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Abstract

Gas-phase elemental mercury (Hg◦) was measured aboard the NASA DC-8 aircraft
during the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) cam-
paign in spring 2006. Flights were conducted around Mexico City and on two sub-
sequent deployments over the North Pacific based out of Honolulu, Hawaii and An-5

chorage, Alaska. Data obtained from 0.15–12 km altitude showed that Hg◦ exhibited
a relatively constant vertical profile centered around 100 ppqv. Highly concentrated
pollution plumes emanating from the Mexico City urban agglomeration revealed that
mixing ratios of Hg◦ as large as 500 ppqv were related to combustion tracers such as
CO, but not SO2 which is presumably released locally from coal burning, refineries, and10

volcanoes. Our analysis of Mexico City plumes indicated that widespread multi-source
urban/industrial emissions may have a more important influence on Hg◦ than specific
point sources. Over the Pacific, correlations with CO, CO2, CH4, and C2Cl4 were dif-
fuse overall, but recognizable on flights out of Anchorage and Honolulu. In distinct
plumes originating from the Asian continent the Hg◦- CO relationship yielded an aver-15

age value of ∼0.56 ppqv/ppbv, in good agreement with previous findings. A prominent
feature of the INTEX-B dataset was frequent total depletion of Hg◦ in the upper tropo-
sphere when stratospherically influenced air was encountered. Ozone data obtained
with the differential absorption lidar (DIAL) showed that the stratospheric impact on the
tropospheric column was a common and pervasive feature on all flights out of Honolulu20

and Anchorage. We propose that this is likely a major factor driving large-scale sea-
sonality in Hg◦ mixing ratios, especially at mid-latitudes, and an important process that
should be incorporated into global chemical transport models.

1 Introduction

In the lower troposphere (0–6 km) elemental mercury (Hg◦) is observed ubiqui-25

tously with contemporary mixing ratios at the parts per quadrillion by volume (ppqv;
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1 ng m−3=112 ppqv) level. Accumulation of mercury in lake sediments of both hemi-
spheres shows a worldwide increase in its atmospheric deposition that is highly corre-
lated with industrialization and emissions of CO2 from combustion of fossil fuels (Lam-
borg et al., 2002). Although atmospheric measurements are exceedingly sparse, mix-
ing ratios near the Earth’s surface appear to have decreased from the mid- 1980’s5

to 1990’s and stayed constant thereafter (Slemr and Scheel, 1998; Ebinghaus et al.,
2002; Slemr et al., 2003; Kim et al., 2005).

The sources and sinks of atmospheric mercury are just beginning to be character-
ized and quantified. Anthropogenic sources appear to be dominated by emissions
from combustion of coal, waste incineration, space heating, transportation, mining,10

and chlor-alkali facilitites (Seigneur et al., 2004, 2006). Natural emissions occur from
mercury-enriched soils and vegetation, forest fires, volcanoes, and the oceans (Sigler
et al., 2003; Sigler and Lee, 2006; Brunke et al., 2001; Friedli et al., 2001, 2003a,
2003b, 2004; Ebinghaus et al., 2007). Global budget estimates put anthropogenic
sources at ∼2100 metric tons yr−1 with nearly equal amounts derived from natural pro-15

cesses and re-emission (Seigneur et al., 2004; Mason and Sheu, 2002; Pacyna and
Pacyna, 2002), for a total input of 6000–6500 metric tons yr−1 (Streets et al., 2005).
However, accurate estimation of natural source strengths is confounded by re-emission
of anthropogenic mercury that has deposited to ecosystems and oceans.

