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Abstract

We present a global chemical data assimilation system using a global atmosphere
model, the Community Atmosphere Model (CAM3) with simplified chemistry and the
Data Assimilation Research Testbed (DART) assimilation package. DART is a com-
munity software facility for assimilation studies using the ensemble Kalman filter ap-5

proach. Here, we apply the assimilation system to constrain global tropospheric car-
bon monoxide (CO) by assimilating meteorological observations of temperature and
horizontal wind velocity and satellite CO retrievals from the Measurement of Pollution
in the Troposphere (MOPITT) satellite instrument. We verify the system performance
using independent CO observations taken on board the NSF/NCAR C-130 and NASA10

DC-8 aircrafts during the April 2006 part of the Intercontinental Chemical Transport
Experiment (INTEX-B). Our evaluations show that MOPITT data assimilation provides
significant improvements in terms of capturing the observed CO variability relative to
no MOPITT assimilation (i.e. the correlation improves from 0.62 to 0.71, significant at
99% confidence). The assimilation provides evidence of median CO loading of about15

150 ppbv at 700 hPa over the NE Pacific during April 2006. This is marginally higher
than the modeled CO with no MOPITT assimilation (∼140 ppbv). Our ensemble-based
estimates of model uncertainty also show model overprediction over the source region
(i.e. China) and underprediction over the NE Pacific, suggesting model errors that can-
not be readily explained by emissions alone. These results have important implications20

for improving regional chemical forecasts and for inverse modeling of CO sources and
further demonstrates the utility of the assimilation system in comparing non-coincident
measurements, e.g. comparing satellite retrievals of CO with in-situ aircraft measure-
ments.
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1 Introduction

The availability of near-global and long-term measurements of tropospheric chemical
constituents from space offers an opportunity to better understand changes in tropo-
spheric composition through the integration of measurements with predictions from
global chemical transport models. Central to this integration is a chemical data as-5

similation system that is reasonably efficient and flexible in assimilating measurements
of various scales and of various chemical species. Such a system is useful as a tool
in providing initial conditions for chemical weather forecasts, which are important in
regional to global air quality and field missions (e.g. Chai et al., 2006). Here, the
term chemical weather is analogous to meteorological weather and is described by10

Lawrence et al. (2005) as the local to global distribution of important trace gas and
aerosols and their associated short-term variability. Such a system is also useful in
building a framework for model system diagnosis and process evaluation (e.g. Lary,
1999; Rasch et al., 2001), as well as in conducting retrospective analysis of chemi-
cally and radiatively important trace gases and aerosols (e.g. Dethof and Holm, 2004,15

Stajner et al., 2001, Juckes and Lawrence, 2006 among others).
Chemical data assimilation systems extend from simple suboptimal techniques such

as Newtonian relaxation (nudging, e.g. Sekiyama and Shibata, 2005), optimal inter-
polation (OI, e.g. Levelt et al., 1998; Lamarque et al., 1999; Clerbaux et al. 2001;
Collins et al., 2001), variations of suboptimal Kalman filtering (e.g. Khattatov et al.,20

2000; Menard et al., 2000; Lamarque et al., 2002; Lamarque et al., 2003; Auger and
Tangborn, 2004), to more complex techniques such as four-dimensional variational
methods (4D-var, e.g. Fisher and Lary, 1995; Elbern and Schmidt, 1999; Wang et al.,
2001; Eskes et al., 2003; Engelen and McNally, 2005; Chai et al., 2006) and ensemble-
based approaches (EnKF, e.g., van loon et al., 2000; Hanea et al., 2004; Eben et al.,25

2005; Sandu et al., 2005). Incorporation of bias estimation and model parameter esti-
mation in chemical data assimilation has also been applied in recent years (Elbern et
al., 2000; Lamarque et al., 2004; Yudin et al., 2004) to enhance the fidelity of model

9719

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/9717/2007/acpd-7-9717-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/9717/2007/acpd-7-9717-2007-discussion.html
http://www.egu.eu


ACPD
7, 9717–9767, 2007

Ensemble-based
chemical data
assimilation

A. F. Arellano Jr. et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

forecasts and analyses.
Reports of improved performance using variational or ensemble-based data assimi-

lation in global atmospheric models (Rabier, 2005; Houtekamer et al., 2005) and chem-
ical transport models (Chai et al., 2006; Sandu et al., 2005) are encouraging. Such
techniques are especially appealing to studies in global atmospheric constituent trans-5

port and chemistry where observations are available for a range of chemical species
having observation operators of varying complexity. They also have the potential
to provide conditional distributions of poorly-observed or unobserved model param-
eters, such as surface fluxes or emission rates (e.g. Rayner et al., 2005; Muller and
Stavrakou, 2005; Peters et al., 2005; Frankenberg et al., 2006; Elbern et al., 2007) that10

are relevant to modeling transport and chemistry and in designing pollution strategies.
More recent collaborative efforts to include atmospheric chemical constituents such
as CO2, O3 and CO in global prediction systems also show great potential for signif-
icant gains in meteorology, climate and chemistry (e.g. Engelen and McNally, 2005,
McLaughlin et al., 2005).15

We continue these efforts by applying an ensemble-based approach in assimilating
both meteorological and chemical observations with a global atmospheric model. In
particular, we present an ensemble-based chemical data assimilation system using
a global atmospheric model, the Community Atmosphere Model (CAM3) with simpli-
fied chemistry, and an assimilation package, the Data Assimilation Research Testbed20

(DART) developed at the National Center for Atmospheric Research (NCAR). This sys-
tem serves as an online global chemical transport model (GCTM) with observational
constraints to both meteorological fields and trace gas distribution. For this reason,
it potentially offers a consistent global representation of the dynamical and chemical
state of the atmosphere with an opportunity for studies related to coupling of chemistry25

and meteorology. To our knowledge, this type of system is one of the first applications
of EnKF in global chemical data assimilation. In this work, we demonstrate its utility to
chemical weather forecasting. In particular, we apply the DART/CAM data assimilation
system to better constrain the global distribution of CO. We validate our results against
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independent observations from NASA’s Intercontinental Chemical Transport Experi-
ment B (INTEX-B) field mission conducted over the northern Pacific in Spring 2006
(http://www.espo.nasa.gov/intex-b). We show a significant improvement in modeling
the CO distribution with assimilation of meteorological observations and CO retrievals
from the Measurement of Pollution in the Troposphere (MOPITT) instrument on the5

Terra satellite. We also show that such constraints in CO distribution provides a struc-
ture of CO forecasts different from that derived from model simulations and forecast
systems with no CO assimilation.

