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Abstract

Airborne Differential Absorption Lidar (DIAL) observations of tropospheric water vapour
over Brazil and between Brazil and south Europe in March 2004 are compared to
1-hourly short-range forecasts of the European Centre for Medium Range Weather
Forecasts (ECMWF). On three along-flight sections across the tropical and sub-tropical
Atlantic between 28° S and 37° N humidity fields are observed which represent typical
low latitude conditions. H,O mixing ratios vary between q~0.01-0.1 g/kg in the upper
troposphere (UT), in subsiding air layers and a stratospheric intrusion. They reach up
to 0.5g/kg at UT levels inside the Intertropical Convergence Zone (ITCZ) and exceed
10g/kg at lower levels. Back-trajectories reveal that the humidity fields are largely
determined by transport.

The observed water vapour distributions are properly reproduced by 1-hourly
ECMWEF Integrated Forecasting System (IFS) short-range forecasts at T799/L91 spec-
tral resolution. As transport largely determines the water vapour fields, the IFS skill is
to a large extend based on a good representation of the dynamics. The mean rela-
tive bias accounts to few percent (0%, 3% and 6% for the three sections) being about
or even below the accuracy of the DIAL measurements of 5%. The larger deviations
between analyses and observations on small scales are due to relative spatial shifts
of features with large gradients. The correlation is quite high, ranging between 0.71
and 0.88. Over sea the analyses tend to underestimate the PBL height. At mid-levels
near deep convection the mid-troposphere tends to be analyzed too humid indicating
shortcomings in the convection parameterization. Humid tendencies are also found in
the upper troposphere, particularly in tropical regions.

1 Introduction

Atmospheric water vapour plays a key role for the global climate (e.g. Chahine, 1992),
for meteorological or chemical weather (Lawrence, 2005), and for chemical and aerosol
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processes. It is the primary greenhouse gas (Manabe and Weatherald, 1967, Shine
and Sinha, 1991). The latent heat transformations associated with its phase changes
alter the atmospheric stability, control the cloud formation (e.g. Kiehl and Trenberth,
1997; Koop et al., 2004; Karcher, 2004) and the evolution of weather systems. Rela-
tive humidity regulates radiative and chemical properties of aerosols and as the prime
source of atmospheric hydroxyl radicals, WV plays a key role in removing both, par-
ticles and trace gases from the atmosphere. In spite of its low concentration in the
stratosphere, VW alters the radiation balance (Forster and Shine, 1999; Gettleman et
al., 2004) and controls the formation of particles, e.g. affecting ozone depletion (Kirk-
Davidoff et al., 1999). Thus, accurate (re)analyses of water vapour are essential not
only for numerical weather forecast but also for atmospheric process studies, climate
modelling, trend analyses and other issues associated with the hydrological cycle.

During the last years, climate research centres and weather services as the Eu-
ropean Centre for Medium Range Weather Forecasts (ECMWF) have advanced the
humidity analyses e. g. by an improved formulation of the background error covari-
ance model for humidity (HoIm et al., 2002), by introducing data from several additional
satellite instruments (cf. Moreau et al., 2003), by the revised use of radiosondes (Leit-
erer et al., 2005), surface humidity data according to Nash (2002) and by advancing
the parameterization of moist physics (e.g. Tompkins et al., 2004). In the ECMWF
4D-Var assimilation system the specific impact of different humidity data extends to
forecasts in the medium range, not only for precipitation and water vapour but also for
other prognostic variables like geopotential, wind and temperature (Andersson et al.,
2004, 2006). As the analysis mostly adds only a few percent to the background fields
of the assimilation scheme (increments are <5% of the fields in general), humidity ob-
servations should be as little biased as possible. However, most assimilated humidity
observing systems currently exceed an absolute calibration of 10%, an error which
propagates to the total analysis and forecast errors.

In this paper we investigate the accuracy of operational ECMWF humidity analy-
ses by a detailed comparison with long-range airborne Differential Absorption Lidar
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(DIAL) observations. DIAL H,O observations possess a small bias which essentially
depends on the accuracy of the utilized H,O spectral absorption cross sections and is
little sensitive to atmospheric conditions (Poberaj et al., 2002). The skill of operational
ECMWF analyses and mesoscale numerical simulations in reproducing DIAL obser-
vations along the North Atlantic storm track region in May/June 2002 was reported
previously (Flentje et al., 2005). Here we extend our analysis to water vapour obser-
vations over Brazil and the tropical and sub-tropical Atlantic Ocean between Brazil and
Europe in mid March 2004. To this end, 1-hourly ECMWF forecasts at a spectral reso-
lution of T799/L91 were especially produced and ECMWF-based backward trajectories
are calculated.

The following section sketches the experiment, the DIAL and data evaluation, Sect. 3
presents the measurements, the ECWMF analyses and their matching in the context
of meteorological conditions. In Sect. 4, implications of skill and bias of ECMWF water
vapour analyses are discussed and summarized in Sect. 5.

2 Experimental

Water vapour and particle backscatter were measured by an airborne Differential Ab-
sorption Lidar (DIAL) during one research flight on 10 March 2004 and two consecutive
transfer flights on 14 March 2004 with a total distance of about 7000 km. The flight on
10 March went from SE Brazil (22° S, 47° W) south toward the Atlantic Ocean and re-
turned at 28° S (Fig. 1). On 14 March the Atlantic Ocean was crossed from Fernando
de Naronha, Brazil (5°S, 36°W) to South Spain (37.2°N, 6° W) with stopover in Sal
(Cape Verde Islands). The DIAL was installed onboard a Falcon 20E research aircraft
(http://www.dlr.de/FB/OP) in nadir viewing arrangement, thus profiling the troposphere
from the ground up to ~10km altitude.

As described by Ehret et al. (1999) and Poberaj et al. (2002), the DLR H,O-DIAL
DIAL transmitter was based on a Nd:YAG pumped, injection seeded KTP-OPO (Op-
tical Parametric Oscillator). Other than there, the DIAL during TROCCINOX was op-

4408

ACPD
7, 4405-4425, 2007

Evaluation of ECMWF
water vapour by DIAL

H. Flentje et al.

EG

c


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/4405/2007/acpd-7-4405-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/4405/2007/acpd-7-4405-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html
http://www.dlr.de/FB/OP

10

15

20

25

erated at 925 nm achieving a pulse energy of 18 mJ. A spectral purity of more than
99.5% was mostly achieved during in-flight operation which allowed accurate calcu-
lation of the water vapour concentrations. The 925 nm spectral region fits for water
vapour measurements from the planetary boundary layer (PBL) up to the upper tropo-
sphere with a resolution of about 500 m in the vertical and few kilometres horizontally.
In the nadir-viewing configuration the range-induced signal decrease was partly com-
pensated by the increasing H,O-absorption in the lower troposphere. Only the range
where the crossed optical depth remains below 0.9 (one way) is evaluated. System-
atic errors were due to uncertainties in the water vapour absorption line cross sec-
tion (estimated 5%, Giver et al., 2000), laser spectral impurity (1-2%), atmospheric
temperature uncertainty (<1%), and the Rayleigh-Doppler absorption line broadening
(<1.5% after correction). They summed up to about 5.5% in total. The random er-
ror of the DIAL measurements depended on the horizontal and vertical averaging of
the individual shots. In case the DIAL observations’ spatial resolution corresponded
to that of the ECMWF analyses, the random error remained well below 10%. Aerosol
properties are expressed as particle backscatter ratio, defined as the total (particle +
molecular) backscatter coefficient G,divided by the molecular backscatter coefficient
Ry = (Bpa + Bm1)/Bma (1 denoting the wavelengths). The spatial resolution depends
on the signal strength (i.e. the aerosol backscatter ratio) and typically amounts to about
100 m horizontally and few 10 m vertically.

Backward trajectories were calculated with the Lagrangian Analysis Tool (LA-
GRANTO) software package developed at the ETH Zurich by Wernli and Davis (1997).
They were driven by 6-hourly ECMWF-analyses at T511/L60 spectral resolution and
allowed for following the development of meteorological parameters along the flow. For
a more detailed comparison with the DIAL water vapour observations, 1-hourly short-
range forecasts from the ECMWF integrated forecast system (IFS) were especially
produced with a spectral resolution of T799/L91". These humidity fields were first in-
terpolated onto a regular 0.3°x0.3° latitude-longitude grid, afterwards on the individual

! http://www.ecmwf.int/products/data/technical/index.html
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flight paths of the DLR Falcon.

