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Abstract

The interactions between microbial and chemical contents of cloud water were investi-
gated. First, we observe that the bulk cloud water solution provides a substantial envi-
ronment where bacteria can develop significantly. Then, a total number of 60 microbial
strains originating from seven distinct samples of cloud water and affiliated to various5

taxonomic groups were looked for their ability to degrade some of the main atmo-
spheric carboxylic compounds: formate, acetate, lactate, succinate, formaldehyde and
methanol. Biodegradation tests show that all these compounds can be transformed
when used as single carbonaceous substrates, with activities depending on both the
strain and the compound. The highest capacities of biodegradation are observed to-10

wards formaldehyde, formate and acetate, which are also the more concentrated com-
pounds typically measured in cloud water. Hence, analyses by 1H NMR permitted to
establish for instance that compounds like pyruvate or fumarate can be produced and
released in the media in relation to the transformation of lactate or succinate. In addi-
tion, utilization of 13C labelled formaldehyde showed that it can be transformed through15

many metabolic pathways, similar to those induced by photochemistry and leading to
the production of formate and/or methanol. These results suggest that microorganisms
of cloud water can have various behaviours towards the chemical compounds present
in the atmosphere: they can represent either a sink or source for organic carbon, and
may have to be considered as actors of cloud chemistry.20

1 Introduction

Up to the last decade, the existence of a living microbial biota in fog and cloud water has
been demonstrated (Fuzzi et al., 1997; Bauer et al., 2002; Amato et al., 2005), and the
evidence of a possible metabolic activity under the conditions of temperature encoun-
tered in clouds was also given. The primary production resulting from the multiplication25

of micro-organisms in clouds was estimated to reach 1 to 10 Tg C per year (Sattler et
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al., 2001). During previous investigations, we isolated a large variety of bacterial and
fungal micro-organisms from cloud water samples in which ATP concentration implied
microbial activity (Amato, unpublished Ph.D thesis, Université Blaise Pascal, 2006).
This activity could be supported by the presence of substrates like atmospheric or-
ganic compounds, the chemistry of which has become a subject of increasing interest5

with the growing problems of air pollution. As suggested by Ariya and Amyot (2004),
the microbiological component of clouds could interfere with the chemical processes
occurring in droplets and finally have a non negligible influence on the chemical com-
position of cloud water.

Organic compounds are present in all the compartments of the atmosphere, the10

gaseous and particulate phases (Chameides and Davis, 1983; Puxbaum et al., 1988;
Grosjean, 1989; Kumar et al., 1996; Sellegri et al., 2003), rain water (Kieber et al.,
1999; Kawamura et al., 2001) and also in cloud water on which we focus in this pa-
per (Voisin et al., 2000; Fuzzi et al., 2002; van Pinxteren et al., 2005; Parazols et al.,
2006). Carboxylic acids, originating from both anthropogenic and biogenic sources,15

predominate and represent between 10% and more than 70% of the total dissolved
organic carbon contained in cloud water (Löflund et al., 2002; Marinoni et al., 2004).
High levels in aldehyde concentrations are strongly linked to human activities (Granby
et al., 1997) and to photochemistry (Riedel et al., 1999). Alcohols, though they are
rarely measured due to analytical problems, have been detected in polluted fog water20

using nuclear magnetic resonance (NMR) (Suzuki et al., 1998). All these compounds
are related to the oxidation of hydrocarbons, mainly emitted from anthropic activities.
They are in addition strongly linked together by atmospheric chemistry. As an example
in the case of C1 compounds, the transformation of methanol to formaldehyde, formate
and finally to CO2 is catalyzed by free radicals produced by photochemical processes25

(Monod et al., 2000). For the moment, investigations concerning the capacity of such
atmospheric compounds to be microbiologically transformed showed some very inter-
esting potentialities (Ariya al., 2002; Amato et al., 2005), but they are limited to a very
few micro-organisms, and a real overall picture is still not available. To contribute to fill
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this lack, we present in this article results obtained from a large study, involving 60 mi-
crobial strains isolated from cloud water samples collected all along a period of almost
two years, described elsewhere in a recently published paper (Amato et al., 2007). Six
organic compounds have been considered, among which four carboxylic acids (three
monoacids (formate C1, acetate C2 and lactate C3) and one diacid (succinate C4)), an5

aldehyde (formaldehyde C1) and an alcohol (methanol C1). An introducing observation
is presented, proving the capacity of micro-organisms to develop under the nutritive
conditions provided by cloud water.

