Atmos. Chem. Phys. Discuss., 7, 9385–9417, 2007 www.atmos-chem-phys-discuss.net/7/9385/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for O_3 , HO_x , NO_x and the Hg lifetime

A. Saiz-Lopez^{1,2}, J. M. C. Plane¹, A. S. Mahajan¹, P. S. Anderson³, S. J.-B. Bauguitte³, A. E. Jones³, H. K. Roscoe³, R. A. Salmon³, W. J. Bloss^{1,*}, J. D. Lee^{1,**}, and D. E. Heard¹

¹School of Chemistry, University of Leeds, Leeds, UK

²NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

³British Antarctic Survey, National Environment Research Council, Cambridge, UK ^{*}now at: School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK

** now at: Department of Chemistry, University of York, Heslington, York, UK

Received: 21 June 2007 - Accepted: 21 June 2007 - Published: 2 July 2007

Correspondence to: J. M. C. Plane (j.m.c.plane@leeds.ac.uk)

7, 9385–9417, 2007 Halogen chemistry in the Antarctic boundary layer A. Saiz-Lopez et al. Title Page Abstract Introduction Conclusions References

ACPD

Abstract

A one-dimensional chemical transport model has been developed to investigate the vertical gradients of bromine and iodine compounds in the Antarctic coastal boundary layer. The model has been applied to interpret recent year-round observations of iodine and bromine monoxides (IO and BrO) at Halley Station, Antarctica. The model requires 5 an equivalent I atom flux of $\sim 10^9$ molecule cm⁻² s⁻¹ from the snowpack in order to account for the measured IO levels, which are up to 20 ppt during spring. Using the current knowledge of gas-phase iodine chemistry, the model predicts significant gradients in the vertical distribution of iodine species. However, recent ground-based and satellite observations of IO imply that the radical is well-mixed in the boundary layer. 10 indicating a longer than expected atmospheric lifetime for the radical. This can be modelled by including photolysis of the higher iodine oxides $(I_2O_2, I_2O_3, I_2O_4 \text{ and } I_2O_5)$, and rapid recycling of HOI and INO₃ through sea-salt aerosol. The model also predicts significant concentrations (up to 25 ppt) of I_2O_5 in the lowest 10 m of the boundary layer, which could lead to the formation of ultrafine iodine oxide aerosols. Heterogeneous 15 chemistry involving sea-salt aerosol is also necessary to account for the vertical profile of BrO. lodine chemistry causes a large increase (typically more than 3-fold) in the rate

of O_3 depletion in the BL, compared with bromine chemistry alone. Rapid entrainment of O_3 from the free troposphere is required to account for the observation that on occasion there is little O_3 depletion at the surface in the presence of high concentrations of IO and BrO. The halogens also cause significant changes to the vertical profiles of HO and HO₂ and the NO₂/NO ratio. The average Hg⁰ lifetime against oxidation is also predicted to be about 10 h during springtime. Overall, our results show that halogens profoundly influence the oxidizing capacity of the Antarctic troposphere.

ACPD

7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

1 Introduction

Reactive halogen species (RHS= X, X₂, XY, XO, OXO, HOX, XNO₂, XONO₂ where X, Y is a halogen atom: Br, Cl, or I) play important roles in a number of atmospheric processes. One major impact is the depletion of ozone through catalytic cycles involving halogen radicals (e.g. Br, IO, BrO, Cl). In the 1970s, interest was focused mainly 5 on stratospheric ozone depletion (e.g. Molina and Rowland, 1974; Stolarsky and Cicerone, 1974), whereas since the 1980s there have been reports of complete O_3 depletion events (ODEs) in the polar tropospheric boundary layer (BL) of both the Arctic and Antarctic (e.g., Bottenheim et al., 1986; Oltmans and Komhyr, 1986; Murayama et al., 1992; Kreher et al., 1997; Tuckermann et al., 1997; Wessel et al., 1998; Spicer et 10 al. 2002; Brooks et al. 2006; Jones et al., 2006). These events occurred at polar sunrise in the spring and were explained by the influence of bromine-catalyzed chemical cycles (e.g. Barr et al., 1988; McConnell et al., 1992; Tuckermann et al., 1997; Kreher et al., 1997; Friess et al., 2004; Kaleschke et al., 2004). Bromine chemistry also plays a central role in the oxidation of atomic mercury (Hg⁰) in the polar atmosphere 15 (Schroeder et al., 1998; Brooks et al., 2006), which seems to provide an important pathway for this element to enter the Arctic food chain (Scott, 2001). It has been suggested that the presence of iodine can trigger this bromine chemistry and enhance the removal of ozone and mercury (Calvert and Lindberg, 2004a, b; O' Driscoll et al., 2006; Saiz-Lopez et al., 2007a). 20

Major components of the atmospheric chemistry of bromine and iodine in the polar BL are illustrated in Fig. 1. The release of bromine-containing compounds proceeds through the so-called "bromine explosion", which involves bromide ions in brine-coated sea ice or snow being converted to gas-phase inorganic bromine (Br, BrO, HOBr etc.)

in the BL (Honninger and Platt, 2002). The presence of BrO has been reported by several groups such as Tuckermann et al. (1997) at Ny Alesund, Honninger et al. (2004a) at Hudson Bay, Canada and Brooks et al. (2006) at Barrow, Alaska. Some measurements of BrO were also made in coastal Antarctica using a passive DOAS instrument

ACPD

7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

(e.g. Friess et al., 2004). Satellite observations have shown the presence of BrO in both the northern and southern polar regions (Richter et al., 1998; Wagner and Platt, 1998; Wagner et al., 2001; Richter et al., 2002; Hollwedel et al., 2004).

- The vertical extent of bromine chemistry has been studied using a combination of
 the long path DOAS and multi-axis DOAS measurement techniques (Tuckermann et al., 1997; Martinez et al., 1999; Honninger et al., 2004b). These studies showed that the enhanced BrO during ODEs was confined to the BL. It was also concluded that there was a very small vertical gradient of BrO within the BL (Honninger and Platt, 2002; Honninger et al., 2004b). These observations of BrO being well-mixed within the
 BL are consistent with a one-dimensional model study by Lehrer et al. (2004), which
- concluded that ODEs in the Arctic are caused by halogen chemistry confined to the BL by an inversion layer. This study also showed that emission from brine-covered sea ice was not sufficient to explain the observed ODEs, and suggested that recycling of halogen radicals through heterogeneous chemistry on aerosols was also required.
- Besides removing O₃, RHS can also affect the oxidizing capacity of the troposphere in other ways. X and XO radicals reach a photochemical steady state during the day, essentially governed by reaction with O₃ and photolysis (Fig. 1). The X atoms can react with non-methane hydrocarbons (NMHC), leading to hydrogen atom abstraction (analogous to OH). In fact, indirect measurements of the vertical extent of RHS have
 been carried out by measuring hydrocarbon destruction patterns (Solberg et al., 1996; Ramacher et al., 1999). Br atoms also recombine with Hg⁰ to produce HgBr, which is relatively stable at the low temperatures of the polar spring BL; HgBr can then add a further radical (Br, I etc.) to yield mercury in its stable 2+ oxidation state (Goodsite et al., 2004). Halogen oxides such as BrO and IO can also act directly as oxidizing radicals. For example, the rate of oxidation of dimethyl sulphide by XO can be up to an
 - order of magnitude higher than the oxidation by OH (Saiz-Lopez et al., 2004). RHS also affect the HO_x (i.e., $[HO_2]/[OH]$) and NO_x ratios (i.e., $[NO_2]/[NO]$) (e.g. von Glasow and Crutzen, 2003; Saiz-Lopez and Plane, 2004a; Bloss et al., 2005). XO radicals oxidize NO to NO₂, thus increasing the NO_x ratio. In contrast, they react with

ACPD 7, 9385–9417, 2007 Halogen chemistry in the Antarctic boundary layer A. Saiz-Lopez et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** ►T. Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

 HO_2 to yield HOX, which then photolyses efficiently to OH (particularly in the case of HOI), thus decreasing the HO_x ratio (Bloss et al., 2005).

Lastly, the role of iodine oxides in forming ultra-fine aerosol has been investigated by laboratory, field and modeling experiments (e.g. O'Dowd et al., 1998; Hoffmann et

- ⁵ al., 2001; O'Dowd et al., 2002; Jimenez et al., 2003; Saiz-Lopez and Plane, 2004b; McFiggans et al., 2004; Burkholder et al., 2004; Sellegri et al., 2005; Saunders and Plane, 2005 & 2006; Saiz-Lopez et al., 2006). The process of iodine oxide particle (IOP) production is thought to involve the recombination reactions IO + IO, IO + OIO, and OIO + OIO to yield I_2O_y , where y=2, 3 or 4, respectively. Further oxidation with
- 10 O₃ may then produce the most stable higher oxide, I₂O₅, which can then polymerize to form solid particles of I₂O₅ (Saunders and Plane, 2005, 2006). Thus the presence of IO in the atmosphere points to the possibility of IOP formation; these particles could then provide condensation nuclei for other condensable vapours and grow to the point of becoming cloud condensation nuclei.
- In Antarctica, the vertical column of IO has been measured using a ground-based differential optical absorption spectrometer (DOAS) (Friess et al., 2001), and very recently from the SCIAMACHY instrument on the ENVISAT satellite (Saiz-Lopez et al., 2007b; Schoenhardt et al., 2007). However, the most comprehensive data set on Antarctic IO (and BrO) in the BL was obtained during the Chemistry of the Antarctic IO (and BrO) in the BL was obtained during the Chemistry of the Antarctic IO (and BrO) in the BL was obtained during the Chemistry of the Antarctic IO (and BrO) in the BL was obtained during the Chemistry of the Antarctic IO (and BrO) in the BL was obtained during the Chemistry of the Antarctic IO (and BrO) in the BL was obtained during the Chemistry of the Antarctic IO (and BrO) in the BL was obtained during the Chemistry of the Antarctic IO (and BrO) in the BL was obtained during the Chemistry of the Antarctic IO (and BrO) in the BL was obtained during the Chemistry of the Antarctic IO (and BrO) in the BL was obtained during the Chemistry of the Antarctic IO (and BrO) in the BL was obtained during the Chemistry of the Antarctic IO (and BrO) in the BL was obtained during the Chemistry of the Antarctic IO (and BrO) in the BL was obtained during the Chemistry of the Antarctic IO (antarctic IO
- ²⁰ Boundary Layer and Interface with Snow (CHABLIS) field measurement campaign at Halley Station, shown on the map in Fig. 2 (Saiz-Lopez et al., 2007a). In the present paper we investigate, using a 1-D model, the sources and likely vertical distributions of halogens within the Antarctic BL. The effects of the combined iodine and bromine chemistry on O₃ depletion, the HO_x and NO_x ratios and the lifetime of Hg within the BL are then investigated.

ACPD 7, 9385–9417, 2007 Halogen chemistry in the Antarctic boundary layer A. Saiz-Lopez et al. **Title Page** Introduction Abstract Conclusions References Tables **Figures** ►T. Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

2 Model description

The Tropospheric Halogen Chemistry model (THAMO) is a one-dimensional chemical and transport model that uses time-implicit integration (Shimazaki, 1985). It has three main components: i), a chemistry module that includes photochemical, gas-phase and ⁵ heterogeneous reactions; ii), a transport module that includes vertical diffusion, and sedimentation of particles; and iii), a radiation scheme which calculates the solar irradiance as a function of altitude, wavelength and solar zenith angle. The continuity equations to account for the change in concentration n_i of a species *i* at an altitude *z* and a time *t* are given by:

10
$$\frac{\partial n_i}{\partial t} = P_i - L_i n_i - \frac{\partial \phi_i}{\partial z}$$

where P_i and L_j are the production and loss rates of *i*, respectively. ϕ_i is the vertical flux due to eddy diffusion:

$$\phi_i = K_z \left[\frac{\partial n_i}{\partial z} + \left(\frac{1}{T} \frac{\partial T}{\partial z} + \frac{1}{H} \right) n_i \right]$$
(2)

where \overline{H} is the scale height of the atmosphere and K_z is the eddy diffusion coefficient. ¹⁵ These equations are solved in the model with an integration time step of 2 min. In this study, the model extends from the ground up to the upper boundary at 200 m with a spatial resolution of 1 m. To account for the downward convective transport of free tropospheric O₃, an additional flux at the upper boundary is estimated using the following expression (Shimazaki, 1985):

²⁰
$$\phi_i = K_z[O_3] \left(\frac{1}{\overline{H}} - \frac{1}{H_{O_3}} \right)$$

where H_{O3} is the scale height of O_3 at the top of the BL, typically 7.5 km. Sensitivity studies are run for different flux strengths and for a scenario where the flux across the

9390

ACPD

7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

A. Saiz-Lopez et al.

(1)

(3)

upper boundary is set to zero (i.e. a neutral BL). The lower boundary is the snowpack surface, where deposition from the gas phase and an upward trace gas flux from the snowpack can occur.

- 2.1 Vertical transport parameterization
- ⁵ This is described by the turbulent diffusion coefficient $K_z(z, t)$, which will usually be a function of time *t* and height *z*. Near the surface, the layer where there is minimal change in momentum flux, turbulence is generated predominantly by wind shear. This "surface layer" is well described by Monin-Obhukov similarity theory, from which a function for the diffusion coefficient can be derived (Stull, 1988):

10 $K_{z}(z,t) = \kappa . z . u^{*}(t)$

where κ is the Von Karmen constant = 0.4, *z* is the height above the surface and u^{*}(*t*) is the surface friction velocity. In the neutral BL, where buoyancy can be neglected, u^{*} can be derived to a good approximation from:

$$\frac{\kappa U}{u^*} = \ln\left(\frac{z}{z_0}\right) \tag{5}$$

¹⁵ where *U* is wind speed, *z* is the measurement height of the wind, and z_o is the surface roughness length. For Halley, long-term measurements indicate that $z_o \sim 5 \times 10^{-5}$ m (King and Anderson, 1994). Note that this form of $K_z(z, t)$ is relevant to the surface layer, where $u^*(t)$ is virtually constant. Equation (4) implies that $K_z(z, t)$ is linearly dependent on *z*, and tends to zero at the surface. This in turn would imply that a trace gas released at the surface, *z*=0, would never diffuse upwards, a situation which is clearly unrealistic. Hence, a surface condition is used which assumes that this form of $K_z(z, t)$ is only valid for $z \ge z_o$ (Stull, 1988).

ACPD 7, 9385–9417, 2007 Halogen chemistry in the Antarctic boundary layer A. Saiz-Lopez et al.

(4)

2.2 Chemical scheme

In addition to halogen chemistry, the THAMO model contains a set of odd-hydrogen, odd-nitrogen and methane chemical reactions, and a limited treatment of non-methane hydrocarbon (NMHC) chemistry. It also includes a detailed chemical scheme of reduced sulphur oxidation. Specific details of the iodine and bromine chemistry schemes 5 are given in Sects. 4.1 and 4.2, respectively. A simplification of the chemistry described in the model is illustrated in Fig. 1, whereas the full reaction scheme is listed in Table 1 of the supplementary material (http://www.atmos-chem-phys-discuss.net/7/ 9385/2007/acpd-7-9385-2007-supplement.pdf). The model is constrained with typical measured values of other chemical species via a time-step method to simulate the fluc-10 tuations of species; with diurnal mixing ratio profiles peaking at [CO] = 35 ppb; [DMS] $= 80 \text{ ppt}; [SO_2] = 100 \text{ ppt}; [CH_4] = 2000 \text{ ppb}; [CH_3CHO] = 150 \text{ ppt}; [HCHO] = 150 \text{ ppt};$ [isoprene] = 60 ppt; [propane] = 25 ppt; [propene] = 15 ppt. The concentrations of the constrained species were then read in at the appropriate simulation time and interpolated for each integration step. The model is also updated at every simulation time-step with measurements of temperature and relative humidity made during CHABLIS.

2.3 Photochemistry

The rate of photolysis of species is calculated on-line using an explicit two-stream radiation scheme from Thompson (1984). The irradiance reaching the surface is
computed after photon attenuation through 50 1-km layers in the atmosphere as a function of solar zenith angle (SZA), location and time-of-year. The absorption cross-section and quantum yield data used in this model are summarized in Table 1 (supplementary material http://www.atmos-chem-phys-discuss.net/7/9385/2007/acpd-7-9385-2007-supplement.pdf). The rate of photolysis of species is computed by including snowpack albedo measurements (typical measured albedo = 0.85) made with an actinic flux spectrometer during the CHABLIS campaign.

ACPD 7, 9385–9417, 2007 Halogen chemistry in the Antarctic boundary layer A. Saiz-Lopez et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** ►T. Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

2.4 Sea ice surface and aerosol uptake

Here, it is assumed that species such as HOBr, HOI, HBr, HI, IONO₂ and BrONO₂ are dry deposited to the surface snowpack and, through heterogeneous reactions involving Br⁻, I⁻ and Cl⁻ ions, recycle back to the gas phase in the form of photolabile halogen
species XY (X = I, Br; Y = I, Br, Cl). Similarly, the uptake onto sea-salt aerosol surfaces is estimated for a number of species including HOBr, HOI, HBr, HI, IONO₂, BrONO₂, OH, HO₂, NO₃, N₂O₅, CH₃O₂, HNO₃ and H₂SO₄. The uptake of a gas species onto an aerosol surface is computed using the volumetric aerosol surface area (ASA) and the free molecular transfer approximation (Fuchs, 1964). The ASA used in this work is 10⁻⁷ cm² cm⁻³ (von Glasow et al., 2002) chosen to be typical of remote oceanic conditions, and is assumed constant in each vertical level of the model (i.e. the aerosol is well-mixed in the BL). The uptake coefficients are taken from the recommendations of Sander et al. (2006) and Atkinson et al. (2000), unless otherwise stated.

3 DOAS observations at Halley Station

¹⁵ BL observations of IO and BrO were carried out at Halley Station from Jan. 2004 to Feb. 2005 using the technique of long-path differential optical absorption spectroscopy (DOAS) (Plane and Saiz-Lopez, 2006). The measurements were performed during the CHABLIS campaign at Halley Station (75° 35′ S, 26° 30′ W) situated on the Brunt Ice Shelf, about 35 m above sea level (Fig. 2). The ice edge is some 12 km north, 30 km west and 20 km south-west of the station. A detailed description of the CHABLIS campaign can be found elsewhere in this issue (Jones et al., 2007a¹).

The instrument was located in the Clean Air Sector Laboratory (CASLAB). An effective light path of 8 km at a height of 4 to 5 m above the snowpack (varying through the

ACPD 7, 9385–9417, 2007 Halogen chemistry in the Antarctic boundary layer A. Saiz-Lopez et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion EGU

¹Jones, A. E., Wolf, E. W., Salmon, R. A., et al.: Chemistry of the Antarctic Boundary Layer and the Interface with Snow: An overview of the CHABLIS campaign, in preparation, 2007a.

year as a result of snow accumulation) was set up between the CASLAB and a retroreflector array positioned 4 km to the east. Further information on the instrumental design and spectral de-convolution procedures can be found in Plane and Saiz-Lopez (2006).

- ⁵ The measurements provide the first comprehensive observations of the diurnal and seasonal trends of both radicals in coastal Antarctica (Saiz-Lopez et al., 2007a). The IO and BrO concentrations exhibit a diurnal cycle with a clear dependence on solar irradiance. Higher concentrations were also measured in air that had passed over sea ice within the previous 24 h. However, even in continental air that had spent at least four days over the interior of Antarctica, both radicals were still measured at mixing ratios up
- ¹⁰ days over the interior of Antarctica, both radicals were still measured at mixing ratios up to ~6 ppt during sunlit periods, significantly above the detection limit of the instrument (1–2 ppt). This striking finding implies that halogen activation is not restricted to close proximity to the ice edge, and is widespread in the Antarctic coastal BL. This conclusion is strongly supported by satellite observations of the tropospheric BrO column, where
- it was assumed that most of the BrO was confined to the BL (e.g., Hollwedel et al., 2004).

The seasonal trends of both radicals are remarkably similar, both in timing and absolute concentration. The radicals first appeared above the DOAS detection limit during twilight (August), and were then present throughout the sunlit part of the year. The peak mixing ratios of IO and PrO (00 ant) were measured in aprincting (October) followed

²⁰ mixing ratios of IO and BrO (20 ppt) were measured in springtime (October), followed by a possible smaller peak in autumn (March–April).

Regarding the DOAS detection of OIO, the molecule was not conclusively measured above its DOAS detection limit (6–7 ppt) during 21 days of observations between January 2004 and February 2005. For more details about the DOAS measurements and correlation with motocrelogy during CHABLIS, see Saiz Lopez et al. (2007a).

²⁵ correlation with meteorology during CHABLIS, see Saiz-Lopez et al. (2007a).

ACPD 7, 9385–9417, 2007 Halogen chemistry in the Antarctic boundary layer A. Saiz-Lopez et al. **Title Page** Introduction Abstract Conclusions References **Figures** ►T. Back Close Full Screen / Esc

Printer-friendly Version

Interactive Discussion

4 Results and discussion

4.1 Iodine chemistry

The major objective of this modelling study is to simulate the IO observations, and thus explore the impact of iodine chemistry in the polar BL. The THAMO standard model 5 contains the gas-phase iodine chemistry scheme we have used in previous modeling studies (McFiggans et al., 2000; Saiz-Lopez et al., 2006). Heterogeneous chemistry is treated in the following way. The uptake and subsequent hydrolysis of IONO₂, HOI and INO₂ on aerosols produces HOI, which equilibrates between gas and aqueous phase according to its Henry's law solubility. The processing of aqueous HOI to IBr, ICI and I_2 , via reaction with Br⁻, Cl⁻ and l⁻, respectively, takes only between 10 and 15 min in 10 fresh sea-salt aerosol (McFiggans et al., 2000). The di-halogen molecules are insoluble and will then be released rapidly to the gas phase. Hence, uptake of the inorganic iodine species onto aerosols is the rate-limiting step of the process (McFiggans et al., 2000). Note, however, that aged sea-salt aerosols will become depleted in Br⁻ and CI^{-} , and progressively acidified by uptake of HNO₃, H₂SO₄ and SO₂ (e.g. Fickert et al., 1999; von Glasow et al., 2002): both effects will slow down the aerosol processing time.

The gas-phase chemistry of IO in very clean air (NO_x<30 ppt) is dominated by the reactions of IO with itself to form I_2O_2 and OIO + I (Sander et al., 2006), IO + OIO to form I_2O_3 (Martin et al., 2005), and that of OIO + OIO to form I_2O_4 (Martin et al., 2005). These reactions proceed rapidly in the gas phase with rate coefficients of 1×10^{-10} , 5×10^{-11} and 1×10^{-10} cm³ molecule⁻¹ s⁻¹, respectively. The model also includes the formation of gas-phase I_2O_5 through a series of oxidation reactions of I_2O_2 , I_2O_3 and I_2O_4 by O_3 up to the +5 oxidation state; we adopt a lower limit to the rate coefficients of sasume in the standard model that I_2O_2 , I_2O_3 , I_2O_4 and I_2O_5 do not undergo photolysis or other reactions which would reduce them to IO or OIO, and that these molecules are

ACPD 7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

lost by dry deposition to the snowpack, uptake onto pre-existing aerosol surfaces, and polymerization to form IOPs. Hence, any newly formed IO and OIO will be rapidly converted into higher-order iodine oxides, effectively limiting the atmospheric lifetime of both radicals.

- ⁵ Here we use the model to investigate two important questions. First, what is the iodine source strength required to simulate the IO mixing ratios observed at the height of the DOAS measurements (i.e., 4–5 m above the snowpack)? Second, what is the vertical extent of the iodine chemistry in this environment: is its impact limited to the near surface or throughout the entire BL. During the CHABLIS campaign, the highest
- ¹⁰ mixing ratios of IO, up to 20 ppt, were observed in springtime, following enhanced activation mechanisms that, for the case of iodine, are not yet well understood. Figure 3 shows the modelled mixing ratios of IO and OIO in spring using the standard model of iodine chemistry, with an I atom flux out of the snowpack of 1×10^{10} molecule cm⁻² s⁻¹. The calculated IO mixing ratio maximum of 16–18 ppt is in good accord with the DOAS
- ¹⁵ observations. For OIO the mixing ratios are below 6 ppt, which was the instrumental detection limit during the CHABLIS campaign. The diurnally-averaged lifetime for I_xO_y is ~2 h. The modelled summer IO mixing ratio at midday peaking at 6 ppt, in accord with the DOAS observations, requires an I atom flux out of the snowpack of 1×10^9 molecule cm⁻² s⁻¹.
- Figures 3a and 3b show that both IO and OIO exhibit a strong vertical gradient in the BL: the concentration of IO at a height of 30 m is only 10% of that at 5 m. In the standard model, the transport of reactive iodine to the top of the BL occurs only via iodine recycling through sea-salt aerosol. However, the result of such a steep IO gradient is that the column abundance of the radical is predicted to be only 7×10¹¹ molecule cm⁻² for the springtime simulation in Fig. 3. This is very much smaller than satellite observations of IO by SCIAMACHY in October 2005, where vertical columns >3×10¹³ molecule cm⁻² were observed over Antarctic sea ice (Saiz-Lopez et al., 2007b), or zenith-pointing DOAS measurements of the IO slant columns up to 1×10¹⁴ molecule cm⁻² made at the coastal Antarctic station of Neumayer (Friess et al.,

7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

2001). Hence, vertical column measurements strongly suggest that IO does *not* have a steep gradient within the BL. The most likely explanation is that the standard model is missing a recycling mechanism from the higher iodine oxides to IO, which would increase the IO lifetime and allow it to be well-mixed in the BL.

- ⁵ The most likely recycling mechanism is photodissociation of I_xO_y . This would have two effects: i) increase the lifetime of IO_x and therefore impact on the vertical distribution of inorganic iodine, ii) reduce the required atomic I flux from the snowpack into the gas phase to sustain the observed levels of IO. The model was therefore run with the photolysis of I_2O_2 , I_2O_3 , I_2O_4 and I_2O_5 , set to a frequency at noon of 1×10^{-2} s⁻¹.
- ¹⁰ This photodissociation frequency is 2–3 times faster than J(IONO₂) at this location in spring, calculated using a new measurement of the IONO₂photolysis cross section (J. M. C. Plane and S. H. Ashworth, personal communication). Preliminary measurements of the absorption cross sections of these higher iodine oxides indicate that their magnitudes and long wavelength thresholds are similar to those of IONO₂ (Martin et
- ¹⁵ al., 2005). Nevertheless, further laboratory work on the photochemistry of I_xO_y species is urgently needed to advance our understanding of this aspect of atmospheric iodine chemistry.

The inclusion of I_xO_y photolysis is now referred to as the *revised model*. Figure 4a shows the computed IO mixing ratio for the springtime scenario using the revised model (note the different height scale with respect to Fig. 3). The calculated IO at the top of the BL (200 m) is now 20% of that close to the surface, and the vertical column of 5×10^{12} molecule cm⁻² is now approaching reasonable accord with the satellite column measurement. Thus, $J(I_xO_y) = 1 \times 10^{-2} \text{ s}^{-1}$ is the lower limit required to sustain high IO levels throughout the boundary layer.

Figure 4b shows vertical profiles of the major gas-phase iodine species throughout the BL. Note that the main reservoir of iodine is I_2O_5 with mixing ratios ranging from 25 ppt to 8 ppt from the surface to the top of the BL, respectively. Figure 5 shows the modelled diurnal variation of the I_2O_5 mixing ratio. Since the formation rate of IOPs is highly non-linear in I_xO_y mixing ratio (Saunders and Plane, 2005), most ultra-

ACPD 7, 9385–9417, 2007		
Halogen chemistry in the Antarctic boundary layer		
A. Saiz-Lopez et al.		
Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
14	۶I	
•	•	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		
FG	EGU	

fine particles are predicted to form in the first 10 m above the snowpack, in the early afternoon (12:00–16:00 LT). This may be the source of ultra-fine particles that have been measured over sea-ice around Antarctica (Davison et al., 1996). Once IOPs form, there will be a competition between uptake onto pre-existing aerosol and further growth by the uptake of condensable vapours and coagulation.

IO was also observed at mixing ratios up to 6 ppt in air masses that had been over the continent for several days. This indicates an efficient iodine recycling mechanism capable of sustaining iodine radical chemistry over the snowpack. One possibility is the transport of sea-salt aerosol, and frost-flower fragments coated with sea-salt, from

the ice front into the interior of the continent followed by deposition onto the snow-pack; subsequent heterogeneous reactions would then recycle photolabile iodine to the gas phase. In fact, recent satellite measurements show that IO is widespread around coastal Antarctica, including areas over the snowpack (Saiz-Lopez et al., 2007b).

4.2 Bromine chemistry

5

- ¹⁵ Figure 6a shows a two-day model simulation of the BrO vertical profile in springtime. The initial Br₂ flux from the snowpack is set to be only 1×10^9 molecule cm⁻² s⁻¹ (i.e. a factor of 5 smaller than the I atom flux (see above)), because of the effect of the bromine autocatalytic mechanism. It can be seen that on the second day of the simulation the BrO mixing ratios at the height of the DOAS measurements are similar to the obser-
- vations, peaking at ~20 ppt. During this season it is predicted that BrO will be better mixed within the boundary layer than IO (cf. Figs. 3 and 4). Figure 6b shows the noon vertical profiles of gas-phase bromine species during spring. Note that significant concentrations of inorganic bromine species reach the top of the BL, suggesting that BL ventilation under convective conditions may provide a source of inorganic bromine to the free troposphere. The predicted BrO column abundance for a 200 m BL height
- is 1×10^{13} molecule cm⁻², while satellite observations have reported averaged tropospheric vertical columns of 4×10^{13} molecule cm⁻² in the austral spring over coastal Antarctica (Hollwedel et al., 2004). The difference could arise from the presence of a

free tropospheric component in the satellite column measurement (Salawitch, 2006).

For the summertime case, a modelled BrO peak mixing ratio of 6 ppt at 4–5 m, in accord with the DOAS measurements, requires a Br_2 flux of 2×10⁸ molecule cm⁻² s⁻¹. For both summer and spring model runs the predicted concentrations essentially track

the solar irradiance profile and therefore peak at local noon when photodissociation of photolabile bromine (e.g. Br₂, BrCl) is most efficient. In summer the BrO mixing ratio for SZA >90° does not decrease to zero since there is enough solar radiation reaching the surface during twilight for halogen activation to occur.