3 Results
3.1 Meteorological conditions

The airborne H,O-DIAL observations during the international TROCCINOX campaign
(http://www.pa.op.dir.de/troccinox) reflected typical humidity features of the sub-tropical
and tropical troposphere and may be regarded as representative for a wide range of
low latitude conditions. The humidity field observed on 10 March 2004 was affected
by an active mesoscale convective system (MCS) near Sao Paolo (-23.5° S, 46.7° W)
which formed in a moderately labile flow from central South America. Around the MCS,
scattered Cumulunimbus (Cb) clouds reached up to about 8—12 km. Over the Atlantic
Ocean, the PBL was stably stratified and only a few shallow cumulus clouds penetrated
its capping inversion. The first transfer flight on 14 March scanned humid tropical and
drier sub-tropical air with a transition zone in the free troposphere at about 9-13° N.
Figure 1 depicts the intertropical convergence zone northeast of Brazil which is asso-
ciated with the tropical Hadley circulation. The second transfer flight roughly followed
the axis of a trough along the northwest African coast and finally entered a cyclone
over Gibraltar. A stratospheric intrusion dipping down below 700 hPa along the flight
path was associated with the polar jet stream. With 0.06 g/kg (100 umole/mole) being
the threshold for stratospheric air, the hygropause outside the intrusion was located
above 200 hPa in the tropics and in regions of large scale frontal lifting. Meteosat 8
imagery depicts dust spreading out from the African continent in the easterly low-level
trade winds (the gray colour in Fig. 1).

3.2 Mesoscale Convective System on 10 March 2004

In the particle backscatter observations from 10 March (Fig. 2a) Cumulunimbus clouds
extending above the flight level indicated the MCS in the Sao Paolo area. Owing to
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beam attenuation no measurements were possible beyond thick clouds. The marine
PBL was stably stratified and partly hazy with f~3—-15 due to enhanced aerosol trans-
port from the land, e.g. the Sao Paolo plume near 24-25°S. It reached up to about
3 km over sea and to 4km a.g.l. over land. The expected sharp H,O gradient at the
top of the moist PBL top was probably smoothed by the vertical resolution of the DIAL
profiles of ~500m. There, the water vapour mixing ratio dropped 2 orders of magni-
tude from q ~10 g/kg to g ~0.1 g/kg between 3 and 5 km altitude. The convective cells
over land transported humid PBL air to the upper troposphere where it contributed
to the humidity outflow from the continent (cf. Fig. 1) appearing downwind as a layer
with enhanced humidity q ~0.5g/kg above 7 km altitude. Thus, over sea there were
three distinct layers from the ground to the upper troposphere with differing H,O mix-
ing ratios. Sporadic water vapour artefacts (e.g. at 25° S in 8—10km) occurred due to
electronic interferences.

Generally, the observed humidity patterns were correctly reproduced by the ECMWF
analysis as shown in Figs. 2b—d. While the DIAL observations were limited to heights
below the aircraft cruising level (~10km), the ECMWF analysis was depicted up to
the hygropause. The largest negative bias occurred at the top of the moist PBL which
was analyzed roughly 1km too shallow. The largest positive bias was found at the
dry intermediate layer between convective in- and outflow. This layer did not reach as
much towards the MCS in the analyses as observed by the DIAL. Another humidity
uplift pattern analyzed in the very south of the flight track was only weakly indicated
by the observations. The mean bias of the ECMWF re-analysis with respect to the
DIAL observations is about f=6.2+0.1%, with a standard error ¢, of 0.1. It was calcu-
lated using a Gaussian fit (f(x):AOexp(—22/2) with z=(x-A4)/A,, Ay and A, being the
centre and width of the Gaussian) of the frequency distribution of relative differences
Ag=2*(9ecmwE — 9piaL) (Gecmwe+9piaL) @s displayed in Fig. 6. The linear correlation
coefficient is r=0.71.
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3.3 Hadley cell on 14 March 2004

During the first flight on 14 March the Hadley cell was crossed (aslant) as indicated
in Fig. 3c. Organized convection near the equator, evident as Cb clouds in Fig. 3a,
lifted moist boundary layer air to the upper troposphere (note that clouds are circled
for security reasons). The humidity uplift calculated by the ECMWF IFS reaches up
to 14km corresponding to the observation that convection during the TROCCINOX
campaign was generally limited to heights below 12—-14km. A moist layer extended
from 20° N to beyond the equator where H,O mixing ratios g~0.5 g/kg reach up to 4 km
near the Cape Verde Islands (23°W, 16°N) and above 9km near 0°N. As the H,O
absorption line saturated in the lower part of this layer, this region is masked in Fig. 3.
Similar as on 10 March an upper tropospheric humid layer (q=0.5 g/kg) extended from
the equator till 15° N while the mid-troposphere is dry (q<0.1 g/kg).

Again the water vapour distribution along the flight path was reproduced in detail by
the ECMWF analyses as shown in Fig. 3d except for the location of the dry intermedi-
ate layer which extended further towards the convection cells in the observations. The
top of the moist lower tropospheric layer closely follows the observations. In the upper
middle troposphere (8—9 km) the H,O mixing ratios of the ECMWF model tend to be
too high, i.e. too much water vapour was transported up to these levels by the model.
On the other hand, the extremely dry regions observed below the upper humid layer
were not captured by the model, a behaviour also noted by Ovarlez and v. Velthoven
(1997) in other cases. According to the frequency distribution of relative differences
Aq in Fig. 6, the overall g-bias of the ECMWF analyses for this flight is again small
positive and amounts to f=3+0.07%, the standard error o, being 0.07. The large Aq
tails on both sides of the distribution correspond to small shifts of analyzed vs. ob-
served humidity structures emphasized by large gradients at their boundaries. The
linear correlation coefficient is r=0.88.
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3.4 Stratospheric Intrusion on 14 March 2004

The second flight section on 14 March exhibited smaller spatial scales due to stirring
of dry and humid air masses. The hygropause (as defined by the q=0.06 g/kg contour)
was observed several kilometres lower than in the tropics and sub-tropics. In the north
a narrow intrusion of air originating from the upper troposphere and lower stratosphere
(UT/LS) tilted downward and southward from 35°N to 30°N with H,O mixing ratios
below 0.2g/kg. The moist maritime PBL (q>2 g/kg) extended over the lowest 1.5—
2km, except where convection in the cold sector of the Gibraltar cyclone (35-37° N)
lifted humid air up to 4 km.

Even this rather complex H,O distribution was properly analyzed by the ECMWF
IFS. According to a Gaussian fit of the differences-frequency distribution the total bias
was estimated to be f~0.0+0.08, the standard error ¢,, being 0.06. The linear correla-
tion coefficient is again quite high, r=0.84, however the differences exhibit considerable
small scale variability (Fig. 3d), typical for small spatial shifts in presence of large gradi-
ents. The shape of the intrusion was captured well by the ECMWF model but the slope
of its axis was a bit too large. Particularly in the south, the PBL height was analyzed
slightly too low and the corresponding air too moist.

4 Discussion

The ECMWEF analyses closely reproduced the observed water vapour distributions with
a total bias of few percent for the described cases. This value is in the range of the esti-
mated uncertainty of the DIAL measurements. Noticeable regularities in the deviations
were imposed by the spatial and temporal resolution, the coverage/accuracy of as-
similated water vapour observations, small scale transport/mixing and (micro-)physical
parameterizations of the model. In order to minimize errors caused by the linear tem-
poral interpolation between the operationally available 6 hourly ECMWF analyses, we
used short-range forecasts from the IFS with 1-hourly temporal resolution by apply-
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ing the IFS. This significantly reduced the displacements of analyzed vs. observed
features due to the rapidly evolving weather systems. Displacements are evident in
Figures 2d and 3d as enhanced differences |Aq| which are aligned with the edges of
water vapour features, partly adjacent with alternating signs. The |Aq|-values may be
large in the presence of large gradients, but overall do not effect the mean bias sig-
nificantly. Instead, these displacements broaden the frequency distribution of relative
differences as shown in Fig. 6. The standard deviation 6=66+0.1% of the frequency
distribution for the 10 March flight is significantly larger than for the two transfer flights
which amounts to 6=32+0.07% and 0=38+0.08%, respectively. This discrepancy is
due to the larger areas with negative bias at the PBL top and positive bias at mid-levels
near the MCS. However, the widths of all frequency distributions are significantly lower
than those calculated for the linearly interpolated difference fields resulting from the
operational 6-hourly analyses (75% and 90% for the 1st and 2nd flight on 14 March
2004).

As the PBL height tends to be analyzed too low (also noted by Holm et al., 2002) and
owing to the large water vapour gradient, the PBL top and the associated entrainment
zone is a distinctive location of enlarged analysis errors. The analyses do not indicate
rapid ongoing air mass changes or changes in vertical motion. Moreover, the PBL
depth over sea usually exhibits no strong diurnal cycle which both would give rise to
displacements of the PBL height due to temporal lags or spatial shifts. This suggests
that the lack of constraint by the assimilated temperature and humidity profiles may be
a main reason for the displaced PBL heights. In correspondence with the observations,
the modelled depth of the entrainment zone is strongly affected by nearby convection.

The upper PBL seems slightly too moist in the ECMWF analyses compared to the
available H,O DIAL data (cf. Sect. 3.3), probably indicating shortcomings in the param-
eterization of convection and moist processes in the IFS. Furthermore, the analyzed
H,O mixing ratios exceeded the observations in the dry intermediate layers between
convective in- and outflow regions for both the MCS on 10 March and the Headley cell
on 14 March. Either the turbulent mixing out of convective towers at mid-levels was
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overestimated or the convection depth may be underestimated for parts of the cells
causing an unrealistic outflow at mid levels. The cirrus outflow at the top in each case
was captured quite well by the ECMWF model.

On synoptic scales the humidity fields are largely controlled by transport of back-
ground humidity rather than constrained by the assimilated water vapour information
(Bengtsson et al., 2004). Therefore, the good agreement of the ECMWF IFS with the
lidar observations confirms the accuracy of the model transport scheme. Particularly,
the 2nd transfer flight to Spain demonstrates the model’s skill to reproduce intense
dynamical processes. Larger deviations only occur on small scales or in the vicin-
ity of rapid evolvement. This is indicated by the correspondence of the large model-
observation difference with the humidity change rate between the two successive op-
erational analyses before and after the respective flights. The latter is indicated in
Figs. 2d and 3d by contours of 30% and 100% change in water vapour mixing ratio be-
tween the analyses at 06:00 and 12:00 UT for the 1st flight and at 12:00 and 18:00 UT
for the 2nd flight.

The intensity of the stirring processes resulting in the observations during the transfer
flights on 14 March 2004 is revealed by 9-d backward trajectories as shown in Figs. 4
and 5. On both flights, the water vapour distribution closely reflects the ongoing trans-
port. Thus on the other hand, the good agreement between analyzed and observed
humidity fields confirms the accuracy of the trajectories (i.e. the model dynamics) and
gives trust in the related parameters.

The spatial resolution of the analyzed water vapour fields T799 (about 25 km) is the
highest available from the current model system. There the analyses have already
been interpolated from their original reduced Gaussian grid to a regular lat-lon grid,
which has little effect in tropical regions. The fields at T511/L60 resolution interpolated
from 6-hourly analyses exhibited slightly larger shifts of structures, which however is an
issue of temporal interpolation rather than sensitivity to the different resolutions. In the
horizontal direction, the observed DIAL H,O fields were degraded from their original
resolution of 2-3 km to the ECMWF model resolution by moving averaging over 25 km.

4415

ACPD
7, 4405-4425, 2007

Evaluation of ECMWF
water vapour by DIAL

H. Flentje et al.

EG

c


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/4405/2007/acpd-7-4405-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/4405/2007/acpd-7-4405-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

In the vertical, the observed DIAL H,O data were extracted at the ECMWF model
levels. An exact tuning of the resolution is difficult since the model’s effective vertical
resolution does not only depend on the spacing of the model levels but also on the sub-
grid and numerical diffusion. Furthermore, the vertical resolution can be diminished by
the implicit smoothing of vertical gradients by horizontal averaging of tilted structures
which depends on the aspect ratio of vertical to horizontal atmospheric scales. Possible
3-D inhomogeneity induced uncertainties become large in cases when the crossed
structures exhibit large gradients in the direction perpendicular to the flight section.
A cross flight section air flow moves such inhomogeneities through the observation
plane in a hardly predictable manner. If the structures flowing through the observation
plane are continuous, these gradients may be expressed in terms of local humidity
tendencies between subsequent analyses dates. The results shown in Figs. 2d and
3d indicate the largest deviations from the observations on small scales are caused by
this effect.

5 Summary

Specially calculated ECMWF water vapour analyses at T799/L91 spectral resolution
have been evaluated by airborne DIAL H,O observations over Brazil and from Brazil to
south Europe in mid-March 2004. The two-dimensional along-flight sections crossing
the tropical and sub-tropical Atlantic Ocean (5° S—37° N) exhibit large humidity gradi-
ents with H,O mixing ratios covering three orders of magnitude between q~0.01 to
g~10g/kg. The observed water vapour distributions were properly analyzed by the
ECMWEF IFS at T799/L91 spectral resolution. As transport largely determines the wa-
ter vapour fields, the IFS skill is to a large extend due to good representation of the
dynamical processes. The mean relative bias accounted to few percent (0+£0.08%,
3+0.07% and 6+0.1% for the three sections) and thus was about or even below the
estimated accuracy of the DIAL measurements of 5%. The linear correlation coeffi-
cients were quite high, being r=0.71, r=0.88 and r=0.84 for the 10 March flight and the
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two 14 March flights, respectively. The larger deviations between analyses and obser-
vations occurred on small scales and were caused by spatial shifts in the presence of
large gradients. Over sea the analyses tend to underestimate the PBL height, probably
indicating a lack of constraint by available water vapour profiles for the assimilation.
Near deep convection the mid-troposphere tended to be too humid, indicating short-
comings in the convection parameterization. Moreover, humid tendencies are found in
the upper troposphere, particularly in tropical regions.
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Upper tropospheric water vapor, 20040310 18UTC
-80° -60° -40°

Fig. 1. METEOSAT 8 VIS channel showing clouds and dust from central Africa on 14 March
2004, 12:00 UT and down right ECHAM model simulation of upper tropospheric water vapour
on 10 March 2004, 18:00 UT, each with aircraft flight track from Fernando de Naronha (Brasil)
to Seville (Spain) via Sal (Cape Verde Islands) and crossing the south Brazilian coast near Sao
Paolo.
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Fig. 2. Backscatter ratio R (a) and water vapour mixing ratio q in g/kg (b) along DIAL flights on
10 March 2004, 18:00-20:00 UT using log colour scales. Isolines are pressure. H20 profiles
are averaged over 700 m vertically and ~3 km horizontally. (¢): ECMWF T799/L91 operational
analysis on sigma levels (~30), interpolated in space and time on the flight tracks. Contours
are potential temperature (grey), horizontal wind speed (black) and potential vorticity at 2, 2.5
and 3PVU. (d): Difference of water vapour mixing ratios qecywr — Aoiar/ (Gecmwre/2 + Apial/2)
from the upper panels on linear colour scale with black contours of relative g-change (30%,
100%) between 06:00 UT/12:00 UT and 12:00 UT/18:00 UT. Note the different altitude range
of the ECMWF panel.
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Fig. 3. Backscatter ratio R (a) and water vapour mixing ratio q in g/kg (b) along DIAL flights
on 14 March 2004, 11:00-14:00 UT and 16:30—-19:00 UT using log colour scales. Isolines are
pressure. H,O profiles are averaged over 700 m vertically and ~3 km horizontally. (¢): ECMWF
T799/L91 operational analysis on sigma levels (~30), interpolated in space and time on the
flight tracks. Contours are potential temperature (grey), horizontal wind speed (black). (d):
Difference of water vapour mixing ratios decywr — 9oial’ (Qecmwe/2 + Apia/2) from the upper
panels on linear colour scale with black contours of relative g-change (30%, 100%) between
06:00 UT/12:00 UT (southerly flight) and 12:00 UT/18:00 UT (northerly flight). Note the different
altitude range of the ECMWF panel. 4429
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Fig. 4. 7-day ECMWF backward trajectories arriving at the DLR Falcon flight track at (a)
300 hPa and (b) 700 hPa on 14 March 2004 12:00 UTC, color coded with temperature.
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Fig. 5. 9-day ECMWF backward trajectories arriving at the DLR Falcon flight track at (a)
500 hPa and (b) 700 hPa on 14 March 2004 18:00 UTC, colour coded with temperature.
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