The outline of the paper is as follows. In Sect. 2, we present in detail the components
of the global chemical data assimilation system being developed and applied specifi-10

cally to CO data assimilation. We describe the assimilation experiments conducted for
initial verification of the system in Sect. 3 followed by a presentation of results and veri-
fication with INTEX-B CO data in Sects. 4.1 to 4.2 and a discussion on several insights
from the experiment results in Sects. 4.3 and 4.4. Further analysis on the assimilation
diagnostics are presented in Sect. 4.5 followed by summary and conclusions in Sect. 5.15

2 Description of the chemical data assimilation system

2.1 Data Assimilation Research Testbed (DART)

DART is a community assimilation software package being developed at the Data As-
similation Research Section (DAReS) of NCAR (http://www.image.ucar.edu/DAReS/
DART). Built under an ensemble Kalman filter (EnKF) assimilation framework, it pro-20

vides a flexible and extensible environment for collaborative data assimilation research
and application. Originally introduced by Evensen (1994), the underlying principle of
an ensemble Kalman filter is to perform an ensemble of forecasts and analysis cycles
or an ensemble of Kalman filters. The error statistics are approximated using a finite
sample of model states as opposed to handling explicitly a large error covariance ma-25

trix. This has the advantage of reduced cost in propagating the error statistics relative
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to a Kalman filter. It is also simple to implement and flexible compared to variational
assimilation approaches such as 4D-VAR, which requires the development of a tangent
linear and an adjoint of the GCTM. Further details on the comparison of 4D-VAR and
EnKF are discussed in Lorenc (2005).

In this particular application, we use the ensemble adjustment Kalman filter scheme5

(EAKF) introduced by Anderson (2001). The EAKF approach differs from other EnKF
schemes (e.g. Houtekamer and Mitchell, 1998) in its deterministic analysis update,
which ensures that both the ensemble posterior mean and the posterior error covari-
ance as estimated by the ensemble are consistent with Kalman filtering theory. Based
on Anderson (2001) and other variants of what is generally known as deterministic10

ensemble square root filters (EnSRF, Tippett et al., 2003), this type of assimilation
scheme updates the prior ensemble to a new set of observations without the addition
of stochastic noise.

In practice, the use of EAKF (and EnKF) in global chemical data assimilation requires
some additional approximations in computing posterior means and covariances. The15

approximations are needed to minimize degeneracy in covariance matrices, errors in
sampling, and filter divergence, as a result of using limited ensemble sizes for compu-
tational expedience in such large systems. Our first approximation involves applying
the filter locally and independently onto subsets of the model states. In particular, we
use the filter on CO observations to only influence the model CO states. We also20

use the filter on temperature and wind velocity observations to only influence a subset
of the model meteorological states that includes temperature, wind, surface pressure,
specific humidity, cloud ice and cloud water. Our second approximation involves arti-
ficially inflating the covariance to account for model error, low bias and inaccuracies
in sampling the prior covariance and mean by a small ensemble size (Anderson and25

Anderson, 1999). Such error causes the prior covariances to shrink at some point in
the assimilation, ultimately causing filter divergence. Specifically, the ensemble is lin-
early inflated around its mean prior to the update, by increasing the deviations of each
ensemble member about their ensemble mean with an inflation factor slightly larger
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than one. This covariance inflation retains the information of the ensemble mean and
correlation structure between ensemble state variables. We use a constant inflation
factor which is calculated empirically such that the ensemble mean root-mean-square
error (RMSE) relative to observations is at its minimum. The values of the inflation fac-
tor we obtained for each assimilation cycle range from 1.1 to 1.4. There are however5

more advanced methods in dealing with covariance inflation, which are currently being
developed and tested for future applications (e.g. Anderson, 2007b). In effect, these
two approximations avoid degeneracy in sample covariances of small ensemble sizes.
Our third approximation involves the use of covariance localization. This is also related
to our first approximation, but here we use the localization to minimize the impact of10

spurious correlations between an observation and a state variable that are physically
separated (Hamill et al., 2001; Anderson, 2007a). We multiply the sample covariance
between the observation and the state variable by a distance dependent correlation
function with local support. We use the fifth order piecewise rational function from
equation 4.10 of Gaspari and Cohn (1999) for this application.15

2.2 Community Atmosphere Model (CAM3)

We use the Community Atmosphere Model (CAM) version 3.1.1 as the model com-
ponent of our chemical data assimilation system (CDAS). CAM3 is an atmospheric
general circulation model (AGCM) developed as either a stand-alone AGCM or as an
atmospheric component of the community climate system model, CCSM3 (see http:20

//www.ccsm.ucar.edu/models/atm-cam for documentation, input datasets and model
simulations). A full description of its physics and dynamical formulation is also given
by Collins et al. (2006). We use CAM3 with the finite-volume (FV) dynamical core at a
spatial resolution of 2◦×2.5◦ horizontal and 26 vertical levels with a model top of about
4 hPa. We choose to use the FV dynamical core as it exhibits certain numerical prop-25

erties (e.g. conservative, less diffusive) favorable for tracer transport and chemistry
studies (Rasch et al., 2006). A coupling of CAM with the Model for Ozone And Re-
lated chemical Tracers v4 (MOZART4) chemistry (or CAM-MZ4) has been developed
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for climate-chemistry studies (Lamarque et al., 2005).
For CO simulations, we treat CO as a tracer constituent in CAM3, by specifying the

direct emissions (e.g. fossil-fuel, biofuel, biomass burning, biogenic) and indirect emis-
sions (e.g. chemical oxidation of hydrocarbons) of CO and prescribing the sink of CO
by fixing the distribution of OH radicals (e.g. Granier et al., 1999; Bey et al., 2001).5

This is appropriate due to the medium lifetime of CO (globally about 2 months) and the
dominance of oxidation by OH as the CO sink. Both the OH fields and CO from chem-
ical oxidation of hydrocarbons are taken from an archive of MOZART4 full chemistry
simulation (Emmons et al. manuscript in preparation). While it is envisaged that fu-
ture CAM/CO simulations will be performed using interactive chemistry (in anticipation10

of possible multi-species chemical data assimilation), this work reports model simula-
tions using the “tagged-CO” scheme for the purpose of initial CDAS development.

2.3 Initial ensembles

Below, we describe our approach for generating our initial ensembles of model states.
It is recognized that having a reasonable representation of the initial ensembles (both15

its mean and spread) appreciably aids in making a successful ensemble-based CDAS
(e.g. Sandu et al., 2005). Albeit limited in scope, our approach is predicated on the
assumption that the variability of the CO state is mostly due to the variability induced
from atmospheric transport (Allen et al., 1996) and from the spatial and temporal vari-
ability in emissions (e.g. Logan, 1981; Novelli et al., 2003). We partition our approach20

to include the following pre-processing procedures: 1) create an initial ensemble of
CAM meteorological state variables, 2) create a monthly ensemble of CO total emis-
sions, and 3) create an ensemble of CO distributions consistent with our ensembles in
meteorology and emissions. The choice of using an ensemble of meteorology and an
ensemble of emissions within an online GCTM framework is directly tied to the need of25

an EnKF system to maintain the variability of CO states over the period of forecast and
analysis cycles.
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2.3.1 Ensemble of meteorological state variables

A 20-member ensemble of CAM initial conditions for 1 April 2006 is constructed using
a 100-year climatological simulation of CAM. It is assumed here that each April 1 initial
condition across the entire span of the climatological simulations is a realization of CAM
meteorology for a climatological April and that the 100-year period spans the spread or5

variability of the majority of CAM state variables. A subset of these initial files is used
as members of our ensemble of CAM initial conditions. Shown in Fig. 1 are ensemble
means and ensemble spreads of CAM temperature and horizontal wind velocity state
variables. They are calculated from the 20-member ensemble generated for CAM initial
conditions. Here, the large spread is interpreted as a gross estimate of variability of the10

modeled initial states which is intended (for initial assimilation) to be larger than typical
uncertainties of modeled states.

2.3.2 Ensemble of CO total emissions

We based our estimates of uncertainty in CO emissions on recent inverse modeling
results, as well as on recent data-constrained biomass burning inventories. In par-15

ticular, we used a recently compiled monthly emission inventory at 1◦×1◦ resolution
from MOZART4 for the period 1996 to 2006. This inventory includes direct emissions
from fossil-fuel/biofuel sources, based on Precursors of Ozone and their Effects in the
Troposphere (POET) inventory (http://www.aero.jussieu.fr/projet/ACCENT/POET) and
scaled to have regional magnitudes consistent with estimates of optimized emissions20

from inverse modeling using MOPITT for the year 2000 (Pétron et al., 2004). This in-
ventory also includes biomass burning sources, based on GFEDv2 dataset (van der
Werf et al., 2006) for 1996–2004. Emissions from biomass burning for 2005–2006 are
taken from a climatological mean of GFEDv2 and scaled with year-specific MODIS Cli-
mate Modeling Grid 8-day fire product (Giglio et al., 2006). The compiled emission25

inventory, µemis, is then perturbed assuming that the monthly emission xemis is log-
normally distributed with mean µemis and covariance Σemis. The covariance Σemis is
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the combination of sub-grid and inter-annual variability as well as estimates of regional
magnitude uncertainties from inverse analyses (Arellano and Hess, 2006). Details
on the construction of Σemis are presented in Appendix A. In principle, we draw ran-
dom samples of the distribution p(xemis)∼LN(µemis, Σemis), and use these samples as
members of the ensemble. These are then used as monthly emission input to CAM5

ensemble forecast cycle.

As an example, we show in Fig. 2a spatial distribution of diag(Σemis)1/2 for April
2006. We note that in addition to the variability mainly coming from estimates in the
inverse analyses, which is about 50% of the mean in most regions, there is also a large
variability apparent in regions of frequent biomass burning consistent with our current10

understanding. We acknowledge however that this empirically-based methodology is
limited in various aspects especially as to its applicability to other emission and mod-
eling studies. We view this approach simply as an interim solution to provide realistic
estimates of direct emission ensembles for CO ensemble-based data assimilation.

For indirect emissions, which consist of CO sources from chemical oxidation of non-15

methane hydrocarbons and methane, we draw samples of the distribution p(xchem)
assuming a log-normal distribution with mean µchem from MOZART4 full chemistry
simulation and a covariance Σchem whose square root of its diagonal elements is equal
to 10% of µchem. This is a simplification of the bulk uncertainty associated with this type
of source, which certainly consists of various precursors that are non-linearly related20

and difficult to quantify.

2.3.3 Ensemble of initial CO distribution

The ensembles are generated using the ensembles of CAM initial conditions
(Sect. 2.3.1) and emissions (Sect. 2.3.2). We start off by using a single CO initial
condition from a previous MOZART4 simulation. We allow the CO in the model to be25

propagated forward in time, to gain sufficient variance, as each member of the ensem-
ble of CAM initial conditions are integrated for two weeks. The integration includes
a randomly assigned CAM3 emission from members of the emission ensembles. As

9726

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/9717/2007/acpd-7-9717-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/9717/2007/acpd-7-9717-2007-discussion.html
http://www.egu.eu


ACPD
7, 9717–9767, 2007

Ensemble-based
chemical data
assimilation

A. F. Arellano Jr. et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

such, the CO states after spin-up exhibit an equilibrated variability due to coupled per-
turbations of the dynamical states and emissions. We used this ensemble of CO states
as our ensemble of CO initial conditions. A sample of the mean and spread of the
ensemble are shown in Fig. 3. As can be expected, the variability of CO is large in
regions where there is a strong direct CO source (i.e. east Asia, northern Africa) and5

also in regions where transport can have significant impact (i.e. Pacific basin). We also
find that the variability of CO has equilibrated across all regions after about 5 to 7 days.

2.4 Observations

The current DART/CAM global system has the ability to assimilate both meteorological
and chemical observations. For the system’s initial development and evaluation, we10

focus on assimilating a subset of available meteorological data currently used in NWP
centers and satellite-derived CO retrievals from the MOPITT instrument. The follow-
ing sections briefly describe these observations within the context of this assimilation
system.

2.4.1 Meteorological observations15

We use the meteorological observations processed at National Centers for Envi-
ronmental Prediction (NCEP) (http://dss.ucar.edu/datasets/ds351.0). These data are
taken from radiosondes, pibals and aircraft reports collected by the Global Telecommu-
nications System (GTS), and from satellite data processed at National Environmental
Satellite, Data and Information Service (NESDIS). These are used as primary input20

to the NCEP Global Data Assimilation System (GDAS) for producing operational fore-
casts and final meteorological analyses. Here, we use a subset of these data including
observations of temperature (T) from radiosondes and observations of horizontal wind
velocities (U,V) from radiosondes and cloud drift analysis (or satwind). We selected this
small subset to simplify our evaluation of the system performance. Also, this particular25

setup for DART/CAM only assimilates observations of a subset of meteorological state
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variables (i.e. T, U,V). However, it uses these observations to influence other model
state variables such as surface pressure. Further details of the assimilation setup are
discussed in Sect. 3.

We use a limited quality control on top of NCEP data protocol for these observations.
In particular, we limit observations below 150 hPa and observations with values within5

three standard deviations from the expected observations derived from the model. We
also assign associated observation errors based on reported instrument uncertainties
(i.e. on average, ∼3–4 m/s for satwind, ∼1–2 m/s for radiosonde wind and ∼0.8 K for
radiosonde temperature).

2.4.2 MOPITT CO retrievals10

We use the satellite-derived CO observations MOPITT satellite instrument on board the
NASA Terra satellite (http://mopitt.eos.ucar.edu/mopitt). It has a horizontal resolution
(in nadir view) of about 22×22 km2 and offers near-global coverage within 3–5 days.
The MOPITT instrument provides CO retrieved profiles based on measured radiances
in a 4.7µm thermal channel for cloud-free pixels and pixels covered by low clouds.15

The reported profiles nominally represent 7 vertical levels in the troposphere (surface,
850, 700, 500, 350, 250, 150 hPa). However, these profiles are strongly correlated,
exhibiting vertical sensitivities which are limited only within the free troposphere (Deeter
et al., 2004). For our purposes, we use a subset of the CO observations by only
using CO retrievals having high measurement sensitivity and physically realistic mixing20

ratios. In particular, we use MOPITT v3 Level 2 700 hPa retrievals having less than 50%
retrieval a priori contribution and mixing ratios greater than 30 ppbv. Our quality control,
which is mainly based on MOPITT data quality statement (http://mopitt.eos.ucar.edu/
mopitt/data), ensures that we use CO observations that are reasonably representative
of the true CO states. We use the retrieval associated averaging kernel, which is a25

measure of the vertical sensitivity of the measurement, as an additional observation
operator in the assimilation system. We note that the broad averaging kernel exhibited
by MOPITT retrievals implies assimilating a partial CO column observation instead of
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a typical point observation (see also Sect. 4). Although we recognize that our selection
criteria limit the full use of available information provided by MOPITT, again we use
this subset to simplify our evaluation of the system. The selected CO retrievals are
assumed in this work to be independent and unbiased with observation error of 10%
of the CO retrieved mixing ratio (Emmons et al., 2004). The unbiased assumption is5

verified and discussed later in this paper (Sect. 4.2).

