . This is not very satisfactory from a theoretical standpoint.

As such, I am a little suspicious about the general applicability of Equation (2) in the current work. Comparisons between numerical evaluations of the true autoconversion integral and the analytical thresholded expressions for realistic size distributions would be helpful. Such evaluations are beyond the present work but would be useful nonetheless.

I would be happy to discuss any of these issues with the authors directly.

References:

Beheng, K D., and G. Doms, 1986: A general formulation of collection rates of cloud and raindrops using the kinetic equation and comparison with parameterizations. Beitr. Phys. Atmos., 59, 66-84.

Wood, R., and Blossey, P., 2005: Comments on: "On the parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations". J. Atmos. Sci, 62, 3003-3006.

Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62, 3034-3050.

Interactive comment on Atmos. Chem. Phys. Discuss., 7, 16055, 2007.

7, S7447–S7450, 2007

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper