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Abstract

Spectral measurements of BrO using zenith-sky and off-axis viewing geometries are
combined in a linear multiple regression retrieval algorithm to provide stratospheric and
tropospheric BrO vertical columns. One year of measurement data are investigated
over Reunion-Island (20.9◦ S, 55.5◦ E), from July 2004 to July 2005. No seasonal vari-5

ations of the retrieved BrO columns could be observed, in line with previous studies.
A comparison between the stratospheric columns retrieved at 45◦, 80◦, 85◦, 87.5◦ and
92.5◦ solar zenith angles and photochemical simulations initialized by chemical fields
from the 3-D-CTM SLIMCAT and further constrained by observed NO2 profiles shows
a good agreement only by considering a contribution from the very short-lived organic10

bromine substances to the stratospheric inorganic bromine budget, of 6 to 8 pptv. Fur-
thermore, stratospheric BrO profiles retrieved from late twilight zenith-sky observations
are consistent with a total inorganic bromine (Bry) loading of approximately 23 pptv.
This represents 6 to 7 pptv more than can be supplied by long-lived organic bromine
sources, and therefore supports an added contribution from very short-lived organic15

bromine substances as recently suggested in several other studies. Moreover strong
evidences are presented for the existence of a substantial amount of BrO in the trop-
ical free-troposphere, around 6 km altitude, possibly supplied by the decomposition of
short-lived biogenic bromine organic compounds. Tropospheric BrO vertical columns
of 1.1±0.45×1013 molec/cm2 are derived for the entire observation period. Compar-20

isons between ground-based BrO vertical columns and total BrO columns derived from
SCIAMACHY (onboard the ENVISAT satellite) nadir observations in a latitudinal band
centered around 21◦ S present a good level of consistency, which further strengthens
the conclusions of our study.
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1 Introduction

Inorganic bromine (Bry=Br, BrO, BrONO2, HBr, HOBr, BrCl) is the second most im-
portant halogen that affects stratospheric ozone. Although much less abundant than
chlorine, stratospheric bromine presently contributes to the global ozone loss by about
25%, owing to its much larger ozone depletion potential relative to chlorine (e.g. WMO,5

2003, and references therein). During daytime the most abundant inorganic bromine
species is BrO, which represents 30 to 70% of total Bry. BrO is also the only com-
pound within the Bry family to be measured routinely (e.g. Wagner et al., 1998; Richter
et al., 1998; Van Roozendael et al., 1999; Hausmann et al., 1994; Schofield et al.,
2004a; Pundt et al., 2002; Dorf et al., 2006a, Sinnhuber et al., 2002, 2005; Sioris et al.,10

2006). The sources of inorganic bromine in the stratosphere originate from naturally
and anthropogenically emitted bromine-containing organic gases. Long-lived organic
species are transported into the stratosphere with a time delay of approximately 3 to
4 years, before being converted into inorganic forms by photolysis or reaction with OH
radicals. Until recently, the Bry mixing ratio was generally assumed to be negligibly15

small below and at the tropopause while rapidly increasing with altitude up to about
25 km where full conversion into inorganic forms is achieved. Based on a budget of the
long-lived natural (CH3Br) and anthropogenic (CH3Br, CBrClF2, CBrF3, CBrF2CBrF2,
CBr2F2) organic bromine source gases observed over the last decade (Wamsley et
al., 1998), the stratospheric Bry loading is currently estimated to be about 16–17 pptv.20

However several recent studies (Pundt et al., 2002; Salawitch et al., 2005; Sioris et
al., 2006; Sinnhuber et al., 2002, 2005; Schofield et al., 2004a; Dorf et al., 2006a,
b) have suggested that an additional contribution of about 5.6±2 pptv must be con-
sidered, due to bromine release from short-lived biogenic organic compounds (such
as CHBr3, CH2Br2, CH2BrCl, CHBr2Cl, CHBrCl2, CH2BrCH2Br) or even the direct in-25

trusion of inorganic bromine from tropospheric origin into the lower stratosphere. In-
organic bromine compounds may be produced and sustained in the free troposphere
due to the decomposition of short-lived organic bromine compounds under the ac-
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tion of heterogeneous and/or gas-phase photochemical reactions. This is supported
by recent observations from space (Wagner and Platt, 1998; Pundt et al., 2000; Van
Roozendael et al., 2002; Richter et al., 2002), the ground (Schofield et al., 2004a) and
balloons (Fitzenberger et al., 2000), all suggesting although with large uncertainties the
widespread presence of BrO in the troposphere, with mixing ratios in the range from 0.55

to 2 pptv if uniformly mixed. In Polar Regions, additional amounts of inorganic bromine
are seasonally released in large quantities in the boundary layer during spring due to
the so-called Polar-bromine explosion phenomenon (Hausmann and Platt, 1994; Kre-
her et al., 1997; Hönninger and Platt, 2002; Frieß et al., 2004). Although in smaller
quantities, boundary layer BrO emissions have also been identified over salt lakes10

(Hebestreit et al., 1999), as well as in the marine boundary layer (Leser et al., 2003)
and in volcanic plumes (Bobrowski et al., 2003). Elaborating on these observations,
recent modeling results (von Glasow et al., 2004; Lary, 2005; Yang et al., 2005) have
highlighted the possible role of tropospheric halogens (in particular bromine) as an ad-
ditional sink for ozone, a process so far largely ignored. These studies suggest that15

bromine might be responsible for a reduction in the zonal mean O3 mixing ratio of up
to 18% and locally even up to 40%.

Here we present an advanced retrieval method enabling the simultaneous determi-
nation of both tropospheric and stratospheric BrO vertical columns, based on multi-axis
DOAS (MAX-DOAS) UV-visible observations. By combining in a retrieval scheme mea-20

surements of the scattered sky light acquired from noon to twilight in different viewing
elevations (from the horizon to the zenith) and making use of the change in sensitivities
associated to the different observations geometries, the vertical distribution of the BrO
concentration can be inferred. The analysis explicitly takes into account the effect of
the BrO photochemical variations, in particular for the simulation of the radiative trans-25

fer at twilight when photochemical gradients along the slant stratospheric photon path
are important. The retrieval algorithm has been applied to observations performed
from July 2004 until July 2005 at Reunion Island (22◦ S, 56◦ E, Indian Ocean), a re-
gion where currently available BrO observations are very sparse. It has been recently
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argued that biogenic short-lived organic compounds (e.g. CHBr3) that are mainly re-
leased by oceans could be rapidly transported in the UT/LS region under the action of
the strong tropical convection. This highlights the importance of tropics in determining
the stratospheric bromine budget as pointed out by several authors (Salawitch, 2006;
Carpenter et al., 2000; Yang et al., 2005; Sinnhuber et al., 2005).5

The paper is organized in four parts. After a short description of the instrumental
setup in Sect. 2, the methodology applied to retrieve stratospheric and tropospheric
BrO vertical columns is detailed in Sect. 3. This section also includes a quantitative
discussion of the information content of the retrieval according to Rodgers (2000) as
well as a comprehensive error budget. This is followed in Sect. 4 by a presentation10

of the results and their discussion in the light of our current understanding of bromine
photochemistry in the atmosphere. Conclusions are given in Sect. 5.

2 Instrument

Measurements have been performed using a multi-axis DOAS (MAX-DOAS) spec-
trometer designed and assembled at IASB-BIRA. This instrument was continuously15

operated on the roof of the LPA (Laboratory of Atmospheric Physics) building of the
University of Saint-Denis, La Réunion (20.9◦ S, 55.5◦ E) from July 2004 until July 2005,
except from 25 March to 28 April when the container had to be dismantled due to a
strong tropical storm event. The instrument consists of a grating spectrometer from
Acton Research Corporation (ARC SpectraPro 275) installed inside a watertight ther-20

moregulated case and connected through a fiber optic bundle to an entrance telescope
having a field of view of approximately 1◦ full angle. The telescope is itself connected
to a flipping mirror allowing viewing elevation angles to be scanned from 3◦ above the
horizon up to the vertical at zenith. The optical head faces the sea towards the North
direction. The control of the acquisition cycle including the positioning of the point-25

ing mirror, the optimization of the exposure time to ensure adequate photon filling of
the CCD detector and the spectral acquisition is fully automated, one complete scan
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of all elevation angles (3◦, 6◦, 10◦, 18◦, zenith) requiring approximately 15 min. The
spectrometer has a focal length of 275 mm and is mounted with a ruled grating of 600
grooves/mm covering a spectral window from 300 nm to 450 nm. It is equipped with
a 1340×400 back-illuminated CCD detector from Roper Scientific (NTE/CCD-400EB),
cooled to –40◦C using a triple stage Pelletier system. Recorded scattered light spec-5

tra have a resolution of 0.75 nm FWHM and a sampling ratio of 7 pixels/FWHM. At
twilight, the instrument switches from the full multi-axis viewing mode to a dedicated
stratospheric mode where only zenith-sky measurements are taken. In this mode, the
time sampling and the signal to noise ratio of the twilight zenith-sky observations are
optimized in view of the inversion of stratospheric columns and profiles (see Hendrick10

et al., 2004).

3 Data analysis

The data analysis involves two main steps. First, the total slant column amount of BrO
is determined for each viewing direction according to the DOAS technique. Second,
model simulations of the BrO slant column obtained from coupled radiative transfer15

and photochemical model calculations are iteratively adjusted to the observations until
a consistent stratospheric and tropospheric BrO vertical column solution is obtained
that matches all viewing directions.

3.1 DOAS slant column retrieval

The measured spectra are analysed using the Differential Optical Absorption Spec-20

troscopy technique (Platt, 1994). This method relies on the assumption that one effec-
tive photon path can be defined, which represents in average over the fitting interval the
complex path of scattered photons in the atmosphere. For optically thin conditions in
the UV-visible region this assumption is largely verified, which implies that the absorp-
tion by atmospheric trace gases along the effective slant path of measured photons can25
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be treated in a simple way using the Beer-Lambert law. In practice, atmospheric ab-
sorbers (in particular BrO) are separated using the characteristic differential structures
of their absorption cross-sections determined from laboratory measurements. Since in
most cases several absorbers display absorption structures in the same wavelength in-
terval, the inversion process requires that all relevant interfering absorption features be5

taken into account. In the case of BrO, the spectral interval that optimizes the sensitivity
to the target differential absorption structures while minimizing interferences with other
absorbers is in the range from 345 to 359 nm. Further details on the optimization of this
fitting interval are given below. The spectral evaluation consists in a least-squares fit
procedure where cross-sections of BrO (228 K) (Wilmouth et al., 1999), ozone (223 K10

and 243 K) (Bogumil et al., 2003), NO2 (220 K) (Vandaele et al., 1997), HCHO (293 K)
(Meller and Moortgat, 2000), and the collision pair of oxygen molecules O4 (Greenblatt
et al., 1990) are adjusted to the log-ratio of a measured and a Fraunhofer reference
spectrum. The residual broadband features due to Rayleigh and Mie scattering are
removed using a third order closure polynomial. To match the spectral resolution of the15

instrument, the laboratory absorption cross-sections are convolved using the measured
slit function at 346.6 nm. In the case of the strongest absorbers ozone and NO2, a cor-
rection for the so-called solar I0 effect (Aliwell et al., 2002; Johnston, P. V., unpublished
results) is further applied. The wavelength calibration of the measured spectra is accu-
rately determined by reference to the high-resolution solar atlas of Kurucz et al. (1984),20

according to the procedure described in Van Roozendael et al. (1999). To correct for
the Ring effect (Grainger and Ring, 1962) a pseudo absorption cross-section generated
after Vountas et al. (1998) using the SCIATRAN radiative transfer model (Rozanov et
al., 2001) is included in the fit. Similar settings are used for the retrieval of O4 slant
columns except for the fitting interval, which is slightly shifted towards longer wave-25

lengths (338.5–364.5 nm) in order to capture the strong O4 absorption band centered
at 360 nm.

Due to the faintness of the BrO differential absorption features (typically smaller than
0.1% of absorbance) and the presence of much stronger interfering absorption bands
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from ozone in the same wavelength region, the retrieval of BrO slant columns is gen-
erally difficult and requires careful treatment. Main sources of uncertainties including
those related to instrumental parameters (wavelength calibration, spectral stray light,
slit function, etc), the temperature dependence of the ozone absorption cross-sections
or the impact of the solar I0 effect have been addressed in the literature leading to a5

set of recommended BrO retrieval settings (see e.g. Arpag et al., 1994; Richter et al.,
1999; Aliwell et al., 2002). In the present work, the problem of the optimization of the
wavelength interval used for BrO retrieval has been revisited. As already mentioned the
fitting interval is usually determined empirically in an attempt to maximize the sensitiv-
ity to the target gas and at the same time minimize interferences with other absorbers.10

In the case of BrO, the main difficulty comes from the unavoidable presence of strong
interfering ozone absorption bands. At twilight, the ozone absorption becomes so large
that the optically thin approximation used in the DOAS technique may not be fully satis-
fied, leading to systematic misfit effects that may introduce biases in the retrieved BrO
slant columns.15

In order to assess the importance of such effects, simulations of the zenith-sky ra-
diance have been performed using the SCIATRAN model (Rozanov et al., 2001) and
used to test different choices of fitting intervals. Radiative transfer calculations were
performed in the 340–360 nm interval for a range of solar zenith angle values (50–
92 degrees) and considering absorption by all relevant trace gases. Rotational Raman20

scattering by molecular oxygen and nitrogen (i.e. the main source of the Ring effect)
was also explicitly included (Vountas et al., 1998). In order to simulate the impact of the
solar I0 effect, calculations were realized at the resolution of 0.1 nm, further convolved
to the instrumental bandpass (0.7 nm FWHM) and finally resampled on the wavelength
grid of the field instrument. Based on this set of synthetic spectra, test retrievals were25

conducted in various wavelength intervals and the resulting BrO slant columns were
compared to the reference slant columns calculated from the radiative transfer model
at the wavelength of 352 nm (reference wavelength used for BrO air mass factor calcu-
lations, see Sect. 3.2). Results from these sensitivity tests are displayed in Fig. 1a for

8268

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/8261/2007/acpd-7-8261-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/8261/2007/acpd-7-8261-2007-discussion.html
http://www.egu.eu


ACPD
7, 8261–8308, 2007

Stratospheric and
tropospheric BrO at

Reunion Island

N. Theys et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

three typical intervals recommended in the literature. As can be seen, differences as
small as a few tenths of a nm in the selection of the shorter wavelength of the interval
(where ozone absorption is strongest) can have a very significant impact on the BrO
slant column. Our simulations strongly suggest that the 345–359 nm interval efficiently
minimizes the bias on the retrieved BrO columns in the full range of solar zenith angles.5

This interval has therefore been selected as a baseline for the present study. As an
additional verification, the test fitting windows have also been applied to actual BrO
measurements (see Fig. 1b). Although the shape of the observed BrO slant column
variation cannot be precisely captured by the simulations due to the non-inclusion of
BrO photochemical effects in the SCIATRAN version used here (version 1.2), one can10

see that both synthetic and actual retrievals display similar dependences on the fitting
interval, which reinforces our confidence in the reliability of the simulations.

3.2 Inversion of stratospheric and tropospheric columns

As already mentioned, the quantity retrieved by the DOAS technique is the slant column
density (SCD), which corresponds to the trace gas concentration integrated along the15

effective light path of scattered photons. Since the light that reaches the instrument
travels through the entire atmosphere from top to bottom, the measured BrO SCD
will contain absorption originating from both stratospheric and tropospheric altitudes
(provided of course that sizeable amounts of BrO do exist in both regions). In order to
separate the stratospheric and tropospheric contributions, it is necessary to combine20

observations displaying different sensitivities to the various atmospheric layers. In this
work, we first exploit the geometrical path enhancement characteristic of scattered light
measurements at twilight to get information on the stratospheric part of the BrO profile
in a way similar to that used in vertical profiling studies (e.g. Preston et al., 1997;
Schofield et al., 2004a, b; Hendrick et al., 2004). Second MAXDOAS observations25

performed at 3◦, 6◦, 10◦ and 18◦ of elevation above the horizon are combined with
zenith-sky measurements to infer additional information on the tropospheric part of the
BrO profile. The geometrical light path enhancement at low viewing angle elevation is
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such that the sensitivity to trace gas absorptions occurring in the atmospheric boundary
layer can be increased by an order of magnitude (see e.g. Wagner et al., 2004; Wittrock
et al., 2004).

The inversion method applied here is based on an analysis of the diurnal evolution
of the measured BrO differential slant column (DSCD), which is assumed to be well5

represented by the following equation:

DSCD(θ,ϕ(θ), φ)+RSCD=VCDstrato(θ)·AMFstrato(θ,ϕ(θ))+VCDtropo(θ)·AMFtropo(θ,ϕ(θ), φ) (1)

Where VCD is the vertical column, AMF the air mass factor, θ the solar zenith angle
(SZA), ϕ the relative azimuth angle between the sun and the viewing direction and
φ the viewing elevation angle. RSCD represents the residual slant column density in10

the reference spectrum, derived as explained in Sect. 4.2. As a result of the photo-
chemically induced diurnal variation of BrO, the stratospheric and tropospheric VCDs
depend on the SZA, while the AMFs depend on both viewing and solar zenith angles.
Photochemical effects, mostly important at twilight, are explicitly treated in the inversion
process, as further explained below.15

The air mass factors AMFtrop and AMFstrat represent the enhancement of the ab-
sorption along the light path with respect to the vertical path, in the troposphere and
the stratosphere respectively. In the present analysis, a tropopause height of 16 km
characteristic of tropical regions has been considered, in agreement with temperature
profiles from the European Centre for Medium-Range Weather Forecasts (ECMWF).20

The AMFs can be determined through appropriate calculation of the transfer of the so-
lar radiation in a multiple scattering atmosphere. In addition photochemical effects that
introduce spatial and temporal gradients in the BrO concentration field must be taken
into account, especially for twilight conditions. In this work, forward model calcula-
tions of the BrO slant columns and corresponding AMFs have been obtained using the25

pseudo-spherical radiative transfer model (RTM) UVSpec/DISORT (Mayer and Kylling,
2005) coupled to the stacked photochemical box model PSCBOX (Errera and Fonteyn,
2001; Hendrick et al., 2004). The PSCBOX model includes 48 variable species, 141
gas-phase photochemical reactions and is initialized at 20 independent altitude levels
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with 00:00 UT pressure, temperature and chemical species profiles from the 3-D chem-
ical transport model (CTM) SLIMCAT (Chipperfield, 1999 and 2006; see also Sect. 4.3).
A stratospheric inorganic bromine total loading of 21.2 pptv, accounting for long-lived
sources (CH3Br and halons, WMO 2003) and an additional contribution of 6 pptv from
short-lived bromine compounds, has been assumed within the SLIMCAT model. Up-5

dated kinetic and photochemical data are taken from the JPL 2006 compilation (Sander
et al., 2006). As investigated in Fietkau et al. (2007), the reaction BrONO2+O(3P) can
play an important role in the tropical stratosphere and has thus, been included in the
model simulations. The results of the photochemical model are given at chemical time
steps of 6 min.10

Model BrO profiles are supplied to the RTM code, and used to compute the AMFs.
The UVSpec/DISORT model has the capability to ingest two-dimensional arrays of
BrO concentration fields so that the impact of photochemical changes along the inci-
dent light path can be accounted for in the calculations (see e.g. Fish et al., 1995).
This particular feature of the model has been recently validated as part of a dedicated15

RTM intercomparison (Hendrick et al., 2006). As already mentioned, BrO AMFs have
been calculated at the wavelength of 352 nm (center wavelength of the applied DOAS
fitting interval), for a fixed albedo of 6% which has been found typical for sea-surface
conditions (Koelemeijer et al., 2003).

Following Schofield et al. (2004a, b) and in order to limit the number of retrieval pa-20

rameters, we have assumed that six profiles given respectively at 45◦, 80◦, 85◦, 87.5◦

and 92.5◦ of SZA describe adequately the diurnal variation of BrO in the stratosphere.
The stratospheric VCDs can be determined at other SZAs using simple linear inter-
polations. The vertical distribution of BrO being largely unknown in the troposphere,
our baseline for the retrieval has been to assume a free-tropospheric profile consistent25

with the observed profile of Fitzenberger et al. (2000). This assumption will be further
tested in Sect. 4.4, where attempts to derive the vertical distribution of BrO in the tropo-
sphere from multi-axis DOAS observations are presented. Since no measurements of
the diurnal variation of BrO in the troposphere are currently available, we have adopted
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the approach introduced in Schofield et al. (2004a, b). This consists in assuming a
tropospheric BrO diurnal variation similar to the one modeled in the lowest levels of the
stratosphere. It will be shown later that inversion results are weakly dependent on this
assumption.

The inversion for the stratospheric and tropospheric BrO VCDs is obtained by fitting5

Eq. (1) to a set of measurements recorded from noon to twilight at various elevation
viewing angles and solar zenith angles. Morning and afternoon measurements are
treated separately. For the stratosphere-troposphere separation, the technique takes
benefit of the different evolution of the stratospheric and tropospheric AMFs as a func-
tion of SZA. This is illustrated in Fig. 2 for typical conditions in the zenith-sky geometry.10

In the inversion process, the stratospheric BrO VCDs are simultaneously (and inde-
pendently) retrieved at five values of the SZA (45◦, 80◦, 85◦, 87.5◦ and 92.5◦) meaning
that the diurnal variation of the stratospheric BrO column is actually retrieved from the
observations and not forced a priori from photochemical model calculations. Note that
photochemical calculations are in fact only used to ensure proper calculation of the late15

twilight AMFs when two-dimensional gradients of the BrO concentration are important.
Since the introduction of an extra retrieval parameter for the slant column in the

reference spectrum (RSCD in Eq. 1) can lead to unwanted uncertainties and retrieval
instabilities, RSCD has been determined prior to the inversion as described in more
details in Sect. 4.2.20

3.3 Averaging kernels

In this section the capacity of the inversion method to separate adequately the strato-
spheric and tropospheric signals from the observations is addressed, based on the
concept of the averaging kernels as developed in Rodgers (2000). The averaging ker-
nel represents the sensitivity of the retrieval to the true state:25

A=
∂x̂
∂x

(2)
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wherex̂is the retrieved state vector (i.e. here the tropospheric and stratospheric VCDs)
and x represents the true BrO vertical profiles. Equation (2) can also be written:

A=
∂x̂
∂y

∂y
∂x

=G
∂y
∂x

(3)

where y is the measurement vector, and G is the contribution matrix expressing the
sensitivity of the retrieval to the measurement. The derivative of the measurement5

vector (the slant column densities) with respect to the BrO vertical profiles have been
determined by a perturbation method using the radiative transfer model.

Figure 3 shows the tropospheric and stratospheric VCDs averaging kernels (AK) cal-
culated according to Eq. (3) for three representative values of the SZA (80◦, 85◦ and
87.5◦). The AK values represent the way the retrieval smooths the respective partial10

column profiles (for a 1 km layer around the altitude given in the y-axis). It can be de-
duced from Fig. 3 that the inverted tropospheric columns are largely independent from
the simultaneously inverted stratospheric columns. The high value of the tropospheric
AK nearby the surface is related to the enhanced sensitivity of the off-axis observations
in this altitude region. On the contrary, the stratospheric averaging kernels peak in the15

stratosphere around the maximum of BrO concentration profiles.

3.4 Error analysis

The contributions to the total retrieval uncertainty are divided into three categories: (1)
random errors caused by measurement noise and BrO variability (2) errors affecting the
slant column density in a systematic way, and (3) errors due to remaining uncertainties20

in the modeling and representation of the atmosphere, affecting the air mass factors.
We investigate the errors affecting the SCDs and the AMFs. A careful estimate of the

uncertainties is especially crucial at high SZA. Indeed, a large part of the information
used to separate the stratospheric and tropospheric BrO columns comes from mea-
surements at high SZA. The uncertainties affecting the SCDs (random and systematic25

errors) as well as the AMFs are largest at low sun.
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Measurement and modeling uncertainties have been estimated by means of sen-
sitivity studies. As an example, the results for zenith-sky observations are displayed
in Table 1 for typical low, medium and high solar zenith angles (respectively 70◦, 85◦

and 90◦ SZA). By analysis of the scatter from one year of DSCDs measurements,
average values of 1.2, 1.9 and 3.4×1013 molec/cm2 have been attributed to random5

error sources, respectively for the three representative SZAs. These values are also
consistent with the one-sigma uncertainties derived from the DOAS fitting procedure.
DSCDs systematic errors are mainly introduced by uncertainties on the absorption
cross-sections of the molecules included in the analysis, leading to mutually correlated
DOAS results.10

In order to estimate the errors due to absorption cross-sections and their cross-
correlations, one approach is to consider the cross-sections as forward model param-
eters of the DOAS retrieval. Following the formalism introduced by Rodgers (2000),
the forward model parameter error of the retrieval can be derived from the quoted un-
certainties on the cross-sections used in the DOAS analysis. Based on literature data15

and sensitivity tests using various data sources, the following uncertainty figures have
been adopted for BrO: 8%, NO2: 3%, O3:3%, O4: 5%, HCHO: 5% and Ring effect
interferences: 5%. In addition to cross-sections, other sources of systematic errors
can be identified, like the errors linked to calibration or other additional instrumental
uncertainties. As already pointed out in Sect. 3.1, the use of the DOAS approximation20

by which slant columns are assumed to be constant within the spectral fitting window,
can also be a significant source of systematic uncertainty. Using the optimal fitting
window derived in Sect. 3.1, sensitivity studies suggest that these sources of uncer-
tainties do not contribute more than 5% to the total SCD error. Considering absolute
slant columns (i.e. corrected for the BrO residual amount in the reference spectrum), a25

constant additional error of ±0.5×1013 molec/cm2 has been introduced, following esti-
mates described in Sect. 4.2. From Table 1, it must be emphasized that SCDs errors
are largely dominated at twilight by systematic biases mainly introduced by uncertain-
ties on the absorption cross-sections.
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Once the total uncertainties on the measurements has been estimated for each ele-
vation angle and for all solar zenith angles, the resulting uncertainties on the retrieved
stratospheric and tropospheric BrO vertical columns are given by simple error propaga-
tion (see Table 2). The next step is to evaluate the errors on the AMFs. For small SZA
(<85◦), the stratospheric AMF can be satisfactorily approached by a geometrical cal-5

culation. The error on the stratospheric AMF is therefore negligible. In contrast at high
SZA, the stratospheric AMF is highly dependent on the BrO concentration at the bulk
altitude for Rayleigh scattering, the latter increasing with the SZA (see e.g. Sinnhuber
et al., 2002). Hence accurate modeling of the photochemistry is needed to evaluate
correctly the stratospheric AMFs. To a large extent, the stratospheric BrO concentra-10

tion is controlled by NO2 through the termolecular reaction BrO+NO2+M. In order to
minimize errors due to the interplay between BrO and NO2, the photochemical simula-
tions have been constrained using NO2 profiles derived from simultaneous zenith-sky
observations in the visible region (Hendrick et al., 2004). Nevertheless remaining un-
certainties in other aspects of the photochemical model calculations may have a sub-15

stantial impact on the results. Hence sensitivity studies have been carried out in order
to estimate the impact of the uncertainties on main reaction rate constants, following
the work presented in Sinnhuber et al. (2002). The stratospheric AMF errors have been
estimated by the standard deviation of the ensemble of AMFs generated by varying in-
dependently the reaction rate constants. Results from this analysis are summarized in20

Table 1.
The estimation of the errors on the tropospheric AMFs is difficult, mainly due to the

following two reasons: (1) the treatment of the radiative transfer down to the surface
strongly depends on the aerosol loading as well as the (unknown) BrO vertical distri-
bution, and (2) the diurnal variation of the tropospheric BrO content might have to be25

taken into account. Since substantial uncertainties accompany these parameters, sev-
eral hypotheses have been made here. Some of these will be justified later on in the
discussion (see Sect. 4). As a baseline for our retrievals, we have assumed that the
aerosol content was small (justified in Sect. 4.1) and that the bulk of the tropospheric
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BrO concentration was mainly located in the free-troposphere (justified in Sect. 4.4).
A rough estimate of the tropospheric AMF error has been obtained by varying input

BrO profiles in the RTM calculations. Gaussian profiles of various heights (5–8 km)
and widths (1–4 km) have been used to this purpose. Corresponding tropospheric BrO
AMFs show a root mean square deviation of less than 15% as indicated in Table 1. For5

the diurnal variation, we assume that the known photochemistry of BrO in the lower
stratosphere constitutes a reasonable proxi for the free troposphere (Schofield et al.,
2004a, b). In order to test the impact of this approximation, additional test retrievals
have been performed without consideration of any diurnal variation. These resulted in
minor differences on the inverted BrO columns (approximately 1×1012 molec/cm2).10

The main sources of uncertainties on the inverted BrO VCDs (obtained by propaga-
tion of the error discussed above) are summarized in Table 2 for morning conditions.
Although not reported here, similar results have been derived for afternoon observa-
tions. As can be seen, stratospheric VCDs have largest uncertainties (>30%) at low
sun and at very high sun, while errors are kept in the range of 20% for intermediate15

values of the SZA. The absolute error on the tropospheric BrO VCD, mainly dominated
by uncertainties on the tropospheric AMFs and on the measured SCDs, is estimated
to be about 45%.

4 Results and discussion

To simplify the discussion, we first restrict the analysis to clear-sky measurement days20

when the transfer of the scattered radiation can be simulated with best accuracy. We
focus on the determination of three key parameters that control the accuracy of the
target BrO VCD products; namely the aerosol extinction, the residual BrO slant col-
umn density in the reference spectrum and the shape of the tropospheric BrO profile.
Results are then discussed with regard to our current understanding of the bromine25

chemistry in both the stratosphere and the troposphere. In a second step, a simpli-
fied version of the inversion algorithm is applied to the whole series of measurements
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from July 2004 until July 2005, and the consistency of the retrieved BrO columns is
investigated in comparison with coincident satellite observations from SCIAMACHY.

4.1 Determination of the aerosol settings

The light path of photons scattered in the lower atmosphere is strongly dependent on
the aerosol loading, especially nearby the surface. A good estimate of the aerosol ex-5

tinction profile is thus needed for the calculation of the tropospheric BrO AMFs. This
is especially true for small elevation angles, which in principle have the longest light
paths. As suggested by Wagner et al. (2004) and Frieß et al. (2006), multi-axis obser-
vations of the oxygen dimmer O4 can be used to deduce the aerosol extinction profile.
The analysis of aerosol properties has to be limited to measurements without signifi-10

cant cloud influence, since O4 absorptions are greatly affected by clouds. Out of the
complete 2004 data set (i.e. approximately six months of measurements), seven days
could be selected as fully clear sky days (day numbers 242, 246, 253, 271, 272, 326,
346), based on an analysis of the diurnal variation of the measured O4absorptions
at all elevation angles. For all these days, O4 absorptions were found to follow the15

same smooth diurnal evolution, indicating similar aerosols scenarios. In Fig. 4, the O4
DSCDs averaged on the selected days (and on a 2.5◦ SZA bin grid) are represented
as a function of SZA for morning and afternoon observations. In order to reproduce the
O4 observations, a set of O4 AMFs were computed for each elevation angle and for dif-
ferent aerosol extinction profiles. Radiative transfer calculations were initialized using20

vertical profiles of O4, pressure, temperature and O3 characteristic of tropical regions,
according to the AFGL atmospheric constituent profiles data base (Anderson et al.,
1986). The aerosol extinction profile was then varied until good agreement was found
for the O4 verticals columns derived from all viewing elevations. As demonstrated in
Fig. 5, the optimal aerosol extinction profile corresponds to an aerosol visibility (Mid-25

dleton, 1952) of 80 km with an enhanced maritime aerosol load (extinction ∼0.2 km−1)
introduced into a 100 m thick layer above the surface. O4 VCDs retrieved assuming an
aerosol visibility of 40 km are also shown for comparison purpose.
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4.2 Determination of the residual slant column density

In this work, the zenith-sky and off-axis measurements have been processed using a
fixed zenith reference spectrum selected at minimum solar zenith angle (28.7◦ SZA) on
2 September 2004. As mentioned earlier, the introduction of an extra fitting parameter
for the residual slant column (RSCD in Eq. 1) can be a source of uncertainty for the5

retrieved stratospheric and tropospheric BrO VCDs. In order to minimize this error and
stabilize the retrieval process, the residual slant column density is therefore determined
prior to the inversion process so that absolute slant columns (rather than differential
SCDs) can be fitted.

The residual slant column density has been estimated from an average of clear days10

measurements (selected in Sect. 4.1), assuming that the BrO field is stable enough to
allow meaningful interpretation of the resulting averaged SCDs. This assumption will
be further verified in Sect. 4.5. Based on Eq. (1), the RSCD is treated as an additional
parameter in the BrO VCDs retrieval. In order to minimize the impact of uncertainties
related to the diurnal variation, systematic measurement errors or AMFs modeling er-15

rors (all becoming important at twilight), only the measurements corresponding to solar
zenith angles lower than 85◦ are considered. This also reduces the number of fitted
parameters and therefore stabilizes the inversion for the RSCD. Using this approach,
residual slant column densities of 6.42×1013 and 6.37×1013 molec/cm2 are retrieved,
respectively from morning and afternoon measurements. The (small) differences in the20

retrieved RSCDs can be attributed to a large extend to the propagation of the measure-
ment errors into the BrO VCDs retrieval. An error analysis according to Sect. 3.3, leads
to a best estimate of 6.4±0.5×1013 molec/cm2. Furthermore, this value is found to be
consistent with the re-calculated RSCD based on the retrieved VCDs evaluated at the
time of the reference spectrum.25
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4.3 Clear-sky results

The inversion technique described in Sect. 3.2 has been applied to the restricted data
set of clear sky measurements, also used for the aerosol and residual BrO column
determination. The resulting retrieval fit results are displayed in Fig. 6. For the sake
of clarity, only afternoon results are represented for a limited number of viewing direc-5

tions. As can be seen, the modeled SCDs are consistent with the observations, for
all SZA and viewing angles. In Fig. 7, the differences between the measured and the
modeled slant column densities are shown as a function of the SZA, for the various
elevation angles. A comparison with the results of the algorithm assuming that BrO
would only be present in the stratosphere clearly demonstrates the need to include10

both a stratospheric and a tropospheric BrO contribution in the inversion process. The
level of agreement between the elevation directions observations strongly depends on
the hypothesis made for the tropospheric BrO profile as part of the tropospheric AMFs
calculations. This will be addressed in the next section, where the relevance of us-
ing a free-tropospheric profile as derived in Fitzenberger et al. (2000) is tested and15

discussed.
The retrieved BrO vertical columns and their respective retrieval uncertainties (based

on the error analysis developed in Sect. 3.4) are displayed in Fig. 8, for both morning
and afternoon conditions.

4.3.1 Tropospheric BrO20

Tropospheric BrO vertical columns (at 80◦ of SZA) of about 1.1 and
1.2×1013 molec/cm2 are retrieved independently from morning and afternoon
measurements separately, with a mean uncertainty of about 0.5×1013 molec/cm2.
This represents approximately one third of the total BrO column retrieved at the same
SZA and therefore supports the existence of significant sources of inorganic bromine25

in the tropical troposphere.
Such results are roughly consistent with mid-latitude tropospheric BrO background
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values of 1–3×1013 molec/cm2 obtained from GOME, ground-based and balloon mea-
surements (e.g. Van Roozendael et al., 2002). Similarly GOME measurements over
the equatorial pacific using a technique contrasting cloudy and clear-sky scenes con-
clude to a background tropospheric BrO column of 1–4×1013 molec/cm2 (Richter et
al., 2002). The combined use of SCIAMACHY (onboard the ENVISAT satellite) nadir5

and limb observations also suggests an average global tropospheric BrO column below
15 km of about 2–4×1013 molec/cm2 (Sinnhuber et al., 2005). On the other hand, signif-
icantly smaller tropospheric BrO columns in the range of 0.2±0.4×1013 molec/cm2are
derived from the combined use of direct sun and zenith sky measurements at the
Southern mid-latitude site of Lauder (Schofield et al., 2004a).10

More specifically, BrO measurements in the tropical troposphere have been very
spare and in fact limited to few studies. During a cruise of the research vessel “Po-
larstern” from Bremerhaven (54◦N) to Cape Town (34◦ S) measurements in the ma-
rine boundary layer were made with a MAX-DOAS instrument (Leser et al., 2003).
In the tropics, the maximum tropospheric BrO column was found to be in the range15

from 2.4 to 3.0×1012 molecules/cm2, hence significantly smaller than the values found
in this work. More recently at Nairobi, measurements similar to those reported here
(Fietkau et al., 2007) conclude to tropospheric BrO columns in the range from 4 to
7.5×1012 molecules/cm2 in closer agreement with Reunion Island results although still
slightly smaller. The difference could possibly be explained by the fact that the profile20

inversion used at Nairobi loses sensitivity above 6 km of altitude, while the different
stratosphere-troposphere approach used in our study maintain better sensitivity higher
up in the troposphere (see averaging kernels in Fig. 3). Beyond retrieval issues, the
possibility of an added tropospheric BrO content at Reunion Island due to influx from
sea salt aerosol might also be considered (Fietkau et al., 2007).25
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4.3.2 Stratospheric BrO

The retrieved stratospheric BrO vertical columns and their respective error estimates
(at the chosen SZAs of 45◦, 80◦, 85◦, 87.5◦ and 92.5◦) are displayed in Fig. 8. A
strong diurnal variation is observed as a result of the photochemically evolving interplay
between BrO and its nighttime reservoirs (HOBr, BrONO2) (e.g. Lary et al., 1996a,b).5

From Fig. 8, higher stratospheric BrO columns are found at sunrise than at sunset, for
the reference SZAs of 80◦ and 85◦. This is related to the increase of the stratospheric
NO2 column during the day, which in turn influences the bromine partitioning through
the termolecular reaction BrO+NO2+M.

The stratospheric column results of the photochemical model (initialized with the10

chemical fields from the SLIMCAT model) are also shown in Fig. 8 (black dashed line).
The diurnal evolution of the measured columns is properly captured by the model,
providing strong evidence that the stratospheric bromine photochemistry is well under-
stood and represented. It can also be seen however that modeled vertical columns
are substantially smaller than the retrieved stratospheric columns. The shaded region15

around the modeled vertical columns indicates the impact (at the 1σ level) of the uncer-
tainties of the rate constants for the most important reactions. One possible explana-
tion for the underestimation of the BrO columns by the model can be found in the way
bromine sources (including the short-lived species) have been treated in the relatively
old SLIMCAT version used for the present work (run D in Feng et al., 2007). These are20

represented using a single effective source of CH3Br (with a mixing ratio of 21.2 pptv
at the surface). Since in reality the short-lived source gases are decomposed faster
than methyl bromide, the Bry mixing ratio could be substantially underestimated by
the model, especially in the lower stratosphere, which might have an important impact
on the integrated BrO vertical column. In order to investigate this effect, we consid-25

ered the extreme case where the short-lived species are totally converted in Bry at the
tropopause. This was achieved by applying a simple offset to the SLIMCAT Bry mixing
ratio profile (scaled for the contribution of the long-lived bromine sources only). The
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stratospheric BrO columns resulting from this test scenario are displayed in Fig. 8 for
contributions of 6 pptv (cyan dashed line) and 8 pptv (blue dashed line) from the decom-
position of the short-lived bromine species. The value of 8 pptv can be considered as
a plausible upper limit for the contribution of the bromine short-lived species, in agree-
ment with recent studies (Pfeilsticker et al., 2000; Salawitch et al., 2005; Schofield et5

al., 2006; Dorf et al., 2006a, b; Sioris et al., 2006). This also confirms the findings
of Feng et al. (2007), who have tested different methods of implementing the bromine
source gases in the SLIMCAT model and found that the agreement between model
and balloon data is significantly improved when having explicitly the short-lived source
gases.10

In order to gain better insight into the consistency between our retrieved stratospheric
BrO content and data from the literature, the stratospheric BrO profiling algorithm of
Hendrick et al. (2004, 20071) based on the optimal estimation technique (Rodgers,
2000), has been applied to the zenith-sky clear-sky observations performed at Re-
union Island. Figure 9 presents the resulting mean BrO vertical distribution displayed15

in comparison to stratospheric BrO profiles measured by the ballon-borne solar occul-
tation SAOZ instrument (Pundt et al., 2002). SAOZ profiles were obtained in Bauru,
Brazil (22.4◦ S, 49◦W) in November 1997, January 2004 and February 2004. Since
SAOZ balloon measurements are performed during evening twilight in ascent mode
(typically around 86–87◦ SZA) the ground-based BrO profile was retrieved from after-20

noon observations at the appropriate SZA. It can be seen from Fig. 9 that a reasonable
agreement is found between the ground-based and the SAOZ BrO profiles, especially
for the flight in November 1997.