There have been few measurements of Hg◦ over the North Pacific. The first airborne20

observations were made during the ACE-Asia 2001 campaign over the western Pacific.
Plumes containing industrial emissions contained the highest levels that reached 706,
336, and 336 ppqv from China, Korea, and Japan respectively (Friedli et al., 2004).
Background concentrations of Hg◦ from the surface to 7 km were estimated to be about
146 ppqv. Overall, the vertical distribution of Hg◦ was ∼224 ppqv at 0.5 km, decreasing25

slightly to 190 ppqv from 1 to 6 km, and then again sharply to 146 ppqv at 7 km. In a
later ground-based study directly downwind of Asian continental outflow at Okinawa,
Japan, the mean Hg◦ concentration was 224 ppqv over the period 23 March to 2 May
2004 (Jaffe et al., 2005).
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Asian Hg◦ emissions have also been assessed through sampling on the U.S. west
coast at Mount Bachelor, Oregon. The site is located at 2.7 km altitude, with discreet
Asian pollution plume events sampled periodically during springtime. The instrument
arrangement measured total gaseous and particulate Hg (TGM) with an average con-
centration of 198 ppqv from 28 March to 19 May 2004 (Weiss-Penzias et al., 2006).5

Time periods impacted by Asian emissions were identified by TGM-CO ratios charac-
teristic of Asian sources (∼0.005 ng m−3/ppbv or 0.56 ppqv/ppbv). The largest of these
events (25 April) exhibited a TGM concentration near 280 ppqv, and a TGM-CO ratio
of 0.045 ng m−3/ppbv or 5.0 ppqv/ppbv (Jaffe et al., 2005; Weiss-Penzias et al., 2006).

Over the eastern Pacific in spring 2002, Radke et al. (2007) found much lower con-10

centrations where the median ranged from 134 ppqv at 0.5 km to 56 ppqv at 8 km dur-
ing the Intercontinental Transport and Chemical Transformation Experiment – 2002
(ITCT2K2). Using the variance of their measurements, a lifetime of ∼100 days was
determined for Hg◦ compared to earlier estimates that suggested a much longer time-
frame of 0.5–2 years (Schroeder and Munthe, 1998).15

The Tropospheric Chemistry Program (TCP) at the National Aeronautics and Space
Administration has conducted airborne science missions over the past 25 years to un-
derstand the human impact on the global atmosphere (McNeal et al., 1998). A primary
focus has been on quantifying the impact of long-range transport of trace gases and
aerosols on the changing chemical composition of the troposphere. Special emphasis20

has been placed on the North Pacific troposphere due to accelerating Asian emis-
sions during the last two decades (Streets et al., 2001). Four major Pacific expeditions
have been conducted by the TCP since 1991 (Hoell et al., 1996, 1997; Jacob et al.,
2003), with the Intercontinental Chemical Transport Experiment Phase B (INTEX-B)
being the most recent one in spring 2006. Instrumentation for measurement of Hg◦

25

was integrated into the University of New Hampshire (UNH) flight package for INTEX-B
to examine its large-scale distribution in North Pacific air masses traveling toward the
North American continent.
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2 Methods

2.1 Field deployments

The INTEX-B flight series was conducted in two deployments, with the first component
based out of Houston, Texas, and the second half split between Honolulu, Hawaii and
Anchorage, Alaska. The six Houston flights (4–19 March 2006) were focused on the5

Mexico City area and the MILAGRO mega-city air quality study occurring there 1–30
March 2006. After a three-week break with the aircraft based at Moffett Field, Cal-
ifornia, the DC-8 flew three flights out of Honolulu (23–28 April 2006) and then four
additional flights from Anchorage (4–12 May 2006). There were an additional 3 transit
flights between the hub locations. Mercury measurements were not obtained during10

the initial transit from Grand Forks, North Dakota to Houston and then on the first lo-
cal flight (#3) due to a data acquisition problem with the computer. Once this was
corrected, data was obtained on all remaining flights.

2.2 Airborne measurements

The inlet arrangement utilized our existing high flow manifold (1500 standard liters per15

minute) for HNO3 (Talbot et al., 1997a, 1999). It is designed with a diffuser that boosts
the internal pressure of the inlet by up to 150 mbar over ambient to facilitate attaining
high flow rates in the upper troposphere, especially when the DC-8 is cruising at Mach
0.88 (Fig. 1). The diffuser and shroud assembly was anodized with mil-spec coating
MIL-A-8625E, Chromic Type 1, Class Z with black color. This provided a very hard20

and smooth surface over the aluminum which reduced drag significantly and acted as
an inert surface. The manifold pipe was coated with a vapor deposited fused-silica
and heated to 40◦C during flight. Flow was maintained by ram pressure and a 400 Hz
blower on the exhaust port. For the Hg◦ measurements the high flow air stream was
sub-sampled through a heated (40◦C) PFA Teflon line just a few centimeters after the25

flow entered the main 10 cm diameter manifold (Fig. 1).
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A modified Tekran 2537A cold vapor atomic fluorescence spectrometer was used
to measure Hg◦ in a sequential dual channel arrangement with a 150 s time response
and limit of detection of ∼10 ppqv. Constant mass flow was stabilized through the
instrument by the addition of a vacuum source from one of our venturi pumps used
for aerosol sampling. The internal pressure of the instrument was maintained during5

the analysis stage at a slight overpressure to sea level using upstream control set to
1100 hPa. Mercury-free zero air was generated onboard the DC-8 using cabin air and
our own Hg-stripping cartridge train assembly. Zeroing was performed in-flight, and
there was no detectable Hg◦ in the zero air stream at any time during INTEX-B.

To the best of our knowledge, we conducted the first in-flight standard additions for10

Hg◦. On non-flight days these were conducted on the ground and then on every sci-
ence flight at altitudes ranging from 1–12 km. Overall, the Hg◦ permeation rate was
reproducible to within ±9.2% at 0.098±0.009 ng min−1 (n=312). Instrument calibration
was cross-checked using injections from the headspace of a thermoelectrically cooled
Hg◦ reservoir (Tekran model 2505). This was done during instrument integration prior15

to field deployment, and then again back at UNH after INTEX-B was completed. The
calibration was reproducible to within ±3% over this five month time period. The re-
sponse factor (peak area counts pg−1 Hg◦) was calculated for each of the two channels
and found to be constant to ±1% for the entire data set (Fig. 2). The average response
factor for each channel (7170 and 7325 counts pg−1) was used in the preparation of20

the final data to provide an internally consistent data product.
The precision of the measurements was assessed by sampling ambient air at ground

level using three co-located 2537A instruments. This was done at our local AIRMAP
(http://www.airmap.unh.edu) field site (Thompson Farm) in Durham, New Hampshire
(Mao and Talbot, 2004) immediately after the INTEX-B campaign. These instruments25

were inter-calibrated using a syringe injection from a Tekran 2505 unit prior to the am-
bient air measurement time periods. We found that two brand new instruments agreed
within ±4–5%, while including a one-year old instrument in the average increased it to
±8–10%. Based on these comparisons, it appears that the precision is on the order of
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±10%. The accuracy of the Hg◦ measurements should be around ±5% due to careful
calibration with the headspace injections. This may need to be re-assessed when rig-
orous calibration standards are available from the U.S. National Institute of Standards
and Technology.

The Tekran instrument measures TGM (Hg◦ + RGM) as Hg◦ (reactive gaseous mer-5

cury = RGM = HgCl2 + HgBr2+ HgOBr + . . . ). However, we are not aware of any
published information on the direct response of the 2537A to RGM species. At this
time we do not have a reliable RGM calibration source in which we have high confi-
dence regarding its operation and output; this is work in progress. In addition, we are
unsure of the passing efficiency of RGM through our heated PFA line, but we config-10

ured our inlet design to facilitate its quantitative transfer based on extensive experience
with airborne HNO3 measurements. We believe that it should pass RGM with high ef-
ficiency based on our current understanding of measuring highly reactive trace gases.
In practice the amount of TGM measured over a several minute time interval essentially
represents Hg◦ unless there is an unusually large amount of RGM present. In most en-15

vironments, a few minute sampling resolution for RGM is too short to contribute to the
measured TGM. Although the distribution of RGM is not known with much certainty, it
is predicted to increase with altitude reaching ∼25 ppqv at 12 km (Selin et al., 2007).
Until we have a better understanding of atmospheric mercury and its speciation, we
have chosen to report our TGM measurements as Hg◦.20