3 Assimilation experiments

Two sets of assimilation experiments are carried out to test and evaluate the perfor-
mance of DART/CAM system. First, we conduct a reference CO simulation (REF-
SIM), consisting of a 20-member ensemble, which sequentially assimilates meteoro-10

logical observations for the whole month of April 2006. This simulation is similar to
a free-running offline GCTM simulation of CO, which may be driven by either assimi-
lated meteorology (i.e. Global Modeling and Assimilation Office, GMAO) or reanalysis
meteorology (i.e. NCEP or European Centre for Medium-Range Weather Forecast,
ECMWF). The second experiment (COASSIM) involves a 20-member ensemble simu-15

lation of CO assimilating both meteorological observations and MOPITT CO retrievals
over the same period. In combination, these two experiments provide insights on how
well tracer transport is represented in the model.

As mentioned in Sect. 2.1, the current system is configured so that the meteorolog-
ical observations of temperature and wind velocities statistically influence the model20

state variables, namely, surface pressure, temperature, horizontal velocity, specific hu-
midity, cloud ice and cloud water but not CO. In contrast, the CO observations only
statistically influence the CO state variable. In a statistical sense, it is possible that the
CO observations can influence the other state variables and that the meteorological
observations can impact the CO state. However, this EnKF feature is not applied in the25

present experiments.
In addition to localizing the impact of observations to a subset of state variables, a
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physically-based localization is also implemented for all types of observations. The ob-
servational impact is localized by multiplying a correlation function (from Gaspari and
Cohn, 1999) to the flow-dependent covariances between the prior state variables and
observation variables. We use a half-width of ∼1200 km in the horizontal component
of the correlation function for all types of observations. In the vertical, we use ∼2 km5

for all types of observations except MOPITT CO. Assimilation of MOPITT CO presents
a particular difficulty since the retrieved profiles exhibit longer vertical length scales
(2–3 km) than typical vertical length scales of DART/CAM CO (∼1 km). And so, we
adjust the calculated vertical correlation distance between the observed CO and the
CO state variable such that the effective correlation function exhibits broader vertical10

length scales comparable to MOPITT. By effectively broadening the vertical localiza-
tion, this adjustment only partially accounts for the scale mismatch between a partial
column observation and the model. A more appropriate transformation should be used
in future assimilation of this type of observation to fully account for the apparent scale
mismatch. Details on the scale mismatch between satellite retrieved profiles and global15

chemical transport models are discussed in a separate paper.

4 Results and discussions

4.1 Summary statistics of assimilation experiments

Shown in Fig. 4 are global comparisons of the meteorological observations and the ex-
pected observations of model variables, represented as ensemble means of the fore-20

cast (prior) and analysis (posterior). Figure 5 corresponds to the ensemble spreads
or standard deviations (both prior and posterior) of the model variables across the
20-member ensembles. These results correspond to both assimilation experiments
(REFSIM and COASSIM) as the two are identical in their configuration for assimilating
meteorological observations. The plots in Fig. 4 show that the predicted temperature25

and horizontal velocities are significantly improved in terms of root-mean-square errors
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(RMSEs) and bias relative to radiosonde and satwind observations used in the assim-
ilation. In fact, the RMSEs for both model variables are reasonably close to the error
range of radiosonde and satwind observations, pointing to low errors in the assimila-
tion. This is also evident in the ensemble spread shown in Fig. 5, which also shows
rapid reduction over the first few assimilation cycles. However, the error estimate,5

which is represented here as the ensemble spread, is less than the RMSE relative to
observations. This appears to suggest an insufficient variance of the ensemble and
an underestimation of the uncertainty of the modeled states. Even so, it is clear from
these results that the mean of the system rapidly converges to observed temperature
and wind velocities within 2–3 days of assimilation. Regional comparisons (not shown10

here) suggest a convergence rate in the data-dense Northern Hemisphere region of
about 2 days and about 5 days in the Southern Hemisphere region.

Assimilating MOPITT CO retrievals in COASSIM experiment also show similar im-
provements in terms of RMSE and bias (Fig. 6a). Globally, the posterior ensemble
mean of expected CO observations has an RMSE of about 11 ppbv and bias of about15

1–2 ppbv relative to MOPITT retrievals. The resulting ensemble spread for CO (Fig. 6b)
has also dropped significantly during the first few assimilation cycles indicating that in-
formation from the retrievals are being integrated effectively into the model space. The
rate of model convergence to observed CO is longer than the convergence of meteo-
rological variables to observed meteorology due to the larger variability of CO over its20

source regions and the longer period for the MOPITT instrument to achieve near-global
coverage (∼3–5 days). The nature of MOPITT retrievals, which exhibit broader vertical
structures than typical point observations, potentially slows down the convergence as
well.

4.2 Verification with other datasets25

Results of the assimilation experiments are verified using two main datasets. First, the
assimilated meteorological variables are compared for the same time period with the
analysis of the NCEP Global Forecast System (GFS) product. This dataset is currently
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used as input meteorology by several offline GCTMs (e.g. MOZART4). This compar-
ison provides a means of assessing the ability of DART/CAM assimilation system to
represent key components of tracer transport in a GCTM. It is recognized however that
this dataset does not serve as an independent verification since the NCEP GFS uses
similar observational dataset (e.g., but with additional data) in its assimilation system.5

The modeled CO states are compared with an independent CO dataset from the
second phase of the NASA INTEX-B field mission, which was conducted during Spring
of 2006 (17 April–15 May). This intensive field campaign aimed at sampling chemi-
cal (pollution) outflow from Asia and at assessing its long-range transport across the
Pacific and impact over North America. This is an especially good opportunity to eval-10

uate the model performance of the DART/CAM system and its potential for chemical
weather forecasting. Our verification focuses on the April campaign period for NCAR
C-130 flights over the northeast Pacific basin and for NASA DC-8 flights out of Hawaii.
Shown in Fig. 7 are the flight tracks for C-130 and DC-8 aircrafts for this period. Both
aircrafts carried CO instrumentations, in particular an aero-laser fast-response carbon15

monoxide analyser on board C-130 (by T. Campos) and a Differential Absorption CO
Measurement (DACOM) spectrometer system on board DC-8 (by G. Sachse).

4.2.1 Meteorological variables

As shown in Fig. 8, the ensemble-mean analyses of horizontal wind velocities aver-
aged over the month of April 2006 are remarkably similar to the NCEP GFS product.20

The plots show a high degree of similarity both in terms of magnitude and spatial struc-
ture demonstrating a decent performance of DART/CAM assimilation system relative
to GFS, given also that only a subset of NCEP data was used in DART/CAM. The
similarity is particularly clear in the Northern Hemisphere where the data is dense. Dif-
ferences can be seen mostly in the Southern Hemisphere, especially in the tropical25

Pacific, coastal regions in India, central Africa and in the polar region. The difference
can be attributed to the difference in the model used for the assimilation system and
the larger density of data (e.g. satellite) in the Southern Hemisphere used in GFS
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than in this work. Nonetheless, the comparison provides confidence in the fidelity of
DART/CAM to represent realistic transport drivers in the global model.

