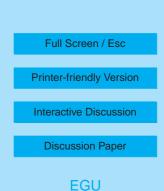
Atmos. Chem. Phys. Discuss., 7, S4229–S4235, 2007 www.atmos-chem-phys-discuss.net/7/S4229/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

ACPD 7, S4229–S4235, 2007

> Interactive Comment


Interactive comment on "Predicting diurnal variability of fine inorganic aerosols and their gas-phase precursors near downtown Mexico City" *by* M. Moya et al.

Anonymous Referee #1

Received and published: 21 August 2007

This paper examines the partitioning of inorganic aerosol species using two equilibrium models, ISORROPIA-II and SCAPE 2 based on 4-hour averaged data taken in Mexico City in 2005. The paper contains data and analysis that will be of interest to the research community. However, the paper does not adequately provide the context within which the results can be interpreted. The authors should compare their measurements and model results with previous work. This will make it easier to identify the paper's original contributions. Major revisions are required. (Furthermore, it may be more appropriate to publish this manuscript as a technical note.)

Major Comments

A substantial amount of work has been conducted to characterize Mexico City aerosol. This broad body of work has furthered our understanding of aerosols in Mexico City, including of inorganic aerosols and their precursors. The authors do not adequately compare their measurements and model predictions with previous work. This inadequacy makes it difficult to understand the context of this work as well as its original contributions. This weakness is exacerbated by the long time-resolution of the measurements (4-hour averages) relative to previous measurements.

For example, when discussing work that has been conducted since IMADA-AVER to chemically characterize the fine fraction of aerosols along with the gas-phase precursors since IMADA-AVER, the authors only cite their work (line 5, page 11260). How do the measurements compare with those of Fountoukis, Nenes et al.(2007)? This comparison is all the more important given the long averaging time of the measurements (4hour averages, almost two orders of magnitude longer than those of Fountoukis, Nenes et al.(2007) and observations taken during MCMA-2003). In addition to (Fountoukis, Nenes et al., 2007), the authors should compare their observations and predictions with other work. Molina, Kolb et al. (2007) provide an excellent overview of aerosol studies based on data taken during MCMA-2003. Salcedo, Onasch et al. (2006) provide hightime resolution aerosol measurements (including of inorganic aerosol species) taken at CENICA during MCMA-2003 with an Aerodyne aerosol mass spectrometer, and compare their measurements with data from other instruments as well as with observations from IMADA-AVER. Observations of Na, K, Ca and Cl are given by Johnson, De Foy et al. (2006). San Martini, Dunlea et al.(2006a) and San Martini, Dunlea et al. (2006b) analyze the chemical characteristics of the fine fraction of aerosols and gas-phase precursors based on high-time resolution observations. How do these measurements compare with those in this work?

Similarly, when the authors discuss the effect of including crustal species on the partitioning of semi-volatile inorganics in Mexico City the authors again only cite their own work (line 11-12, page 11260). This issue was also examined by San Martini, West et

ACPD

7, S4229–S4235, 2007

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

EGU

al. (2005). On page 11263 the authors discuss gas-phase measurements of ammonia. Again, they only cite their work (line 18). How do these measurements compare with measurements taken during other campaigns? Ammonia observations were available during IMADA-AVER at La Merced. San Martini, Dunlea et al.(2006a) describe two sets of ammonia measurements at La Merced taken during MCMA-2003. San Martini, Dunlea et al. (2006b) describe ammonia measurements at other sites (CENICA, Pedregal, Santa Ana) taken during MCMA-2003. Shorter, Herndon et al. (2004) describe ambient concentrations and mobile sources of ammonia in Mexico City.

On page 11263, line 25 through page 11264, line 1 the authors compare measurements of nitric acid taken during this work with those taken during the 1997 IMADA-AVER campaign. It is encouraging that the authors compare this measurement with measurements taken during another campaign. As indicated above, the authors need to do a similar exercise for other species (and not only with IMADA-AVER but also, for example, MCMA-2003). Furthermore, the authors conclude that the FITR HNO3 observations are less reliable than those taken with the denuder system. It would be useful if the authors provided both sets of data so that the reader can better understand the basis for this claim. Furthermore, recent measurements of nitric acid at the same site are available in San Martini, Dunlea et al.(2006a). How do the measurements in this work compare with those in San Martini, Dunlea et al.(2006a)? How do they compare with the nitric acid concentrations predicted by San Martini, Dunlea et al.(2006a)?

On page 11267, lines 2-4 the authors write: "Based on this, Moya et al. (2001) postulated that assuming a metastable aerosol for winter-dry ambient conditions would improve Mexico City PM2.5 nitrate predictions; the validity of this postulation is assessed." The validity of this hypothesis was also assessed by others.

When discussing the importance of including crustal species (pages 11267-11267), it would be useful if the authors compared and contrasted both their observations and model performance with previous work. Specifically:

7, S4229–S4235, 2007

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

- How do the observations of crustal species compare with those given in Johnson et al. (2006)?