2 Material and methods

2.1 Capacity of cloud water to act as a nutritive medium10

A volume of cloud water sampled at the puy de Dôme summit as described in Am-
ato et al (2005) have been brought back to the laboratory for a further incubation at
17◦C, under agitation (200 rpm). All precautions were taken to prevent contamination
during all the experiment. ATP concentration was measured by bioluminescence (lu-
ciferin/luciferase) all along a period of about four days, on triplicate volumes of 0.2 mL15

sampled under sterile conditions. Reagents from a commercial kit (Biothema, ATP
Biomass kit) were used, and the measurement was made with a bioluminometer Bio-
counter M2500 (Lumac). In addition, total cell counts have been carried out by epi-
fluorescence microscopy at the beginning and at the end of the incubation, in tripli-
cates. Volumes of 7.5 mL were fixed with equal volumes of prefiltered 4–5% formalde-20

hyde, incubated 20 min in the dark in the presence of 2.5µg mL−1 of 4′-6-diamino-2-
phenylindole (DAPI), filtered (GTBP 0.2µm, Millipore) and filters were finally dried and
mounted on slides to be observed. Cells present on random microscopic fields were
counted (objective x40 for fungal cells, then x100 under immersion for bacteria), using
a microscope Olympus BH-2.25

5256

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/5253/2007/acpd-7-5253-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/5253/2007/acpd-7-5253-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
7, 5253–5276, 2007

Biotransformation: a
fate for atmospheric

compounds

P. Amato et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

2.2 Incubations of strains in the presence of organic compounds

For each isolated strain, liquid pure pre-culture was incubated at 17◦C or 27◦C in M200,
TS (Biomerieux) or R2 (prepared according to the R2A Difco medium) broths. Pure
cultures were then incubated under the same conditions and cells were harvested by
centrifugation (4000 g, 15 min, 4◦C) after 24 or 48 h of growth, twice rinsed with NaCl5

0.8% and finally suspended in the test media containing one of the compounds to
degrade. The test media were composed of cells originating from a volume of 25 mL of
culture, for an OD575 nm of 10, with addition of about 20 mM of sodium formate (Aldrich),
lactic acid (mix of isomers L and D, approximately 70:30) (Touzard & Matignon), sodium
succinate (Aldrich) or 2 mM of formaldehyde and 0.8 mM of methanol from a mixed10

aqueous solution of formaldehyde/methanol (Sigma 37 % v/v formaldehyde, stabilized
with 15% v/v of methanol) in 0.1 M phosphate buffer at pH 7.0. The values of culture
volume used and of substrate concentration were adjusted to keep constant the ratio
between cell density and amount of the compound to degrade. For a given strain, all
tests were performed using cells originating from the same culture flask, which was15

dispatched between the tests media. One single compound was present in each of
the incubation media, except for L- and D-lactate and for formaldehyde/methanol. A
blank constituted by cells and phosphate buffer was systematically made. Incubations
were carried out in 100 mL Erlenmeyer’s flasks containing 25 mL of test medium, under
agitation (200 rpm), at 17◦C or 27◦C depending of the culture conditions previously20

used and corresponding to the best conditions of growth for the considered strain.
Samples of about 1 mL were taken at the beginning of the incubation and after 24 h,
centrifuged (12 000 g, 3 min) to discard the cell pellet and the supernatants were kept
frozen (–40◦C) until analysis.

2.3 Organic acids and methanol quantifications by 1H NMR25

Supernatants from biodegradation test media were prepared for 1H NMR by mixing
a volume of 450µl of the sample with 50µl of sodium tetra deuteriated trimethylsilyl
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propionate (TSPd4, Eurisotop) in solution in D2O. The latter was used for locking and
shimming, while TSPd4 constituted a reference for chemical shifts (0 ppm) and quantifi-
cation. Final volumes of 500µl of prepared samples were put in 5 mm-diameter tubes
for NMR. Acquisition of spectra were made at 400.13 MHz, 21◦C, on a Bruker Avance
400 spectrometer, by collection of 32 scans (90◦ pulse, 4789.27 Hz SW, 65.536 data5

points, 6.84 min total acquisition time). Water signal was eliminated by presaturation,
and no filter was applied before Fourier transformation. Using Bruker software (X-Win
NMR), baseline was corrected before integration for quantification. The concentration
of metabolites was calculated as follow: [m] = (9 * Ao * [TSPd4])/(b * Aref), where [m]
is the concentration of the compound to quantify, Ao is the area of m resonance, Aref is10

the area of TSPd4 resonance, and 9 and b are respectively the numbers of protons of
TSPd4, resonating at 0 ppm, and of m.

2.4 Formaldehyde quantification

Formaldehyde is not detectable by 1H NMR due to its chemical shift of about 4.5 ppm,
masked by the signal of water. So a sensitive automatic analyser was used (Aero-15

laser AL4021). The principle is based on the reaction of formaldehyde with acetylace-
tone and ammoniac, resulting in the formation of the detected fluorochrome complex
(λexcitation=400 nm; λemission=510 nm), for which light emission is directly proportional to
formaldehyde concentration.

2.5 Utilization of 13C labelled formaldehyde and analysis by 13C NMR20

Incubation in the presence of 13C labelled formaldehyde (Eurisotop, solution at 20%
v/v) was also carried out for three strains at 17◦C and 5◦C, to follow the formaldehyde
metabolism and unambiguously identify formed compounds as metabolites. Incuba-
tions were carried out as previously exposed, and acquisitions of 13C NMR spectra
were performed at 100.62 MHz using the same 400 MHz spectrometer than for 1H25

NMR. 512 scans were collected (90◦ pulse, 25125.63 Hz SW, 65.536 data points,

5258

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/5253/2007/acpd-7-5253-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/5253/2007/acpd-7-5253-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
7, 5253–5276, 2007

Biotransformation: a
fate for atmospheric

compounds

P. Amato et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

54.19 min total acquisition time), and spectra were treated using the X-Win NMR soft-
ware. This method is not quantitative, and the analyser AL4021 and 1H NMR have
been used to quantify formaldehyde and formed labelled metabolites.

3 Results and discussion

3.1 Cloud water provides a nutritive medium for microbial growth5

In order to investigate the capacity of cloud water to act as a nutritive medium for
cells, a bulk cloud water sample was incubated a few hours after sampling without any
supplementation in nutritive material. The evolution of the concentration in Adenosine
Triphosphate (ATP), a key molecule of life, in this cloud sample is shown in Fig. 1, and
the total bacteria counted at the beginning of the incubation and after 97 h at 17◦C are10

also plotted. We observe that after a lag time of about 45 h during which ATP concen-
tration is rather constant, activity raises. After 90 h, the ATP concentration does reach
about 7 times the value that was measured at the beginning. Furthermore, during that
time, while fungal cells concentration is not significantly changed, total bacteria num-
ber increased from 7.6×104±1.3×103 mL−1 to 1.1×106±4.6×103 mL−1. Such an ob-15

servation suggests that bacteria find nutrients to multiply in the liquid phase of clouds,
and confirms the hypothesis made by Fuzzi et al. (1997). In parallel, organic acids
measurements performed by ionic chromatography on the sample we used for this ex-
periment show the presence of potential substrates. For instance, concentrations in
formate and acetate were about 4µM, and many other organic compounds like succi-20

nate, malonate, oxalate and formaldehyde were detected (Parazols et al., unpublished
data). The lag time could be attributed to the time required by cells for responding to
the mechanical and thermal stresses caused by both the sampling method (impaction)
and the further manipulations.
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3.2 Efficiencies of biodegradation of atmospheric organic compounds by isolated
strains

Biodegradation capacities of a total of 60 aerobic strains previously isolated from cloud
water collected at the puy de Dôme summit (1465 m a.s.l.), including bacteria and
yeasts, have been tested on formate, acetate, lactate, succinate, and on a mixed solu-5

tion of formaldehyde and methanol. Numbers of 30 Gram positive, 20 Gram negative
and 4 unidentified bacterial strains and 6 yeasts strains have been investigated.

Results are given separately for Gram positive, Gram negative and yeasts isolates
in Fig. 2, which give an overview of the potentialities of all the tested strains. In Fig. 3,
biodegradation efficiencies of strains belonging to the main bacterial genera recovered10

from our cloud water samples (3 strains of Arthrobacter, 3 of Micrococcus, 6 of Bacil-
lus, 7 of Staphylococcus, 5 of Sphingomonas and 9 of Pseudomonas) (see Amato et
al., 2007) and yeasts are detailed for each compound. These two figures will be dis-
cussed simultaneously all along the presentation of this section. Means and medians
are generally distinct, indicating that data does not follow Gaussian shaped distribu-15

tions. Medians are generally higher than means, and the former will thus be preferably
considered to compare results between themselves.

On the whole, highest efficiencies of degradation are observed for Gram negative
bacteria (Fig. 2). It is of first interest since Gram negative bacteria such as Pseu-
domonas species are thought to be the more active cells present in clouds, as they20

often develop at low temperature (Amato et al., 2007). In addition, formate, acetate
and formaldehyde appear to be the more actively transformed compounds, and they
are also the more concentrated organic compounds found in cloud water. All these re-
sults support a potential activity of biodegradation of those compounds in cloud water.

For formate, Gram negative bacteria, Gram positive bacteria and yeasts degrade25

respectively, in median, 100%, 97% and 65% of the amount present at the beginning
of the test (Fig. 2). Only a few strains have a poor activity toward this compound, es-
pecially Micrococcus, Sphingomonas and yeasts strains looking at the main microor-
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ganisms (Fig. 3). On the contrary, all of the strains of Arthrobacter and Pseudomonas
affiliations completely remove formate from the incubation media within 24 h of incuba-
tion.

A large majority of strains degrade acetate very efficiently, especially among Gram
negative and yeasts isolates (Fig. 2). For the main genera present in cloud water,5

highest activities are noticed among Micrococcus, Sphingomonas and Pseudomonas
groups, for which percentages of biodegradation reach 100% in most of the cases
(Fig. 3). On the other hand, Staphylococcus species regroup the less efficient strains
with a median situated under the value of 40%.

For lactate, as expected, biodegradation is dependent on the isomer form consid-10

ered, and is always better in the case of L-lactate (Fig. 2). Indeed, medians are ranging
from 60% (Staphylococcus group) to 100% (Bacillus and Pseudomonas groups) for the
latter, while for D-lactate it falls to less than 50% for a majority of strains, and is even
close to 0% for the entire Staphylococcus group (Fig. 3). Only a few strains are able to
degrade D-lactate, especially among those belonging to Micrococcus and Bacillus for15

the selected genera (Fig. 3). For some Staphylococcus and yeasts strains, an increase
of concentration of D-lactate is even observed (negative value of biodegradation), likely
resulting from the transformation of L-lactate by a racemase.

Concerning succinate, percentages of biodegradations are very variable from one
group to another (Fig. 2), often superior to 90% among Gram negative bacteria, but20

lower than 20% for 4 out of all the 5 Staphylococcus (Gram positive) species tested
(Fig. 3).

Methanol and formaldehyde were studied as a mix in the incubation media due to
the use of a commercial solution in which formaldehyde is stabilized by the presence
of methanol. In this particular case, the rapid elimination of formaldehyde seems to25

be a priority for cells: almost all strains are able to transform the total amount of this
compound within 24 h. A related production of methanol (resulting in a negative value
of biodegradation) is consequently often observed. Figure 2 and Fig. 3 show that Gram
positive bacteria highly transform both formaldehyde and methanol, while methanol of-

5261

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/5253/2007/acpd-7-5253-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/5253/2007/acpd-7-5253-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
7, 5253–5276, 2007

Biotransformation: a
fate for atmospheric

compounds

P. Amato et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

ten accumulates in the cases of Gram negative (especially Pseudomonas) and yeasts
strains.

3.3 Specificities of microbial groups toward the proposed substrates

From a biochemical point of view, several metabolic behaviours toward the different
compounds are encountered among the main groups isolated from cloud water (Fig. 3).5

First, we can argue that strains of the genus Staphylococcus have a great specificity
for formate, being less efficient than all the other groups toward each of the other
compounds. Sphingomonas and yeasts are poor consumers of formate and prefer
acetate, L-lactate or succinate. Micrococcus is situated between these two extremes,
degrading methanol and formaldehyde very efficiently, but not formate. Bacillus strains10

seem to have no special requirement, as well as Arthrobacter and Pseudomonas,
except D-lactate for the former and methanol for the latter.

3.4 Pathways of biodegradation of carboxylic acids

The metabolic pathways involved in the biotransformation of carboxylic acids cannot
be determined with certitude by solely considering the data presented here. How-15

ever, it gives indications when metabolites are produced in the solution and then are
detected by 1H NMR analysis. Table 1 reports the chemical shifts and multiplicity of
signals related to the tested carboxylic acids and also to signals that can be attributed
to metabolites (i.e. when they are not detected in the corresponding blank).

Formate is the shorter existing carboxylic acid, and microbial metabolism can only20

lead to its direct oxidation to carbon dioxide (KEGG Metabolic Pathway database) (see
Fig. 4a). As a consequence, no metabolite is detected in this case.

Acetate is a link taking place in many routes of the central metabolism mainly through
the complexation with Coenzyme A to enter the Krebs cycle. In addition, the uptake
of acetate by cells does not require, most of the time, any carrier system as it diffuses25

through the cytoplasmic membrane (Kell et al., 1981). This certainly explains the high
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capacity of biodegradation generally noticed whatever the microbial group considered.
However, few strains have a low activity on that substrate, especially among genera
Bacillus and Staphylococcus for Gram positive bacteria, and a very low value (5%)
is observed for an Actinobacteria: Frigoribacterium sp. PDD14b-13 (DQ512796). In
some cases, unidentified products were released in the incubation media containing5

acetate, resonating as doublets at 5.80 ppm and 7.5 ppm, or as a triplet at 1.05 ppm
(Fig. 5a).

For lactate, different metabolic pathways exist depending on the isomer form L or
D (Fig. 4b). A racemase is known to be involved in the transformation of an isomer
form of lactate to the other (Kitahara et al., 1953), but is rarely encountered refer-10

ring to the KEGG database. For both forms, lactate can enter the central microbial
metabolism either by oxidation to pyruvate or reduction to lactaldehyde (it can also
make a complex with Coenzyme A; not shown on the scheme). A fourth way involves
only L-lactate, and consists in its decarboxylation, leading to the production of acetate.
Acetate (δ=1.92 ppm) and pyruvate (δ=2.38 ppm) productions were actually unam-15

biguously identified as metabolites, while the apparition of non identified triplet signals
is often observed (δ=2.4 ppm and 3.0 ppm) (Fig. 5b). Interestingly, as D-lactate con-
centration increases in the presence of the two isomers (leading to a negative value
of biodegradation), two Gram negative bacterial strains likely express a lactate race-
mase: Methylobacterium sp. PDD7b-5 (DQ512770) and Flavobacterium sp. PDD14b-720

(DQ512791). The presence of low levels of pyruvate in cloud water was reported by
Löflund and collaborators (2002), and one could see here the signature of such a bio-
logical activity.

Succinate is largely involved in the central metabolism (Krebs cycle) and represents
a metabolic link between succinyl-CoA and fumarate (Fig. 4c). Its oxidation to fumarate25

is directly linked to the production of ATP, as it takes place in the oxidative phospho-
rylation. We often observe the production of a compound resonating as a singlet at
6.5 ppm, which we assigned to the signal of the CH group in fumarate (HOOC-HC=CH-
COOH) (Fig. 5c). A release of acetate is also observed in some cases, as well as an
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unidentified product resonating as a triplet centred at 3.0 ppm. The latter can also cor-
responds to one of the two triplets observed under incubation with lactate (δ = 2.4 ppm
and 3.0 ppm), the other being masked by the signal of the succinate itself. Other non
assigned singlets also appear for some strains incubated in the presence of succinate.

3.5 Metabolism of methanol and formaldehyde5

The values of biodegradation determined for methanol show a large dispersion, rang-
ing from about –80% (production of methanol) to 100% (Fig. 2). The concentration of
methanol measured in our analysis results from the equilibrium between on one hand
its degradation to formaldehyde, and on one other hand its production from formalde-
hyde (see Fig. 3a). All microbial groups are very efficient to degrade formaldehyde,10

and this compound consequently does not accumulate when methanol is oxidized.
Considering the known high toxicity of formaldehyde, the priority for the cells is likely to
eliminate it early, and in many cases methanol concentration is thus increasing within
the 24 h of the test.

In order to identify more clearly and with certainty the metabolites produced in rela-15

tion to formaldehyde, we incubated one selected strain in the presence of pure (mean-
ing single) 13C labelled formaldehyde. This strain was arbitrary chosen amongst bac-
teria for its interesting behaviour toward the mixed solution of formaldehyde /methanol.
It was identified as an Actinobacterium: Frigoribacterium sp. PDD14b-13 (DQ512796).
Four fates of formaldehyde are known to be possible through microbial metabolic path-20

ways (Fig. 3a): (i) its assimilation by the serine and/or the ribulose monophosphate
pathways (the latter involves a decarboxylation); (ii) its reduction to methanol; (iii)
its oxidation to formate; and (iv) its reaction with methanol, forming methylformate
(HCOOCH3) (Mason and Sanders, 1989; Murdanoto et al., 1997; Delort, 2006). The
second and third ways involve an oxydoreductase and/or a dismutase (Kato et al.,25

1984), the latter simultaneously producing formate and methanol from two molecules
of formaldehyde. In addition, several known formaldehyde dehydrogenases are only
dedicated to formaldehyde reduction (Vorholt, 2002), and a methanol dehydogenase
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also exists, catalyzing the production of formaldehyde.
Analyses of the related supernatants by 13C NMR clearly show that this strain of

Frigoribacterium highly transforms formaldehyde to formate and methanol (Fig. 6).
After less than 4 h, no formaldehyde remains in the solution that contained approxi-
mately 2 mM at the beginning. Then, formate is oxidized to CO2, while methanol is still5

not transformed after 24 h. Obviously, 1H NMR spectrum of the same supernatants
also show the presence of 13C formate and 13C methanol, the doublets indicating that
these compounds are actually labelled with 13C originating from formaldehyde. In ad-
dition, other compounds are released, corresponding to signals at 1.45 ppm, 1.95 ppm,
2.4 ppm and 2.15 ppm, resonating as singlets. Such signals can correspond either to10

non labelled metabolites due to a decarboxylation related to their assimilation (loss of
the 13C to 13CO2) or to metabolites produced from endogenous compounds of cells.

In the atmosphere, formaldehyde is strongly linked to free radicals chemistry (Sat-
sumabayashi et al., 1995; Riedel et al., 1999; Kawamura et al., 2005), and is so of first
interest. Monod et al. (2000) studied photochemistry of methanol in aqueous phase15

and showed that free radicals produced by solar light also oxidize methanol to formalde-
hyde and formate. The results obtained here show that strains found in clouds can be
responsible of the same transformations than those induced by photochemistry.

4 Conclusions

In this study we investigated the interactions between micro-organisms and the chemi-20

cal environment provided by cloud water. First we observed that, as it was discussed for
several years, cloud water solution can provide a niche for the multiplication of bacte-
ria, obviously supported by the organic compounds it contains. As a consequence, the
uptake of chemical compounds by micro-organisms could have an effect on the whole
composition of cloud water, assumed to be of first importance in atmospheric chemistry.25

The biodegradation tests of various single organic compounds present in cloud water
performed on 60 microbial strains (bacteria and yeasts) previously isolated from cloud
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water samples showed a high activity on acetate, formate, L-lactate and formaldehyde.
These are also the main organic compounds found in cloud water. Biodegradation of
D-lactate appears to be relatively low. Many genera often encountered in cloud wa-
ter, like Pseudomonas or Bacillus, highly degrade all of the compounds tested. On the
contrary, Staphylococcus species are very specialized toward formate degradation. For5

succinate, results are highly variable depending on the microbial groups.
Several metabolites resulting from the transformation of the compounds investigated

were detected, like pyruvate from lactate oxidation, or fumarate from succinate. These
compounds were actually detected in clouds, and their presence could thus be partially
attributed to such a microbial activity. More than being simply of biochemical interest,10

these results clearly show that cells can be a sink, but also a source of organic com-
pounds for cloud water.