4.2.2 CO

Our system verification for CO is summarized in Fig. 9a. These are Taylor diagrams
showing the distance of modeled CO from observed CO defined in terms of correla-5

tion (R), root-mean-square error (RMSE) and bias. Results are shown for both the
experiment with MOPITT assimilation (COASSIM) and without MOPITT assimilation
(REFSIM). Based on Taylor (2001), a typical RMSE metric can be decomposed into
two orthogonal components, a bias term and a pattern variance (see Fig. 9b). This de-
composition allows visualization of three global statistics in one diagram. A best fit to10

observations is interpreted here to exhibit the smallest pattern variance or the shortest
distance between the modeled quantity and the observed quantity. A model skill S is
also defined in this context as:

S =
4 (1 + R)4(

σ̂f + 1
/
σ̂f
)2

(1 + R0)4
(1)

where R is the correlation between the modeled and observed CO, σ̂f is the ratio of the15

standard deviation of the modeled CO σf and the observed CO σr . R0 is the maximum
potentially realizable correlation, assumed here to be 0.90 based on assimilated CO
and MOPITT comparisons. This skill score, which is based on Eq. (5) of Taylor (2001),
places more emphasis on modeled CO that is highly correlated with observations and
that exhibits better simulation of the pattern variance.20

It is clear from the diagrams that the assimilation of MOPITT retrievals improves the
pattern statistics in modeled CO when compared to both C-130 and DC-8 flight obser-
vations. The ensemble mean of REFSIM CO has a correlation of 0.63 and 0.62 for
C-130 and DC-8 respectively, while the COASSIM CO shows an improved correlation
of 0.72 (C-130) and 0.68 (DC-8). In terms of model skill, COASSIM shows a skill of25
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about 0.6 in contrast to REFSIM which has a skill of about 0.2 to 0.4. This improvement
is attributed to the increase in modeled CO variability and correlation, and is significant
at 99% confidence given the spread of the model skill for all ensemble members.

Also apparent from the Taylor diagrams (Fig. 9a) is the increase in bias on the COAS-
SIM CO relative to REFSIM CO. As noted in Sect. 4.1, the assimilation of MOPITT5

retrievals in DART/CAM, which has a global bias of about 1–2 ppbv relative to MOPITT,
implies that the assimilated CO is very close to MOPITT CO and exhibits low error as-
sociated with the assimilation. This suggests that the assimilated CO is a good surro-
gate for MOPITT. The bias observed relative to INTEX-B CO therefore is primarily due
to the bias of MOPITT retrievals relative to INTEX-B. Such comparison with indepen-10

dent observations demonstrates the utility of an assimilation system in validating and
comparing non-coincident datasets and measurements with complex observation op-
erators. The positive bias observed in MOPITT is approximately 23–27 ppbv for C-130
CO and 11–14 ppbv for DC-8 CO. Based on two CO data inter-comparisons conducted
during the 2nd phase of INTEX-B, it is possible that differences in the bias between15

C-130 and DC-8 observed by the assimilation can be mainly attributed to instrument
discrepancies on board the two aircrafts. The DC-8 CO appears to be 5–10 ppbv higher
than C-130 CO. That is, the ratio of DC-8 CO versus C-130 CO is observed to be 1.08
from the two inter-comparison analyses. The bias estimates are nonetheless in reason-
able agreement with past and present MOPITT validations, which also report a positive20

bias in MOPITT retrievals of about 7–14% or 7–18 ppbv at 700 hPa (e.g. Emmons et al.
2004, Emmons et al., 2007). This apparent bias in the MOPITT retrievals with respect
to this and other validation data is being investigated by the NCAR MOPITT team. It is
expected that the next data reprocessing (version 4) which will include several retrieval
enhancements will greatly reduce this discrepancy. Since the model verification is lim-25

ited to the INTEX-B domain (Fig. 7), it is complicated to globally extrapolate the spatial
variability of the bias (or the lack thereof) based only on the assimilated CO compar-
isons. More detailed investigations are necessary for proper global bias correction
within the assimilation system (e.g. Lamarque et al., 2004; Dee, 2005).
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Figures 10 and 11 are concatenations of 1-min C-130 and DC-8 CO observation
points for April campaign period, superimposed with the corresponding CO from REF-
SIM and COASSIM after removing the observed mean MOPITT bias (e.g. 25 ppbv for
C-130, 13 ppbv for DC-8). The plots further show that MOPITT CO assimilation better
captures the observed variability and improves the modeled vertical structure relative5

to INTEX-B observations, particularly for C-130 CO. While the model is able to cap-
ture the mean CO outflow from Asia and its transport to the NE Pacific, since it closely
matched the magnitude of observed mean CO concentrations downwind of the source
regions (Fig. 10), the simulation without MOPITT assimilation has difficulty simulat-
ing accurately the observed gradients and CO enhancements. This can also be seen10

in the averaged vertical structure (Fig. 11), expressed here as median vertical pro-
file, where COASSIM CO is better correlated with the observed vertical structure than
REFSIM CO. While our current system only assimilates 700 hPa retrievals from MO-
PITT, there are indications that information at 700 hPa are translated to nearby vertical
levels through the ensemble covariances. The apparent improvement in model skill15

has important implications in particular to efforts in improving future chemical weather
forecasts and GCTM predictability in general.

4.3 CO distribution,
〈
xa

CO

〉
The CO distributions over the Pacific basin for REFSIM and COASSIM experiments
are presented in Fig. 12. These are ensemble-mean CO at 700 hPa averaged across20

the month of April. The COASSIM CO is uniformly reduced by 15% of its CO con-
centration to account for the apparent MOPITT bias over the region. This percentage
is calculated such that the bias of COASSIM CO with INTEX-B CO is at its minimum,
given the apparent 8% error between the two instruments. The COASSIM CO dis-
tribution shows a slightly different spatial structure than the REFSIM CO distribution.25

From a monthly-averaged perspective, the apparent CO enhancements at 700 hPa
over the northeastern Pacific in COASSIM (∼150±3 ppbv) are not well represented in
REFSIM (∼140±3 ppbv). Over Asia, MOPITT assimilation sees more CO over east-
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ern Siberia (∼175±7 vs. ∼165±5 ppbv) and less over Shanghai, southern China and
Burma (∼135±20 vs. 165±20 ppbv). There is some indication of a more dominant
CO export pathway north of 40N than an easterly boundary layer CO outflow from
the source region in southern China. The import of Asian pollution to NE Pacific is
slightly enhanced in COASSIM CO distribution. The differences in CO structure ap-5

parently suggest that some subtle features of CO sources, outflow and/or transport
are not accurately represented in the REFSIM. To some extent, this supports the pre-
vious results that while REFSIM reasonably simulates the large-scale features, it has
difficulty capturing the CO variability and gradients observed in INTEX-B. In part, this
can be attributed to the coarse resolution of the model where the observed variability10

may possibly be within the model sub-grid scales. The assimilation however is able
to compensate for the lack of variability and hence provides a good source of model
diagnosis.