- Research indicates that including both crustal species and organic acids can be important to accurately modeling aerosol thermodynamics (Trebs, Metzger et al., 2005; Metzger, Mihalopoulos et al., 2006). The authors should acknowledge this issue.

- The authors should include a brief synopsis of the findings from Fountoukis, Nenes et al.(2007), who examined the importance of including crustal species in modeling inorganic aerosol in Mexico City.

- Based on data from the 1997 IMADA-AVER campaign in Mexico City, San Martini et al. (2005) found that including crustal species reduces the bias and error for nitrate but does not improve overall model performance.

In discussing errors associated with a bulk aerosol approach the authors indicate that "[t]he extent of "bulk" vs. "size-resolved" partitioning on prediction error cannot be fully assessed, as our measurement contains no information regarding the change in alkalinity/acidity of particles with size." The authors then suggest that the error due to the bulk approach is approximately 10%. I do not understand where this number came from. Can the authors provide the reader some rationale for this?

On page 11268 the authors discuss the issue of long sampling times. The authors point out that the 4-hour averaged measurements are an improvement over the 6-hour averaged measurements from the 1997 IMADA-AVER campaign. This is correct. However, other observations taken after the 1997 IMADA-AVER were taken with a substantially shorter sampling period than those in this study. In Mexico City alone, Fountoukis et al (2007) provide 6-minute averaged observations and Salcedo et al (2006) provides 5-minute averaged observations. I do not think the authors can reasonably conclude, based only on a comparison with their measurements and those taken during IMADA-AVER, that "under periods of high variability of T and RH (Fig. 1), a faster time resolution in measurements is required for thermodynamic analysis." This is well known.

ACPD 7, S4229–S4235, 2007

> Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

The issue of nitrate loss due to volatilization discussed on page 11269 is indeed well known. It is for this reason that it would be useful if the authors compared their observations with observations taken during other field campaigns.

The authors find that at low RH (<30%) characteristic of afternoon sampling periods (14:00-18:00 h), the metastable branch of the equilibrium assumption improves significantly (by 50% of 20 MNE, ISORROPIA II simulations) predicted PM2.5 nitrate. What is the ionic strength of the metastable solution during these periods? This information is needed for the reader to understand whether the predictions of ISORROPIA-II are reasonable or are extrapolating beyond the data used to model the activity coefficients.

On page 11269 the authors state: "This study suggests that knowledge of the real state of the aerosol is of relevance for adequately modeling partitioning of semivolatile species between the gas and particulate phases, under Mexico City conditions." This is already well known and has been examined in previous work.

Technical Corrections

11261/6: Strike "attempt to"

11262/8-9: Strike "as follows"

11262/22-26: Confusing sentence! Please re-write this sentence to clarify what you are trying to say.

11268/21: Strike "is"

References

Fountoukis, C., A. Nenes, et al. (2007). "Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006." Atmospheric Chemistry and Physics Discussions 7(3): 9203-9233.

Johnson, K. S., B. De Foy, et al. (2006). "Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

analysis." Atmospheric Chemistry and Physics 6(12): 4591-4600.

Metzger, S., N. Mihalopoulos, et al. (2006). "Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds: Case study based on MINOS results." Atmospheric Chemistry and Physics 6(9): 2549-2567.

Molina, L. T., C. E. Kolb, et al. (2007). "Air quality in North America's most populous city - Overview of MCMA-2003 Campaign." Atmospheric Chemistry and Physics Discussions 7(1): 3113-3177.

Salcedo, D., T. B. Onasch, et al. (2006). "Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: Results from the CENICA Supersite." Atmospheric Chemistry and Physics 6(4): 925-946.

San Martini, F. M., E. J. Dunlea, et al. (2006a). "Implementation of a Markov Chain Monte Carlo method to inorganic aerosol modeling of observations from the MCMA-2003 campaign - Part I: Model description and application to the la Merced site." Atmospheric Chemistry and Physics 6(12): 4867-4888.

San Martini, F. M., E. J. Dunlea, et al. (2006b). "Implementation of a Markov Chain Monte Carlo method to inorganic aerosol modeling of observations from the MCMA-2003 campaign - Part II: Model application to the CENICA, Pedregal and Santa Ana sites." Atmospheric Chemistry and Physics 6(12): 4889-4904.

San Martini, F. M., J. J. West, et al. (2005). "Modeling inorganic aerosols and their response to changes in precursor concentration in Mexico City." Journal of the Air and Waste Management Association 55(6): 803-815.

Shorter, J. H., S. C. Herndon, et al. (2004). Ambient Concentrations and Mobile Sources of Ammonia in Mexico City. American Geophysical Union, Fall Meeting 2004. San Fransico, CA.

Trebs, I., S. Metzger, et al. (2005). "The NH4 +-NO3 –Cr-SO 4 2–H2O aerosol system and its gas phase precursors at a pasture site in the Amazon Basin: How relevant

7, S4229–S4235, 2007

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

are mineral cations and soluble organic acids?" Journal of Geophysical Research D: Atmospheres 110(7): 1-18.

Interactive comment on Atmos. Chem. Phys. Discuss., 7, 11257, 2007.

ACPD 7, S4229–S4235, 2007

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion