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2 1 TABLES OF REACTION RATES

1 Tables of reaction rates

This collection comprises a complete listing of all gas and aqueous phase species (Table 1), gas
phase (Table 2) and aqueous phase (Table 3) reaction rates, as well as rates for the heterogeneous
(particle surface) reactions (Table 4), aqueous phase equilibrium constants (Table 5), Henry con-
stants and accommodations coefficients (Table 6).

Table 1: Species in MISTRA

Gas phase

O1D, O2, O3, OH, HO2, H2O2, H2O
NO, NO2, NO3, N2O5, HONO, HNO3, HNO4, PAN, NH3, RONO2

CO, CO2, CH4, C2H6, C2H4, HCHO, HCOOH, ALD (i.e., CH3CHO), CH2O2,
HOCH2O2, CH3CO3, CH3O2, C2H5O2, H3CO2, EO2 (i.e., H2C(OH)CH2OO),
CH2O2, ROOH (i.e., alkylhydroperoxides), DOM
SO2, SO3, HOSO2, H2SO4, DMS, CH3SCH2OO, DMSO, DMSO2, CH3S,
CH3SO, CH3SO2, CH3SO3, CH3SO2H, CH3SO3H
Cl, ClO, OClO, HCl, HOCl, Cl2, Cl2O2 ClNO2, ClNO3

Br, BrO, HBr, HOBr, Br2, BrNO2, BrNO3, BrCl, CHBr3, CH3Br

Liquid phase (neutral)

O2, O3, OH, HO2, H2O2, H2O
NO, NO2, NO3, HONO, HNO3, HNO4, NH3

CO2, HCHO, HCOOH, CH3OH, CH3OO, CH3OOH
SO2, H2SO4, DMSO, DMSO2, CH3SO2H, CH3SO3H
Cl, HCl, HOCl, Cl2
Br, HBr, HOBr, Br2, BrCl

Liquid phase (ions)

H+, OH−, O−2
NO−2 , NO−3 , NO−4 , NH+

4

HCO−3 , CO−3 , HCOO−

HSO−3 , SO3
2−, HSO−4 , SO2−

4 , HSO−5 , SO−3 , SO−4 , SO−5 , CH3SO−3 , CH2OHSO−2 ,
CH2OHSO−3
Cl−, Cl−2 , ClO−, ClOH−

Br−, Br−2 , BrO−, BrCl−2 , Br2Cl−, BrOH−
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