From the stratospheric BrO profile, it is also possible to derive a stratospheric inor-

1Hendrick, F., Van Roozendael, M., Chipperfield, M. P., Dorf, M., Goutail, F., Yang, X., Fayt,
C., Hermans, C., Pfeilsticker, K., Pommereau, J.-P., Pyle, J. A., Theys, N., and De Mazière,
M.: Retrieval of stratospheric and tropospheric BrO profiles and columns using ground-based
zenith-sky DOAS observations at Harestua, 60◦ N, Atmos. Chem. Phys. Discuss., submitted,
2007.
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ganic bromine profile based on estimates of the BrO/Bry ratio given by the photochem-
ical model. Figure 9 shows the Bry profile deduced from our retrieved tropical BrO pro-
file. A good agreement is found with the Bry vertical distribution derived by Salawitch et
al. (2005) based on SAOZ observations. From these results, one concludes to a total
inorganic bromine content of about 23 pptv, which suggests a contribution from several5

short-lived organic bromine sources to the stratospheric inorganic bromine budget, in
agreement with studies from Pfeilsticker et al. (2000) and Salawitch et al. (2005).

4.4 Determination of the tropospheric BrO vertical distribution

Since the light path through the troposphere strongly depends on both SZA and view-
ing elevation angle, only an appropriate tropospheric BrO vertical profile in the AMFs10

calculation will lead to a good agreement between the modeled SCDs and the mea-
sured SCDs, for all viewing angles. An illustration of the sensitivity of the multi-axis
DOAS observations for an absorber located at different altitudes is given in Fig. 10, in
the form of air mass factor (AMF) curves represented for two different values of the
SZA (60◦ and 80◦). By comparing Fig. 6 and Fig. 10, it can be easily deduced that15

our observations do not show evidence for sizeable amounts of BrO being present in
the boundary layer. Indeed this would require a systematic and pronounced increased
of the measured BrO SCDs towards low elevation angles, which is definitely not ob-
served. Instead if one assumes a BrO profile peaking higher up in the troposphere
around 6–7 km, Fig. 10 indicates that at low SZA (60◦) the AMF is almost the same20

at 3◦ elevation and at zenith, a sizeable enhancement of the sensitivity being only ob-
tained at 18◦ of elevation. On the contrary at larger SZA (80◦), larger AMF values are
found at both 3◦ and 18◦ elevation. This characteristic behavior of the elevation angles
sensitivities for a free-tropospheric profile is consistently observed in the measured
slant columns in Fig. 6. In order to gain information on the vertical distribution of BrO25

in the troposphere, sensitivity tests have been made on the average of the 7 clear days
of measurements (selected in Sect. 4.3) and have consisted in varying bulk altitudes
and full widths at half maximum (FWHM) of Gaussian tropospheric profiles used to
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calculate tropospheric AMFs. The best residuals were obtained for a concentration
profile peaking at 6 km altitude with a FWHM of 2 km, for both morning and afternoon
observations. These results are roughly in agreement with the tropospheric BrO profile
measurements reported in Fitzenberger et al. (2000), based on balloon borne DOAS
observations performed at Kiruna, Sweden. In contrast MAXDOAS profile inversion5

results recently obtained above Nairobi, Kenya (Fietkau et al., 2007) suggest a bulk
tropospheric BrO layer located between 2 and 3 km altitude, hence slightly lower than
found at Reunion Island. This apparent discrepancy might however be related to the
fact that the inversion technique used in the Fietkau et al. (2007) study was essentially
limited to the lowest 6.5 km.10

4.5 Seasonal variation

Since clear-sky observations do not show evidence for sizeable amounts of BrO being
present in the lowest troposphere, one can safely expect that slant column measure-
ments will generally be weakly affected by the presence of low altitude clouds and/or
particles. Hence we decided to apply our inversion technique on a daily basis in order15

to derive information of the seasonal cycle of the retrieved stratospheric and tropo-
spheric BrO vertical columns.

In order to somehow stabilize the inversion and allow its application to day-to-day ob-
servations inherently noisier than averages considered so far, the algorithm has been
slightly simplified with respect to the scheme presented in Sect. 3.2. Instead of retriev-20

ing the diurnal variation of the stratospheric VCD for each day, it was decided to fix this
variation based on the clear-sky analysis obtained in Sect. 4.3. Accordingly a single
stratospheric BrO vertical column is derived from the inversion process, for a given
reference SZA (80◦ was selected here), together with the tropospheric BrO column.
This approach applied separately to morning and evening observations was found to25

represent the best compromise between information content and retrieval noise on a
daily basis.

The resulting time-series of stratospheric and tropospheric BrO columns (hence re-
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trieved at 80◦ SZA at both sunrise and sunset) are displayed in Fig. 11, for the entire
observation period. Only vertical columns corresponding to retrieval residuals lower
than 2×1013 molec/cm2 were considered in this analysis. This threshold has been
chosen in order to reject unrealistic measurements, contaminated by thick clouds or
affected by spectral artifact due e.g. to anomalously large O4 absorption.5

Both retrieved stratospheric and tropospheric BrO columns show no noticeable sea-
sonal variation, which is in agreement with our understanding of tropical BrO and also
in agreement with results reported in Nairobi by Fietkau et al. (2007). The mean strato-
spheric and tropospheric BrO columns are in excellent agreement with the values de-
rived from the averaged clear-sky observations (Sect. 4.3).10

4.6 Comparison with SCIAMACHY total column BrO observations

Onboard the ENVISAT platform, the SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY (SCIAMACHY) measures the sunlight reflected, backscat-
tered or transmitted by the Earth’s atmosphere in the ultraviolet, visible and near-
infrared spectral regions (Bovensmann et al., 1999). Among other geophysical data15

products, the vertical column of BrO can be derived from SCIAMACHY nadir mea-
surements, using DOAS algorithms similar to those applied to ground-based measure-
ments reported here. Prior to SCIAMACHY, BrO columns were also measured by
the GOME instrument onboard ERS-2. However the diffuser plate used for irradiance
measurements on the GOME instrument exhibits a time dependent interference pat-20

tern, which correlates with BrO and prevents reliable independent BrO column mea-
surements to be obtained with this instrument, therefore making it unsuitable for an
assessment of the tropical BrO content (e.g. Richter et al., 2002). To overcome this
problem, SCIAMACHY was equipped with a quasi-volume diffuser plate on the back of
its azimuth scan mirror (ASM) with the aim to provide irradiance measurements suit-25

able for minor trace gases retrievals. SCIAMACHY BrO columns used in this work
were analysed using daily sun irradiance from the ASM diffuser plate, according to re-
trieval settings described in Van Roozendael et al. (2004). To optimize the consistency
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with ground-based retrieval, SCIAMACHY BrO vertical columns were evaluated using
AMFs calculated according to the BrO vertical distribution retrieved at Reunion Island.