4.4 CO forecasts,
〈

xf
CO

〉
Short-term regional forecasts require an even more accurate representation, partic-15

ularly an initial condition that is close to observations. Representing the short-term
variability on top of the mean flow patterns is critical in regional forecasts. This is true
in forecasting pollution from Asia, which can be episodically transported to the NE Pa-
cific within the time scales of 5 to 7 days depending on prevailing transport conditions
(Yienger, 2000; Jaffe et al., 1999). This highlights the role of initial condition in provid-20

ing a fairly reliable forecast. In Fig. 13, we demonstrate the utility of the assimilation
system to provide observationally-constrained CO initial conditions for CO forecasts.
In addition to the two assimilation experiments, we conducted a 3-day forecast-mode
experiment valid for 20 April 2006 00:00 UTC, which was initialized with bias-corrected
COASSIM CO (see Sect. 4.3) at 17 April 2006 00:00 UTC. The difference shown in25

Fig. 13 is a comparison between the 3-day forecasts at 700 hPa from REFSIM and
the 3-day forecast at the same level using COASSIM initial condition. Differences of
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about 20–40 ppbv are evident in regions of Asian outflow and along the frontal systems
across the Pacific. The spatial patterns depicted in the figure illustrate the key role of
observationally-constrained initial condition in producing accurate forecasts. This may
have an effect on efforts like mission flight planning where the goal is to correctly track
enhanced plumes of pollution.5

4.5 Estimates of model uncertainties

4.5.1 Ensemble spread, < xa
i,CO − xa

CO >

The ensemble-based data assimilation system provides a probabilistic characteriza-
tion of the CO state estimates. Here, we show the ensemble spread of modeled CO for
REFSIM and COASSIM. Taken as the standard deviation of the predicted CO concen-10

trations across the 20 ensemble members, the ensemble spread can be considered
as a measure of uncertainty on the estimate of the CO states (or on how well the en-
semble members agree on the CO forecast). As presented in Fig. 14, the ensemble
spread of REFSIM CO is mainly characterized by a large spread in two source regions.
This is most likely influenced by our large error estimates (>50%) of biomass burning15

emissions in Southeast Asia and Central America (see Fig. 2) rather than the spread
due to perturbations in meteorology. We expect this since the spread in meteorology is
significantly reduced in the meteorological assimilation component of CDAS while the
spread in emissions is fixed during the assimilation cycles and is not presently con-
strained. We see changes in the structure on the ensemble spread of COASSIM, with20

clear indications of transport-related uncertainties, such as an outflow east of China
and Japan and a regional circulation over southeastern Siberia. Although not shown
here, the flow-dependent patterns of variability as estimated from the mean ensem-
ble spread are consistent with the variability of the assimilated CO in the region as
estimated from the standard deviation of ensemble-mean CO across the time period.25

To an extent, the COASSIM ensemble spread is an improvement in representing the
structure of the uncertainties in the CO distribution since it appears to represent ad-
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ditional features other than emission uncertainties. However, the posterior ensemble
spread still appears to be under-estimated especially in the downwind region, where
the variability is mostly transport-induced. For this reason, a more appropriate char-
acterization of the uncertainties as estimated from the ensemble approach is to take
advantage of the structure by conducting an analysis of the correlation in conjunction5

with an analysis of the variance.

4.5.2 Mean analysis increments, < xa
CO − xf

CO >

The assimilation system can also be used to diagnose model and/or observation er-
rors. Following Dee (2005), we use the difference of CO analysis and forecast (or incre-
ments) to represent short-term systematic errors in the model. The adjustments in the10

CO forecast for each 6-hour assimilation cycle can be assumed to be mostly attributed
to errors in the model. As previously discussed in Sect. 4.1, the errors from the assim-
ilation methodology are relatively small. If it can be assumed that the assimilated CO
has already converged to MOPITT CO after several assimilation cycles, then, the man-
ner in which the systematic CO short-term forecast diverge from MOPITT CO largely15

relates to errors in the model. To illustrate, we show in Fig. 15 the 6-hourly ensemble-
mean forecast CO and the analysis CO in the observation space averaged over the
INTEX-B domain (from equator to 65N latitude, 90 E to 90 W longitude). This shows the
evolution of the forecast and analysis errors relative to assimilated MOPITT retrievals.
The difference between the analysis and the forecast represents the adjustment made20

in the analysis step to bring the modeled CO closer to observations. We can then take
the mean of these adjustments and look at its spatial distribution to explore character-
istic regions where the modeled CO is frequently adjusted. Figure 16 shows the spatial
distribution of the mean adjustments about the 6 April–1 May 2006 period. We specifi-
cally remove the first 5 days of assimilation to allow for spin-up in the assimilation. As25

shown, the model appears to overpredict in source regions (i.e. China and east of Asia)
and underpredict in downwind regions (i.e. northeastern Pacific across the C-130 and
DC-8 flight coverage). The mean adjustments are consistent with results discussed
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in the previous sections (e.g. Fig. 12). Additionally, this model error characteristic has
been reported in other GCTM simulations. In particular, some offline GCTM results
consistently report a negative bias in CO concentrations during Spring over Hawaii
and Midway (e.g. Bey et al., 2001; Liang et al., 2004; Arellano et al., 2004). However,
increasing Asian emissions to account for this bias degrades the model further over5

Asia. We note in particular that the ensemble-mean emissions of Asian CO (and other
regions like Europe) used in DART/CAM have already been optimized following Pétron
et al. (2004). The spatial structure provides further evidence of a GCTM related error,
which can not be readily explained by emissions alone. It is a bulk error that appears
to be a combination of errors due to transport, emissions and/or chemistry. It is pos-10

sible that the modeled CO is transported slightly differently from what is observed by
MOPITT and/or the modeled chemical production of CO from hydrocarbon oxidation
during transport is underestimated. While further analysis is necessary to identify the
sources of this error, knowledge of model error is useful in providing a consistent in-
verse analysis. Without a reasonable model error estimate, results of inverse analyses15

will be largely sensitive to the choice of the observation domain and the proximity of
the observations to the source location of interest.

5 Conclusions

We have introduced a new global chemical data assimilation system based on an en-
semble Kalman filter approach. The system interfaces CAM3 global atmosphere model20

with simplified chemistry into the DART ensemble framework. Such an ensemble-
based data assimilation system is appealing for studies in global chemical transport as
it offers the flexibility and efficiency to assimilate measurements with various scales and
of various chemical species. This is especially true, at present, in light of the availability
of near-global and long-term chemical observations.25

One of the goals of this work is to demonstrate the utility of the system to studies
related to chemical weather forecasts, focusing initially on assessing its model per-
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formance on Asian CO outflow and its episodic transport to North America during
the INTEX-B field mission in April 2006. We apply the assimilation system in con-
straining the global tropospheric CO distribution within CAM3, by jointly assimilating
observations of temperature and horizontal wind velocity as well as satellite CO re-
trievals from the MOPITT satellite instrument. Since the variability of CO is mainly5

induced by transport and emissions, a reasonable ensemble representation of CO
is generated first. This includes representing an ensemble of initial meteorological
conditions in CAM3, based on long-term climatological CAM3 simulations, together
with an ensemble of total CO emissions, mainly based on our current estimates of
emission uncertainties. The DART/CAM assimilation performance is verified using in-10

dependent CO observations from C-130 and DC-8 flights during the field campaign.
Assimilation results show that the current system converges to the observed MOPITT
CO distribution within the first 5 days of assimilation, consistent with the duration of
MOPITT obtaining near-global coverage. The DART/CAM analyzed meteorology also
appears to be very similar in magnitude and structure to operational NCEP GFS analy-15

ses. Significant improvements in the model skill are evident with MOPITT assimilation
(COASSIM), notably capturing the observed CO variability and improving the correla-
tion between modeled CO and INTEX-B flight observations. We note however that the
present model representation of CO with no MOPITT assimilation (REFSIM) generally
captures the large-scale CO outflow. This can be mostly attributed to optimized esti-20

mates of Asian anthropogenic emissions. Also, the activity of biomass burning in the
region, which largely accounts for uncertainty in modeling CO emissions, is observed
to be relatively low over NE Pacific during the campaign period.

