Atmos. Chem. Phys. Discuss., 7, S621–S622, 2007 www.atmos-chem-phys-discuss.net/7/S621/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

ACPD

7, S621–S622, 2007

Interactive Comment

Interactive comment on "Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses" *by* A. Gobiet et al.

Anonymous Referee #1

Received and published: 14 March 2007

Stiller makes an important point, which I had not appreciated. The MIPAS retrievals use the 1st order difference operator, L_1 as a constraint. This means the MIPAS retrievals are not sensitive to flat baises over the entire temperature profile. Therefore, as Stiller notes, even if the entire ECMWF temperature profile is biased by b=10 K, the retrieval will be unbiased. This is because the derivative of a constant bias is zero, ie $L_1b=0$. However, is this generally the case if the temperature bias varies with height? In practice, the ECMWF biases in the temperature profile, $\bar{\epsilon_b}$ (the over-bar denotes expectation), will vary considerably with height. Linear theory (linear theory is usually

sufficient for error analysis) shows the bias in the solution, $\overline{\hat{\epsilon}}$, will be of form

$$\bar{\hat{\epsilon}} = (K^{T}S_{y}^{-1}K + R)^{-1}R\bar{\epsilon_{b}} + (K^{T}S_{y}^{-1}K + R)^{-1}K^{T}S_{y}^{-1}\bar{\epsilon_{o}}$$
(1)

using the notation of Von Clarman et al ((JGR, vol 108, D23, 4746, doi:10.1029/2003JD003835, 2003) and $\bar{\epsilon_o}$ is the bias in the observation vector. The first term on the right hand side maps ECMWF biases into solution vector biases. If the ECMWF bias was a constant across the profile, it would not map into the solution bias for the reasons given above. However, is $(K^TS_y^{-1}K + R)^{-1}R\bar{\epsilon_b} \simeq 0$ for the MIPAS retrievals using realistic estimates of ECMWF temperature profile bias, $\bar{\epsilon_b}$? If this has been shown, then the statement saying MIPAS and CCR biases are "entirely independent" is probably reasonable.

Interactive comment on Atmos. Chem. Phys. Discuss., 7, 3229, 2007.

ACPD 7, S621–S622, 2007

> Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

EGU