Metabolisms of methanol and formaldehyde are strongly linked, and incubations in
the presence of 13C labelled formaldehyde bring the proof that both oxidation and re-
duction of formaldehyde can be microbiologically catalysed by strains found in cloud15

water. As such reactions also involve photochemistry, microbiological and photochem-
ical processes can act conversely or simultaneously on the chemistry of cloud water.
Consequently, the concentration of a given compound can be negatively as well as
positively influenced by biology. Thus actual models of atmospheric chemistry could
under- or overestimate the weight of some reactions by only considering the reactivity20

due to free radicals. The relatively poor knowledge about the respective contribution of
microbiology versus free radical does not allow any conclusion about an actual partici-
pation of micro-organisms in atmospheric chemistry, but experimental results in favour
of such a hypothesis are constantly improving.
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Table 1. 1H NMR signals of the tested organic acids and metabolites detected.

Compound Chemical shift (ppm) Metabolite(s) detected

Formate H-COO− 8.46, singlet None

Acetate H3C-COO− 1.92, singlet Triplet at 1.05 ppm not attributed
Doublets at 5.80 ppm and 7.55 ppm not at-
tributed

Lactate H3C-CHOH-COO− 1.45, doublet (L isomer)
1.33, doublet (D isomer)

Acetate (1.92 ppm, singlet)
Pyruvate (2.38 ppm, singlet)
Triplets at 2.4 and 3.0 ppm not attributed

Succinate −OOC-(CH2)2-COO− 2.41, singlet Acetate (1.92 ppm, singlet)
Fumarate (6.50 ppm, singlet)
Triplet at 3.00 ppm not attributed
Singlets at 1.35 ppm, 1.50 ppm
and 5.45 ppm not attributed
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Figure 1 
 

Fig. 1. Timedependence of the concentration of adenosine tri-phosphate (ATP) in a bulk cloud
water sample stored at 17◦C under agitation (200 rpm) and closed against exogenous con-
tamination. Total cells were counted by epifluorescence microscopy at the beginning and at
the end of the experiment. Fungal cells (not plotted) were respectively 2.7±0.6×103 mL−1 and
1.5±0.6×103 mL−1. Errors bars were obtained from triplicate measurements of ATP concentra-
tion but are masked by symbols.
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Figure 2 

Fig. 2. Percentages of biodegradation for each compound by Gram positive and Gram neg-
ative bacteria and yeasts after 24 h of incubation. Boxes represent medians (—) and 25–75
percentiles; 2 means; × minima and maxima. The number of strains considered in each case
is indicated. Median is not precised when n<5.
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Figure 3 

Fig. 3. Percentages of biodegradation for each compound by main genera of bacteria and
total yeasts found in cloud water, after 24 h of incubation (Arthrobacter, Micrococcus, Bacillus,
Staphylococcus, Sphingomonas and Pseudomonas and yeasts). Boxes represent medians (—
) and 25–75 percentiles; 2 means; × minima and maxima. The number of strains considered
in each case is indicated. Median is not precised when n<5.
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Figure 4 
 

Fig. 4. Schematic representation of known metabolic pathways involving methanol, formalde-
hyde and formate (a), lactate (b) and succinate (c).
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Figure 5 
 Fig. 5. Examples of 1H NMR spectra showing signals appearing during incubation with ac-

etate (a), lactate (b) and succinate (c). Spectra presented on (a) were obtained with strains
of Bacillus sp. (upper trace)) and Curtobacterium flaccumfaciens (lower trace); on (b) Pseu-
domonas viridiflava and on (c) Curtobacterium flaccumfaciens. The large signal around 5 ppm
corresponds to the peak of water. 5275
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Figure 1 
 

Fig. 6. (a) 13C NMR spectra showing the transformation of 13C formaldehyde present at the
beginning into 13C methanol and 13C formate during the time of incubation (example of the
strain Frigoribacterium sp. PDD14b-13 (DQ512796) incubated at 17◦C. (b) Corresponding 1H
NMR spectra, with doublets related to 13C labelled compounds. Singlet signals are related to
non labelled compounds.
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