Constraining CO using the assimilation system provides important information on
the MOPITT retrievals as well as on the fidelity of the model to represent CO trans-25

port over the Pacific. The assimilation reveals a slight positive bias in MOPITT CO,
of about 10–18% compared to INTEX-B mean CO concentration. The results demon-
strates an important utility of the assimilation system in validating and comparing non-
coincident datasets and measurements (like MOPITT) having complex observation op-
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erators. With removal of the observed bias in COASSIM CO, the assimilation results
show evidence of monthly-mean CO loadings of about 150 ppbv over the NE Pacific,
which is slightly higher than REFSIM CO (∼140 ppbv). Furthermore, analysis of mean
assimilation increments reveals a model error structure showing model overprediction
of CO in the source regions of Asia and underprediction in downwind regions consistent5

with several offline GCTM simulations. Yet, it appears that the model error, depicted in
this work as mean adjustments, cannot be solely explained, to the first order, as an un-
derprediction in Asian emissions. Albeit limited in scope, these results have important
implications in efforts to improve future regional CO forecasts and to inverse modeling
of CO.10

Appendix A

Construction of CO emission covariance

The climatological monthly emission covariance, Σemis is expressed as a combination of
sub-grid variability ΣG, inter-annual variability ΣA and uncertainty estimates on regional15

monthly totals of CO emissions from inverse analyses, ΣI . That is,

Σm
emis = Σm

G + Σm
A + Σm

I (A1)

where m is the month index from 1 to 12 (i.e. January to December). Σemis,ΣG, ΣA
and ΣI are monthly covariance matrices whose dimensions are ngrid × ngrid , where
ngrid=144×91 at 2◦×2.5◦ CAM horizontal resolution.20

First, we divide the globe into 13 broad regions based on Arellano and Hess (2006).
The covariance ΣG is constructed as a block diagonal matrix with block matrix elements
Br,m, where r is the region index from 1 to 13. This matrix is defined as,

Br,m = diag(σgrid,r )
2, (A2)
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where σgrid,r is the standard deviation of 1◦×1◦ grid emissions within each 2◦×2.5◦

CAM grid for a particular month, m and region, r . In this work, this corresponds to the
sub-grid variability specific for April 2006 emissions. That is,

Σ4
G =


B1,4

. . .
. . .

B13,4

 (A3)

The second covariance term, ΣA, is associated with the spatial covariance of each5

emission grid point with its neighboring grids for a particular climatological month. How-
ever, the covariance is localized within a certain region. It is assumed that uncertainties
across regions are independent. As such, ΣA is constructed as block diagonal matrix
with each block corresponding to a particular region. We form a data matrix, Xr,m for
each of the region and for each climatological month. Each matrix forms a dimension10

of ngrid region × nmonth, where ngrid region is the number of model 2◦×2.5◦ grids in a par-
ticular region and nmonth=10 (e.g. compilation of each April from 1996 to 2006). We
calculate empirically for each data matrix Xr,m, a sample spatial covariance Cr,m,

Cr,m =< Xr,mXT
r,m > . (A4)

We then smooth the sample covariance by doing an eigenvalue decomposition of Cr,m15

and retaining only its 3 leading eigenvectors. ΣA is constructed as a compilation of
resulting smoothed covariances for all 13 regions. For example,

Σ4
A =


C1,4

. . .
. . .

C13,4

 (A5)
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In this manner, we account for the spatial variability on a regional basis by assuming
that the variability within each region is stationary in time across the period spanned
by the inventory (i.e. 10 years).

The third covariance term, ΣI , is also constructed as block diagonal matrix, where
each block corresponds to an uncertainty estimate of total sum of emissions for each5

region. The estimates are taken from Arellano and Hess (2006) sensitivity analyses,
where they reported a larger uncertainty in MOPITT CO inverse estimates for the year
2000 when a different treatment of tracer transport is used in the inverse model. We
construct a diagonal covariance matrix Dr,m for each region and climatological month.
This is calculated as:10

Dr,m = diag
(

σr

100
µgrid,r

)2

. (A6)

where σr is the relative spread (in %) of the total sum of annual emission for each
region and µgrid,r is the emission associated for each grid within the region. As such,
for m=4,

Σ4
I =


D1,4

. . .
. . .

D13,4

 (A7)15
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Figure 1. Ensemble-mean (left panels) and ensemble-spread (right panels) of initial conditions 

for CAM3 temperature (T) in K, horizontal wind velocity components U and V in m/s at 500 

hPa (April 1, 2006). 

 

Fig. 1. Ensemble-mean (left panels) and ensemble-spread (right panels) of initial conditions
for CAM3 temperature (T) in K, horizontal wind velocity components U and V in m/s at 500 hPa
(1 April 2006).
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Figure 2. Ensemble-spread of CAM3 total surface CO emissions for the month of April 2006 

in molecules/cm2/s (a), and in percentage % relative to ensemble mean emissions (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Ensemble-spread of CAM3 total surface CO emissions for the month of April 2006 in
molecules/cm2/s (a), and in percentage % relative to ensemble mean emissions (b).

9751

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/9717/2007/acpd-7-9717-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/9717/2007/acpd-7-9717-2007-discussion.html
http://www.egu.eu


ACPD
7, 9717–9767, 2007

Ensemble-based
chemical data
assimilation

A. F. Arellano Jr. et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

 32

 

 

 

Figure 3. Ensemble-mean (left panel) and ensemble-spread (right panel) of initial conditions 

of CAM3 CO in ppbv at 500 hPa for April 1, 2006. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Ensemble-mean (left panel) and ensemble-spread (right panel) of initial conditions of
CAM3 CO in ppbv at 500 hPa for 1 April 2006.
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Figure 4. Global root-mean-square error of prior (black) and posterior (red) ensemble-mean 

relative to observations of radiosonde horizontal wind velocity, radiosonde temperature and 

satwind horizontal wind velocity for the entire assimilation period (April 2006). Lower panels 

correspond to global RMSEs in the vertical using all observations over the same period. 

 

 

 

 

 

 

 

Fig. 4. Global root-mean-square error of prior (black) and posterior (red) ensemble-mean rela-
tive to observations of radiosonde horizontal wind velocity, radiosonde temperature and satwind
horizontal wind velocity for the entire assimilation period (April 2006). Lower panels correspond
to global RMSEs in the vertical using all observations over the same period.
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Figure 5. Corresponding global prior (black) and posterior (red) ensemble-spread of expected 

observations for radiosonde horizontal wind velocity, radiosonde temperature and satwind 

horizontal wind velocity for the entire assimilation period (April 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Corresponding global prior (black) and posterior (red) ensemble-spread of expected
observations for radiosonde horizontal wind velocity, radiosonde temperature and satwind hor-
izontal wind velocity for the entire assimilation period (April 2006).
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Figure 6. Global RMSE of prior (black) and posterior (red) ensemble-mean CO relative to 

MOPITT CO (left panel) and their corresponding ensemble-spread (right panel) for the entire 

assimilation period (April 2006). Global bias relative to MOPITT is ~2.14 ppbv for prior 

ensemble-mean and ~1.55 ppbv for posterior ensemble-mean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Global RMSE of prior (black) and posterior (red) ensemble-mean CO relative to MOPITT
CO (left panel) and their corresponding ensemble-spread (right panel) for the entire assimilation
period (April 2006). Global bias relative to MOPITT is ∼2.14 ppbv for prior ensemble-mean and
∼1.55 ppbv for posterior ensemble-mean.
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Figure 7. INTEX-B flight tracks for NSF/NCAR C-130 and for NASA DC-8 during April 17 

to May 1, 2006 campaign period. Colors represent the corresponding flight altitudes in hPa. 

 

 

 

 

 

 

Fig. 7. INTEX-B flight tracks for NSF/NCAR C-130 and for NASA DC-8 during 17 April to 1 May
2006 campaign period. Colors represent the corresponding flight altitudes in hPa.
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Figure 8a. Global comparison of April 2006 mean horizontal wind component (U) in m/s 

from DART/CAM assimilation and NCEP/GFS forecast/analysis product (regridded to 

2ox2.5o). The upper panels correspond to 700 hPa distribution while the lower panels 

correspond to zonal distribution (vertical axis in hPa). 

 

 

 

 

 

 

Fig. 8a. Global comparison of April 2006 mean horizontal wind component (U) in m/s from
DART/CAM assimilation and NCEP/GFS forecast/analysis product (regridded to 2◦×2.5◦). The
upper panels correspond to 700 hPa distribution while the lower panels correspond to zonal
distribution (vertical axis in hPa).
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Figure 8b. Global comparison of April 2006 mean horizontal wind component (V) in m/s 

from DART/CAM assimilation and NCEP/GFS forecast/analysis product (regridded to 

2ox2.5o). The upper panels correspond to 700 hPa distribution while the lower panels 

correspond to meridional distribution (vertical axis in hPa). 

 

 

 

 

 

 

Fig. 8b. Global comparison of April 2006 mean horizontal wind component (V) in m/s from
DART/CAM assimilation and NCEP/GFS forecast/analysis product (regridded to 2◦×2.5◦). The
upper panels correspond to 700 hPa distribution while the lower panels correspond to merid-
ional distribution (vertical axis in hPa).
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Figure 9a. DART/CAM model skills relative to INTEX-B flight observations (gray). The blue 

dots represent the model skills for each ensemble member of DART/CAM with MOPITT 

assimilation (COASSIM) while red dots correspond to DART/CAM without MOPITT 

assimilation (REFSIM). Large filled circles correspond to ensemble-mean of analyses with 

the unfilled circles representing the total RMSE (see Fig. 9b). 

 

 

 

 

 

 

 

 

 

 

Fig. 9a. DART/CAM model skills relative to INTEX-B flight observations (gray). The blue dots
represent the model skills for each ensemble member of DART/CAM with MOPITT assimilation
(COASSIM) while red dots correspond to DART/CAM without MOPITT assimilation (REFSIM).
Large filled circles correspond to ensemble-mean of analyses with the unfilled circles repre-
senting the total RMSE (see Fig. 9b).
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Figure 9b. Taylor diagram representation of correlation (R), RMSE and bias of modeled CO 

relative to observation (based from Taylor, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9b. Taylor diagram representation of correlation (R), RMSE and bias of modeled CO
relative to observation (based from Taylor, 2001).
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Figure 10. COASSIM CO (ppbv) in blue and REFSIM CO in red relative to flight 

observations in gray during April field campaign. COASSIM CO is removed with observed 

bias (see Figure 9a). 

 

 

 

 

 

 

Fig. 10. COASSIM CO (ppbv) in blue and REFSIM CO in red relative to flight observations in
gray during April field campaign. COASSIM CO is removed with observed bias (see Fig. 9a).
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Figure 11. Median vertical structure of COASSIM CO (ppbv) in blue and REFSIM CO in red 

relative to flight observations in gray. COASSIM CO is presubtracted with observed bias (see 

Figure 9a). Observation error bars correspond to interquartile range calculated for each 

vertical bin. 

 

 

 

 

 

 

Fig. 11. Median vertical structure of COASSIM CO (ppbv) in blue and REFSIM CO in red
relative to flight observations in gray. COASSIM CO is presubtracted with observed bias (see
Fig. 9a). Observation error bars correspond to interquartile range calculated for each vertical
bin.
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(a) 

 

(b) 

 

Figure 12. Mean CO distribution (in ppbv) at 700 hPa over the INTEX-B domain as depicted 

in DART/CAM analyses (a) REFSIM (b) COASSIM with observed MOPITT bias removed. 

 

Fig. 12. Mean CO distribution (in ppbv) at 700 hPa over the INTEX-B domain as depicted in
DART/CAM analyses (a) REFSIM (b) COASSIM with observed MOPITT bias removed.
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Figure 13. Difference in DART/CAM CO 3-day forecasts (in ppbv) at 700 hPa valid 

for 04/20/2006 0 UTC between a free-running CO simulation (REFSIM) and a 

forecast initialized with MOPITT-constrained CO at 04/17/2006 0 UTC. 

Fig. 13. Difference in DART/CAM CO 3-day forecasts (in ppbv) at 700 hPa valid for 20 April
2006 00:00 UTC between a free-running CO simulation (REFSIM) and a forecast initialized
with MOPITT-constrained CO at 17 April 2006 00:00 UTC.
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(a) 

 

(b) 

 

Figure 14. Ensemble-spread (in ppbv) of DART/CAM CO at 700 hPa within the INTEX-B 

domain averaged between April 6 to May 1, 2006. The upper and lower panels correspond 

respectively to ensemble spread from (a) REFSIM and (b) COASSIM analyses.  

Fig. 14. Ensemble-spread (in ppbv) of DART/CAM CO at 700 hPa within the INTEX-B domain
averaged between 6 April to 1 May 2006. The upper and lower panels correspond respectively
to ensemble spread from (a) REFSIM and (b) COASSIM analyses.
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Figure 15. Six-hourly root-mean-square error (in ppbv) of DART/CAM CO forecast (black) 

and analysis (blue) relative to MOPTT retrievals averaged over the INTEX-B domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Six-hourly root-mean-square error (in ppbv) of DART/CAM CO forecast (black) and
analysis (blue) relative to MOPTT retrievals averaged over the INTEX-B domain.
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Figure 16. Mean spatial distribution of analysis increments >−< f
CO

a
CO xx  (in ppbv) at 700 

hPa averaged between April 6 to May 1, 2006.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Mean spatial distribution of analysis increments <xa
CO−xf

CO> (in ppbv) at 700 hPa
averaged between 6 April to 1 May 2006.

9767

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/9717/2007/acpd-7-9717-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/9717/2007/acpd-7-9717-2007-discussion.html
http://www.egu.eu