If heterogeneous reprocessing of bromine on sea-salt aerosol is switched off in the ¹⁰ model, only a small fraction (~10%) of BrO at the surface will be transported by convection to the top of the BL, producing a pronounced vertical gradient. In contrast, including heterogeneous processing of bromine yields a vertical distribution of BrO that is well-mixed through the BL, in good accord with observations in the Arctic which have shown elevated levels of BrO at heights tens of meters above the snow surface ¹⁵ (e.g. Tuckermann et al., 1997; Martinez et al., 1999; Honninger et al., 2004). This shows that aerosols have a significant effect on the vertical distribution of inorganic bromine, although the actual efficiency of the halogen aerosol processing will depend on the vertical profile of the aerosol size distribution and chemical composition (in par-

ticular, the degree of halide ion depletion and the pH of the aerosol).

20 4.3 Impact of bromine and iodine chemistry on ozone

For a case where the noon peak of BrO is 10 ppt, a simple photochemical box model shows the diurnally-averaged O_3 loss rate is 0.14 ppb h⁻¹ arising from bromine chemistry alone (the averaged background O_3 level during spring was ~20 ppb). An O_3 depletion rate of 0.25 ppb h⁻¹ is calculated for a noon peak of IO = 10 ppt due to iodine chemistry only. When the halogens couple through the cross reaction

 $BrO + IO \rightarrow OIO + Br$

 \rightarrow I + Br + O₂

ACPD 7, 9385–9417, 2007 Halogen chemistry in the Antarctic boundary layer A. Saiz-Lopez et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** Back Close Full Screen / Esc

Printer-friendly Version

EGU

(R1a)

(R1b)

the total O_3 loss rate is 0.55 ppb h⁻¹, more than the sum of each component in isolation (Saiz-Lopez et al., 2007a). Thus, the O_3 depletion rate is almost four times as fast as that predicted from bromine chemistry alone, demonstrating the central role that iodine plays in O_3 depletion during Antarctic polar sunrise.

Figure 7a illustrates a THAMO run during springtime, for the case of a strong temperature inversion and neutrally buoyant BL, with no O₃ entrainment from the free troposphere. It can be seen that after 36 h the computed O₃ levels in the BL drop to below the instrumental detection limit (~1 ppb) due to the combined impact of iodine and bromine chemistry. This is similar to the complete removal of O₃, which has been reported in the Arctic when a strong temperature inversion and high levels of BrO occur

(e.g. Barrie et al., 1988; McConnell et al., 1992; Honninger and Platt, 2002).

However, during the CHABLIS campaign it was observed that elevated levels of IO and BrO occurred without complete removal of O_3 . We now use the THAMO model to examine whether the occurrence of high halogen oxide concentrations for a prolonged

period of time without complete O₃ destruction can be explained by entrainment of O₃-rich air from aloft. The transport of O₃ from the free troposphere into the BL was described using Eq. (4). Figure 7b shows the calculated O₃ profile with a downward flux from the free troposphere of O₃ of 3×10¹¹ molecule cm⁻² s⁻¹, and a convective BL. The predicted O₃ levels after 36 h have now only decreased by 20%, consistent with the observations. Note also that the O₃ is well-mixed throughout the BL, without a pronounced vertical gradient, as observed by Arctic and Antarctic ozonesonde observations during ODEs (e.g. Wessel et al., 1998; Tarasick and Bottenheim, 2002).

4.4 Impact of halogens on HO_x, NO_x and the Hg lifetime

During January and February 2005 (austral summer), in situ measurements of OH and ²⁵ HO₂ were performed using the FAGE technique (Bloss et al., 2007). The measurements were made at the same height above the snowpack (~5 m) as the DOAS beam. Typical peak noon values of 4×10^{-2} ppt and 1.50 ppt were measured for OH and HO₂

ACPD 7, 9385–9417, 2007 Halogen chemistry in the Antarctic boundary layer A. Saiz-Lopez et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

respectively. IO and BrO react with HO₂ to form HOI and HOBr, whose subsequent photolysis produces OH, thus reducing the HO₂/OH ratio. In order to model the OH and HO₂ mixing ratios, we use the $J(O^1D)$ values measured during CHABLIS (typical noon photolysis frequency of $4 \times 10^{-5} \text{ s}^{-1}$) and the measured mixing ratios of relevant species (see Sect. 2.2). Figures 8a and 8b show the effect of halogen chemistry on the vertical distributions of OH and HO₂, respectively, for runs with the standard model, the revised model, and no halogens. At the height of the measurements, the model runs without halogen chemistry over-predict HO₂ by ~3 times the measured concentration, and underpredict OH by ~40%. Thus, the modeled HO_x (HO₂/OH) ratio is 115, com-

¹⁰ pared with the measured ratio of 37. When halogen chemistry is included (i.e. typical summer noon BrO and IO mixing ratios of 5 ppt), the calculated OH and HO₂ levels and diurnal profile are in very good agreement with the observations: the modeled ratio is now 33. Figure 8 also shows that above about 10 m height there is a significant difference in the modeled OH and HO₂ profiles depending on whether I_xO_y photochemistry is included.

NO and NO₂ were also measured during the Antarctic summer period with noon average mixing ratios of 14 ppt and 7.5 ppt, respectively, so that the NO_x (NO₂/NO) ratio was 0.5 (Bauguitte et al., 2007²). IO and BrO increase the NO₂/NO ratio by converting NO to NO₂. NO_x production in the model is from photochemistry of snowpack ²⁰ nitrate ions – entrainment from the free troposphere is not included. The model was constrained with summer $J(NO_2)$ (typical noon maximum values of 0.015 s^{-1}) values measured with an actinic flux spectrometer during CHABLIS. The photochemical flux of NO_x from the snowpack required to simulate the NO_x measurements at 5 m height is 3×10^8 molecule cm⁻² s⁻¹, which is in sensible accord with a previous estimate of the summer NO_x flux of ~2×10⁸ molecule cm⁻² s⁻¹ during CHABLIS (Jones et al., 2007b).

²Bauguitte, S. J.-B., Bloss, W. J., Evans, M. E., Jones, A. E., Lee, J. D., Mills, G. P., Saiz-Lopez, A., Salmon, R. A., Roscoe, H. K., and Wolff, E. W.: An overview of multi-seasonal NO_x measurements during the CHABLIS campaign: Can sources and sinks estimates unravel observed diurnal cycles?, in preparation, 2007.

Without halogens in the model, the NO_x ratio at noon is only 0.3, whereas when halogens are included the ratio is 0.54.