Figure 12 presents the comparison between SCIAMACHY BrO vertical columns ex-
tracted from daily fields in a latitude zone of +/–5 degrees around Reunion Island and
the ground-based BrO total vertical columns, photochemically adjusted at the time of5

the satellite overpass using the BrO diurnal variation determined in Sect. 4.3. Con-
sidering the uncertainties on both satellite and ground-based BrO measurements, the
agreement obtained is highly satisfying. Since the ground-based and satellite total
column analysis are essentially independent from each other (the dependency of the
satellite nadir AMF on the shape of the BrO profile being in practice very small), these10

results consolidate our confidence in both ground-based and satellite estimates of the
tropical BrO column. They also indirectly consolidate our estimate of the tropospheric
BrO column, which as already stated represents a significant part (one third) of the
total BrO column.

5 Conclusions15

Tropospheric and stratospheric BrO columns were derived using a new double-column
inversion method, accounting for the transfer of the radiation in the atmosphere and the
BrO diurnal variation. This was applied to combined zenith-sky and off-axis ground-
based UV-visible spectroscopic measurements at Reunion Island. Tropospheric BrO
columns of 1.1±0.5×1013 molec/cm2 were retrieved, generally in agreement with esti-20

mations sparsely available from the literature. Sensitivity tests demonstrate a substan-
tial contribution from the free-troposphere (around 6 km altitude) to the tropospheric
BrO vertical column, however our observations do not support the existence of signifi-
cant amounts of BrO in the tropical boundary layer. These results are in agreement with
recent studies suggesting that tropical biogenic sources of short-lived organic bromine25

species might be converted into active bromine in the free-troposphere by mechanisms
involving heterogeneous reactions possibly on ice crystals and water droplets (Fitzen-
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berger et al., 2000).
The retrieved stratospheric columns show a diurnal variation coherent with photo-

chemical model calculations based on recently updated rates. From a comparison
between the retrieved stratospheric BrO columns and results from the 3-D chemical-
transport model SLIMCAT, one concludes that a satisfactory agreement can only be5

achieved by assuming an important delivery of Bry (of about 6–8 pptv) in the strato-
sphere possibly produced by short-lived bromine organic compounds, rapidly con-
verted into inorganic forms at the tropical tropopause. Based on the inversion of the
stratospheric BrO profile according to Hendrick et al. (2007)1, a total stratospheric inor-
ganic bromine content of about 23 pptv is inferred, which further strengthens the likely10

importance of short-lived bromine species as an important contribution to the Bry bud-
get. Total BrO columns are found to be in agreement with SCIAMACHY observations
in a latitudinal band centered around Reunion Island. These results consolidate our
confidence in both ground-based and satellite estimates of the tropical BrO columns.
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Table 1. Summary error budget for BrO slant column densities (random, systematic and RSCD
error sources) and air mass factors in zenith-sky geometry, for three representative solar zenith
angles.

Solar zenith angle
Slant column density error (×1013 molec/cm2) 70◦ 85◦ 90◦

Random 1.2 1.9 3.4
Systematic bias 0.7 4 6.8
Residual slant column density (RSCD) 0.5 0.5 0.5
Total (×1013 molec/cm2) 1.5 4.5 7.6
Total (%) 13 23 24

Solar zenith angle
Air mass factor error (%) 70◦ 85◦ 90◦

Stratosphere: AM 1.5 1.5 3.5
Stratosphere: PM 1.5 1.5 2.5
Troposphere 5 15 5
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Table 2. Summary error budget for morning stratospheric BrO and tropospheric BrO columns.

Stratospheric VCD error Tropospheric
(×1013 molec/cm2) VCD error

Solar zenith angle(◦)
Error source 45 80 85 87.5 92.5

Slant column densities 0.5 0.3 0.3 0.3 0.1 0.3
Stratospheric AMFs <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Tropospheric AMFs 0.6 0.4 0.3 0.2 0.1 0.4
Total VCD error (×1013 molec/cm2) 0.8 0.5 0.4 0.4 0.1 0.5

Total VCD error (%) 30 21 17 17 33 46

8296

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/8261/2007/acpd-7-8261-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/8261/2007/acpd-7-8261-2007-discussion.html
http://www.egu.eu


ACPD
7, 8261–8308, 2007

Stratospheric and
tropospheric BrO at

Reunion Island

N. Theys et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 1. BrO differential slant columns (DSCDs) retrieved in different wavelength intervals from
(a) simulated radiances generated using the SCIATRAN model, and (b) actual zenith-sky ob-
servations performed at Reunion Island. Reference DSCDs calculated at 352 nm from the
model are plotted with a thick black line.
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Fig. 2. Stratospheric and tropospheric BrO air mass factors calculated at 352 nm in the zenith-
sky viewing geometry. The enhancement of the sensitivity to stratospheric BrO at twilight is
obvious.
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Fig. 3. Typical examples of ground-based averaging kernels for stratospheric BrO columns (at
80◦, 85◦ and 87.5◦ SZA) and for tropospheric BrO columns (see text).
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Fig. 4. Differential slant columns of O4 measured for different elevation angles as a function of
the SZA. Morning and afternoon measurements are displayed together. The O4 DSCDs have
been averaged from a selection of 7 clear-sky days and binned on a grid of 2.5◦ SZA.
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Fig. 5. Vertical columns of O4 calculated for all viewing directions based on AMFs for two
aerosols scenarios, as a function of SZA: aerosol extinction profiles corresponding to (a) a
visibility of 40 km and (b) a visibility of 80 km with a higher aerosol load (extinction: ∼0.2 km−1)
added in a thin layer close to the surface (0–100 m).
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Fig. 6. Measured and modeled afternoon BrO slant column densities, as a function of the SZA
for 3 elevation viewing angles (3◦, 18◦ and zenith).
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Fig. 7. Retrieval residuals for averaged clear-sky data (see text), as a function of the SZA. The
modeled SCDs are subtracted from the measured SCDs, for all viewing directions. Two different
assumptions are made for the BrO vertical repartition: (a) BrO is present in both stratosphere
and troposphere, (b) BrO is entirely located in the stratosphere.
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Fig. 8. Morning and afternoon stratospheric and tropospheric BrO vertical columns retrieved
from averaged clear-sky data. The dashed lines correspond to stratospheric columns obtained
from photochemical model simulations initialized with SLIMCAT fields having different contri-
butions from the very short-lived bromine species (VSLS): (black) 6 pptv, (cyan) 6 pptv and
(blue) 8 pptv directly injected at the tropopause. The shaded area corresponds to the range of
uncertainties associated to reaction rate constants.
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profile at 22◦ S, November 1997 (right plot).
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Fig. 12. Total BrO columns retrieved from ground-based DOAS observations at Reunion-Island
and from SCIAMACHY nadir observations averaged in a zonal band of 10 degrees centered at
the latitude of the ground-based station.
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