Lastly, we use the THAMO to asses the impact of bromine and iodine chemistry on the lifetime of elemental mercury (Hg⁰) over coastal Antarctica. To calculate the lifetime ⁵ of Hg⁰ against oxidation to Hg^{//}, we use the formalism given in Goodsite et al. (2004):

$$\tau = \frac{\left(k_{-2} + k_3[Br] + k_4[I]\right)}{k_2[Br]\left(k_3[Br] + k_4[I]\right)} \tag{6}$$

where, at a pressure of 1 bar in air,

 $k(\text{Hg} + \text{Br} \rightarrow \text{HgBr}, 180-400 \text{ K}) = 1.1 \times 10^{-12} (\text{T}/298 \text{ K})^{-2.37} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (R2)

 $k(\text{HgBr} \rightarrow \text{Hg} + \text{Br}, 180-400 \text{ K}) = 1.2 \times 10^{10} \exp(-8360/\text{T})\text{s}^{-1}$ (R-2)

¹⁰
$$k$$
(HgBr + Br → HgBr₂, 180–400 K)=1.4 × 10⁻¹⁰ + 2.6 × 10⁻¹³. T - 8.6 × 10⁻¹⁶. T ² (R3)

$$k$$
(HgBr + I \rightarrow HgBrl, 180–400 K)=1.2 × 10⁻¹⁰ + 4.2 × 10⁻¹³. T – 1.0 × 10⁻¹⁵ T^2 (R4)

During springtime, the model shows that the diurnally-averaged mixing ratio of BrO of ~8 ppt measured by DOAS would have coexisted in steady state with a Br mixing ratio of ~0.7 ppt for a springtime diurnally-averaged O₃ mixing ratio of 12 ppb. The computed lifetime of Hg⁰, against oxidation by bromine chemistry alone (Reactions 2–3) is then about ~13 h at an average temperature of 260 K. The average IO measured by DOAS during springtime (~8 ppt) would have coexisted with a calculated I mixing ratio of ~5 ppt . The larger IO/I ratio, compared to that of BrO/Br, arises from the self-reaction of IO to form OIO + I and I₂O₂ (Sander et al., 2006), and from the thermal decomposition of I₂O₂ to OIO + I and IO + IO. Including the role of atomic I through reaction R4 leads to a 40% reduction of the Hg lifetime. In addition, iodine chemistry decreases the calculated BrO/Br ratio from 11 to 5 via conversion of BrO back to Br through Reaction (R1).

ACPD 7, 9385–9417, 2007 Halogen chemistry in the Antarctic boundary layer A. Saiz-Lopez et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** ►I. Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

The Hg⁰ lifetime is predicted to be reduced to only 2 h under conditions of high XO mixing ratios (i.e. 20 ppt), as observed as Halley during springtime, when the Br and I mixing ratios would have been 4 ppt and 13 ppt, respectively. Note that these calculations are made for high levels of halogens *without* severe O₃ depletion, as observed on

⁵ occasion during CHABLIS (Saiz-Lopez et al., 2007a). If O₃ were completely removed, then the BrO/Br and IO/I ratios would decrease to 0.15 and 0.01, respectively, and the Hg^{0} lifetime would be reduced to ~10 min. Our measurements of BrO and IO therefore indicate that there should be sustained removal of Hg into the snowpack throughout the sunlit period in coastal Antarctica.

10 5 Summary and conclusions

The THAMO chemical transport model has been used to investigate the vertical gradients of halogens in the Antarctic coastal BL with a parameterization of the vertical transport under neutral and convective BL conditions. The standard iodine chemistry model predicts a very steep gradient of iodine gas-phase species in the first 20 m of

- the BL. This does not explain evidence from measurements of IO by boundary layer DOAS during the CHABLIS campaign, and column abundance measurements from the ground and satellites, that IO is well-mixed in the BL. We have therefore revised the standard model to including the photolysis of the higher iodine oxides I₂O_y, where y=2–5. These reactions recycle IO efficiently throughout the BL, producing much better
 agreement between the model and observations. The photochemistry of these species
 - needs to be studied in the laboratory.

25

The revised THAMO model was then used to explain the surprising occurrence of close-to-average O_3 concentrations in the presence of high levels of IO and BrO, by replenishment of O_3 through entrainment from the free troposphere. The model predicts a well-mixed vertical profile for O_3 within the BL, which is in agreement with ozonesonde observations.

Finally, the model is able to account for the measured perturbations in the HO_x and

ACPD 7, 9385-9417, 2007 Halogen chemistry in the Antarctic boundary layer A. Saiz-Lopez et al. **Title Page** Introduction Abstract Conclusions References **Figures** Þ١ Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion EGU

 NO_x ratios by the observed concentrations of IO and BrO, and demonstrates that the presence of high atomic I concentrations leads to a significant enhancement in the oxidation rate of elemental Hg⁰ by atomic Br.

Acknowledgements. The authors would like to thank R. Jones and T. Cox (University of Cam-

⁵ bridge), and R. Saunders (University of Leeds) for helpful discussions. We thank the School of Chemistry, University of Leeds for a research fellowship (A. Saiz-Lopez) and a research studentship (A. S. Mahajan).

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, J., Hynes, R. G., Jenkin, M.

- ¹⁰ E., Kerr, J. A., Rossi, M. J., and Troe, J.: Summary of evaluated kinetic and photochemical data for atmospheric chemistry, IUPAC, J. Phys. Chem. Ref. Data, 29, 167–266, 2000.
 - Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J., and Rasmussen, R. A.: Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere, Nature, 334, 138–141, 1988.
- ¹⁵ Bloss, W. J., Lee, J. D., Johnson, G. P., Sommariva, R., Heard, D. E., Saiz-Lopez, A., Mc-Figgans, G., Coe, H., Flynn, M., Williams, P., Rickard, A. R., and Fleming Z. L.: Impact of halogen monoxide chemistry upon boundary layer OH and HO₂ concentrations at a coastal site, Geophys. Res. Lett., 32, L06814, doi:10.1029/2004GL022084, 2005.

Bloss, W. J., Lee, J. D., Heard, D. E., Salmon, R. A., Bauguitte, S. J.-B., Roscoe, H. K., and

Jones, A. E.: Observations of OH and HO₂ radicals in coastal Antarctica, Atmos. Chem. Phys. Discuss., 7, 2893–2935, 2007,

http://www.atmos-chem-phys-discuss.net/7/2893/2007/.

- Bottenheim, J. W., Gallant, A. G., and Brice, K. A.: Measurements of NO_y Species and O₃ at 82-Degrees-N Latitude, Geophys. Res. Lett., 13(2), 113–116, 1986.
- ²⁵ Brooks, S. B., Saiz-Lopez, A., Skov, H., Lindberg, S. E., Plane, J. M. C., and Goodsite, M. E.: The mass balance of mercury in the springtime arctic environment, Geophys. Res. Lett., 33(13), L13812, doi:10.1029/2005GL025525, 2006.
 - Burkholder, J. B., Curtius, J., Ravishankara, A. R., and Lovejoy, E. R.: Laboratory studies of the homogeneous nucleation of iodine oxides, Atmos. Chem. Phys., 4, 19–34, 2004,
- 30 http://www.atmos-chem-phys.net/4/19/2004/.

- Calvert, J. G. and Lindberg, S. E.: potential of iodine-containing compounds on the chemistry of the troposphere in the polar spring. I. Ozone depletion, Atmos. Environ., 38, 5087–5104, 2004.
- Calvert, J. G. and Lindberg, S. E.: potential of iodine-containing compounds on the chemistry of
- the troposphere in the polar spring. II. Mercury depletion, Atmos. Environ., 38, 5105–5116, 2004.
 - Davison, B., Hewitt, C. N., O'Dowd, C. D., Lowe, J. A., Smith, M. H., Schwikowski, M., Baltensperger, U., and Harrison, R. M.: Dimethyl sulphide, methane sulphonic acid and physicochemical aerosol properties in Atlantic air from the United Kingdom to Halley Bay, J. Geophys. Res., 101(D17), 22855–22868, doi:10.1029/96JD01166, 1996.
- Fickert, S., Adams, J. W., and Crowley, J. N.: Activation of Br₂ and BrCl via uptake of HOBr onto aqueous salt solutions, J. Geophys. Res.-Atmos., 104, 23719–23727, 1999.
 - Friess, U., Hollwedel, J., Konig-Langlo, G., Wagner, T., and Platt, U.: Dynamics and chemistry of tropospheric bromine explosion events in the Antarctic coastal region, J. Geophys. Res.-Atmos., 109, D06305, doi:10.1029/2003JD004133, 2004.
- Atmos., 109, D06305, doi:10.1029/2003JD004133, 2004.
 Fuchs, N. A.: The mechanics of aerosols, Pergamon Press, New York, 1964.

10

30

- Goodsite, M. E., Plane, J. M. C., and Skov, H.: A theoretical study of the oxidation of Hg⁰ to HgBr² in the troposphere, Environ. Sci. Technol., 38, 1772–1776, 2004.
- Hoffmann, T., O'Dowd, C. D., and Seinfeld, J. H.: Iodine oxide homogeneous nucleation: An explanation for coastal new particle production, Geophys. Res. Lett., 28, 1949–1952, 2001.
- explanation for coastal new particle production, Geophys. Res. Lett., 28, 1949–1952, 2001.
 Hollwedel, J., Wenig, M., Beirle, S., Kraus, S., Kuhl, S., Wilms-Grabe, W., Platt, U., and Wagner, T.: Year-to-year variations of spring time polar tropospheric BrO as seen by GOME, Adv. Space Res., 34, 804–808, 2004.
 - Honninger, G., Leser, H., Sebastian, O., and Platt, U.: Ground-based measurements of halogen
- oxides at the Hudson Bay by active longpath DOAS and passive MAX-DOAS, Geophys. Res. Lett., 31(4), L04111, doi:10.1029/2003GL018982, 2004a.
 - Honninger, G., von Friedeburg, C., and Platt, U.: Multi axis differential optical absorption spectroscopy (MAX-DOAS), Atmos. Chem. Phys., 4, 231–254, 2004b.
 - Honninger, G. and Platt U.: Observations of BrO and its vertical distribution during surface ozone depletion at Alert, Atmos. Environ., 36(15–16), 2481–2489, 2002.
 - Jimenez, J. L., Bahreini, R., Cocker, D. R., Zhuang, H., Varutbangkul, V., Flagan, R. C., Seinfeld, J. H., O'Dowd, C. D., and Hoffmann, T.: New particle formation from photooxidation of diiodomethane (CH₂I₂), J. Geophys. Res.-Atmos., 108, 4318, doi:4310.1029/2002JD002452,

7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

A. Saiz-Lopez et al.

Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
14	►I	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		

2003.

5

15

25

- Jones, A. E., Anderson, P. S., Wolff, E. W., Turner, J., Rankin, A. M., and Colwell, S. R.: A role for newly forming sea ice in springtime polar tropospheric ozone loss?: Observational evidence from Halley Station, Antarctica, J. Geophys. Res.-Atmos., 111, D08306, doi:10.1029/2005JD006566, 2006.
- Jones, A. E., Wolff, E. W., Ames, D., Bauguitte, S. J.-B., Clemitshaw, K. C., Fleming, Z., Mills, G. P., Saiz-Lopez, A., Salmon, R. A., Sturges, W. T. and Worton, D. R.: The multi-seasonal NO_y budget in coastal Antarctica and its link with surface snow and ice core nitrate: results from the CHABLIS campaign, Atmos. Chem. Phys. Discuss., 7, 4127–4163, 2007b.
- Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., Notholt, J., Rankin, A. M., Roscoe, H. K., Hollwedel, J., Wagner, T., and Jacobi, H.-W.: Frost flowers on sea ice as a source of sea-salt and their influence on tropospheric halogen chemistry, Geophys. Res. Lett., 31, L16114, doi:10.1029/2004GL020655, 2004.

King, J. C. and Anderson, P. S.: Heat and water-vapor fluxes and scalar roughness lengths over and Antarctic ice shelf, Boundary-Laver Meteorol., 69, 101–121, 1994.

Kreher, K., Johnston, P. V., Wood, S. W., Nardi, B., and Platt, U.: Ground-based measurements of tropospheric and stratospheric BrO at Arrival Heights, Antarctica, Geophys. Res. Lett., 24, 3021–3024, 1997.

Lehrer, E., Honninger, G., and Platt, U.: A one dimensional model study of the mechanism of

halogen liberation and vertical transport in the polar troposphere, Atmos. Chem. Phys., 4, 2427–2440, 2004,

http://www.atmos-chem-phys.net/4/2427/2004/.

- Martin, J. C. G., Spietz, P., and Burrows, J. P.: Spectroscopic studies of the I₂/O₃ photochemistry – Part 1: Determination of the absolute absorption cross sections of iodine oxides of atmospheric relevance, J. Photochem. Photobio. A., 176, 15–38, 2005.
- Martinez, M., Arnold, T., and Perner, D.: The role of bromine and chlorine chemistry for Arctic ozone depletion events in Ny-Alesund and comparison with model calculations, Ann. Geophys.-Atmos. Hydrospheres Space Sci., 17, 941–956, 1999.

McConnell, J. C., Henderson, G. S., Barrie, L., Bottenheim, J. W., Niki, H., Langford, C. H., and

- ³⁰ Templeton, E. M. J.: Photochemical bromine production implicated in Arctic boundary-layer ozone depletion, Nature, 355, 150–152, 1992.
 - McFiggans, G., Plane, J. M. C., Allan, B. J., Carpenter, L. J., Coe, H., and O'Dowd, C.: A modeling study of iodine chemistry in the marine boundary layer, J. Geophys. Res.-Atmos.,

9406

7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

A. Saiz-Lopez et al.

Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
•	•	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		

105, 14371–14385, 2000.

10

25

- McFiggans, G., Coe, H., Burgess, R., Allan, J., Cubison, M., Alfarra, M. R., Saunders, R., Saiz-Lopez, A., Plane, J. M. C., Wevill, D. J., Carpenter, L. J., Rickard, A. R., and Monks, P. S.: Direct evidence for coastal iodine particles from Laminaria macroalgae linkage to emissions of molecular iodine, Atmos. Chem. Phys., 4, 701–713, 2004,
- 5 emissions of molecular iodine, Atmos. Chem. Phys., 4, 701–713, 2004, http://www.atmos-chem-phys.net/4/701/2004/.

Molina, M. J. and Rowland F. S.: Stratospheric Sink for Chlorofluoromethanes – Chlorine Atomic-Catalysed Destruction of Ozone, Nature, 249(5460), 810–812, 1974.

Murayama, S., Nakazawa, T., Tanaka, M., Aoki, S., and Kawaguchi, S.: Variations of tropospheric ozone concentration over Syowa Station, Antarctica, Tellus, 44B, 262–272, 1992.

Lehrer, E., Honninger, G., and Platt, U.: A one dimensional model study of the mechanism of halogen liberation and vertical transport in the polar troposphere, Atmos. Chem. Phys., 4, 2427–2440, 2004,

http://www.atmos-chem-phys.net/4/2427/2004/.

O'Dowd, C. D., Geever, M., and Hill, M. K.: New particle formation: Nucleation rates and spatial scales in the clean marine coastal environment, Geophys. Res. Lett., 25(10), 1661–1664, 1998.

O'Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H., Hameri, K., Pirjola, L., Kulmala, M., Jennings, S. G., and Hoffmann, T.: Marine aerosol formation from biogenic

²⁰ iodine emissions, Nature, 417, 632–636, 2002.

- O' Driscoll, P., Lang, K., Minogue, N., and Sodeau, J.: Freezing halide ion solutions and the release of interhalogens to the atmosphere, J. Phys. Chem. A, 110(14), 4615–4618, 2006.
- Oltmans, S. J. and Komhyr W. D.: Surface Ozone Distributions and Variations from 1973– 1984 Measurements at the Noaa Geophysical Monitoring for Climatic-Change Base-Line Observatories, J. Geophys. Res.-Atmos., 91(D4), 5229–5236, 1986.
- Plane, J. M. C. and Saiz-Lopez, A.: UV-Visible differential optical absorption spectroscopy (DOAS), in: Analytical techniques for atmospheric measurement, edited by: Heard, D. E., Blackwell Publishing, Oxford, 2006.

Ramacher, B., Rudolph, J., and Koppmann, R.: Hydrocarbon measurements during tropospheric ozone depletion events: Evidence for halogen atom chemistry, J. Geophys. Res.-

- 30 spheric ozone depletion events: Evidence for halogen atom chemistry, J. Geophys. Res.-Atmos., 104(D3), 3633–3653, 1999.
 - Saiz-Lopez, A. and Plane, J. M. C.: Recent applications of differential optical absorption spectroscopy: Halogen chemistry in the lower troposphere, J. De Physique IV, 121, 223–238,

7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
	►I	
•	•	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		
FGU		

2004a.

5

25

Saiz-Lopez, A. and Plane, J. M. C.: Novel iodine chemistry in the marine boundary layer, Geophys. Res. Lett., 31, L04112, doi:04110.01029/02003GL019215, 2004b.

Saiz-Lopez, A., Plane, J. M. C., and Shillito, J. A.: Bromine oxide in the mid-latitude marine boundary layer, Geophys. Res. Lett., 31, L03111, doi:10.1029/2003GL018956, 2004.

- Saiz-Lopez, A., Plane, J. M. C., McFiggans, G., Williams, P. I., Ball, S. M., Bitter, M., Jones, R. L., Hongwei, C., and Hoffmann, T.: Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation, Atmos. Chem. Phys., 6, 883–895, 2006, http://www.atmos-chem-phys.net/6/883/2006/.
- Saiz-Lopez, A., Mahajan, A. S., Salmon, R. A., Bauguitte, S. J.-B., Jones, A. E., Roscoe, H. K., and Plane, J. M. C.: Boundary layer halogens in coastal Antarctica, Science, in press, 2007a.

Saiz-Lopez, A., Chance, K., Liu, X., Kurosu, T. P., and Sander, S. P.: First observations of iodine oxide from space, Geophys. Res. Lett., in press, 2007b.

- ¹⁵ Salawitch, R. J.: Atmospheric chemistry: Biogenic bromine, Nature, 439, 275–277, 2006. Sander, S. P., Friedl, R. R., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Kurylo, M. J., Huie, R. E., Orkin, V. L., Molina, M. J., Moortgart, G. K., and Finlayson-Pitts, B. J.: Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation number 14, Jet Propulsion Laboratory and National Aeronautics and Space Administration, 2006.
- Saunders, R. W. and Plane, J. M. C.: Formation pathways and composition of iodine ultra-fine particles, Environ. Chem., 2, 299–303, 2005.
 - Saunders, R. W. and Plane, J. M. C.: Fractal growth modelling of I₂O₅ nanoparticles, J. Aerosol Sci., 37, 1737–1749, 2006.
 - Schoenhardt, A., Richter, A., Wittrock, F., and Burrows, J. P.: First observations of atmospheric iodine oxide columns from satellite, Geophys. Res. Abstracts, 9, Poster 00592, 2007.
- Schroeder, W. H., Anlauf, K. G., Barrie, L. A., Lu, J. Y., Steffen, A., Schneeberger, D. R., and Berg, T.: Arctic springtime depletion of mercury, Nature, 394, 331–332, 1998.

Scott, K. J.: Bioavailable mercury in arctic snow determined by a light-emitting mer-lux bioreporter, 54, 92–95, 2001.

³⁰ Sellegri, K., Loon, Y. J., Jennings, s. G., O'Dowd, C. D., Pirjola, L., Cautenet, S., Chen, H. W., and Hoffmann, T.: Quantification of coastal new ultra-fine particles formation from in situ and chamber measurements during the BIOFLUX campaign, Environ. Chem., 2, 260–270, 2005.

7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

A. Saiz-Lopez et al.

Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
•	•	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		
Interactive	Discussion	

- Shimazaki, T.: Minor constituents in the middle atmosphere, D. Reidel Publishing Company, Dordrecht, 1985.
- Solberg, S., Schmidbauer, N., Semb, A., Stordal, F., and Hov, O.: Boundary-layer ozone depletion as seen in the Norwegian Arctic in Spring, J. Phys. Chem., 23(3), 301–332, 1996.
- ⁵ Spicer, C. W., Plastridge, R. A., Foster, K. L., Finlayson-Pitts, B. J., Bottenheim, J. W., Grannas, A. M., and Shepson, P. B.: Molecular halogens before and during ozone depletion events in the Arctic at polar sunrise: concentrations and sources, Atmos. Environ., 36(15-16), 2721– 2731, 2002.
 - Stolarsky, R. and Cicerone R. J.: Stratospheric Chlorine Possible Sink for Ozone, Can. J. Chem., 52(8), 1610–1615, 1974.
 - Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic Publishers, London, 1988.

Tarasick, D. W. and Bottenheim, J. W.: Surface ozone depletion episodes in the Arctic and Antarctic from historical ozonesonde records, Atmos. Chem. Phys., 2, 197–205, 2002,

15 http://www.atmos-chem-phys.net/2/197/2002/.

10

25

- Tuckermann, M., Ackermann, R., Gölz, C., Lorenzen-Schmidt, H., Senne, T., Stutz, J., Trost, B.,W., U., and Platt, U.: DOAS observation of halogen radical-catalysed Arctic boundary ozone destruction during the ARCTOC-campaigns 1995 and 1996 in Ny-Ålesund, Spitsbergen, Tellus, 49B, 533–555, 1997.
- von Glasow, R., Sander, R., Bott, A., and Crutzen, P.J.: Modelling halogen chemistry in the marine boundary layer 1. Cloud-free MBL, J. Geophys. Res., 107, 4341, doi:10.1029/2001JD000942, 2002.
 - von Glasow, R. and Crutzen, P. J.: Tropospheric halogen chemistry, in: The Atmosphere, edited by: Keeling, R. F., Vol. 4, Treatise on Geochemistry, edited by: Holland, H. D. and Turekian, K. K., pp. 21-64, Elsevier-Pergamon, Oxford, 2003.
 - von Glasow, R., von Kuhlmann, R., Lawrence, M. G., Platt, U., and Crutzen, P. J.: Impact of reactive bromine chemistry in the troposphere, Atmos. Chem. Phys., 4, 2481–2497, 2004, http://www.atmos-chem-phys.net/4/2481/2004/.

Wessel, S., Aoki, S., Winkler, P., Weller, R., Herber, A., Gernandt, H., and Schrems, O.: Tropospheric ozone depletion in polar regions: A comparison of observations in the Arctic and

³⁰ pospheric ozone depletion in polar regions: A comparison of observations in the Arctic Antarctic, Tellus, 50B, 34–50, 1998.

7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
	►I	
•	•	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		
FGU		

ACPD

7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

Fig. 3. Modelled diurnal variations of (a), the IO mixing ratio profile, and (b), the OIO mixing ratio profile during the austral summer at Halley, using the standard model (see text for details).

ACPD

7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

Fig. 4. (a) Modelled diurnal IO mixing ratio profile during the austral spring at Halley, and **(b)** vertical profiles at noon of the main gas-phase iodine species, using the revised model (photolysis of I_xO_y).

ACPD

7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

Printer-friendly Version

Interactive Discussion

Fig. 6. (a) Two-day simulation of the boundary layer distribution of BrO during Antarctic springtime; **(b)**, vertical profiles of the major gas-phase bromine species at noon on day 2.

Fig. 7. Diurnal variation of the boundary layer O_3 profile in the presence of springtime BrO and IO levels for two scenarios: (a) no entrainment of O_3 and (b) entrainment of O_3 from the free troposphere.

ACPD

7, 9385–9417, 2007

Halogen chemistry in the Antarctic boundary layer

A. Saiz-Lopez et al.

Fig. 8. Vertical profiles of **(a)** modelled OH and **(b)** modelled HO_2 for three scenarios: without halogen chemistry, with halogens (standard model), and including photolysis of I_xO_y species (revised model).

Height / m

Height / m