The complementary data used here from numerous instruments has a long history
of inclusion in the DC-8 TCP payload, and the techniques were essentially identical
to those described previously by Jacob et al., (2003). Our analysis utilized data for in
situ O3, CO, CO2, CH4, hydrocarbons, halocarbons, and remotely sensed O3 from the
DIAL. For the in situ measurements, the TCP data center generated a merged product25

averaged to the Hg◦ time stamp. This was used extensively to understand the principal
factors influencing the large-scale distribution of Hg◦ during INTEX-B.
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3 Large-scale distribution

The large-scale distribution of Hg◦ during flights 4–19 is presented in Fig. 3. The major-
ity of Hg◦ mixing ratios fell within the range of 60–150 ppqv in all three sampling regions.
Exceptions to this were Hg◦ mixing ratios of 200-500 ppqv in plumes in the vicinity of
Mexico City and Hg◦ dropping to essentially zero in air masses at ≥10 km altitude that5

were impacted by stratospheric inputs. Relatively few distinct plumes of Asian conti-
nental outflow (>200 ppqv) were encountered over the eastern North Pacific. These
interesting cases of high and low Hg◦ are examined in more detail in Sects. 3.2 and
3.3.

The vertical distribution of Hg◦, O3, and CO, covering the latitudinal band of 14◦–10

62◦ N over the North Pacific basin, is presented in Fig. 4. An interesting feature of
the data from the Mexico City area was the strikingly reduced mixing ratios of CO,
and to a lesser extent O3, above 4 km altitude. Backward trajectories indicated that
air masses sampled in the middle and upper troposphere originated over the tropical
North Atlantic. To illustrate this point, a 5-day kinematic backward trajectory, calculated15

by the Florida State University group, is shown in Fig. 5. This trajectory corresponded
to a constant altitude leg flown near the midpoint of flight 7. If the trajectories are
run backward farther in time, most of them meander in the equatorial region north
of the Inter-Tropical Convergence Zone. This indicates that these air masses aged
photochemically over the remote tropical North Atlantic.20

The DIAL data show that there was a preponderance of low O3 in the 20-40 ppbv
range up to 12 km altitude. This was apparent in the DIAL data for every flight con-
ducted in the Mexico City area, and we use flight 7 to depict this pronounced feature
in the vertical distribution (Fig. 6). The associated air masses most likely originated at
low altitude over the equatorial Atlantic and were lifted to higher altitudes by convective25

activity, as observed over the Pacific on previous DC-8 airborne missions (Browell et
al., 1996, 2001, 2003a). The fact that Hg◦ did not follow the CO altitude trend (Fig. 4)
indicates that it is not being depleted rapidly in the Tropics. This suggests that oxidation
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processes and conversion to RGM with subsequent removal by convective scavenging
were not efficient sinks during this season. In particular, abundant equatorial OH does
not appear to have a large impact on the Hg◦ distribution. Indeed, slow removal of Hg◦

in the troposphere by OH was surmised recently through theoretical considerations by
Calvert and Lindberg (2005).5

Our data provide the first detailed look at the vertical distribution of Hg◦ in the middle
and upper troposphere (Fig. 4). In moving from low to high latitudes we observed the
expected patterns in O3 and CO: (1) a general increase in CO and the presence of dis-
tinct plumes due to transport of Asian emissions across the Pacific and, (2) an increas-
ing impact of the stratosphere on the troposphere above 6 km resulting in increased10

O3 and decreased CO. The overall corresponding latitudinal trends in Hg◦ were subtle,
as illustrated by the data binned (average ± standard deviation) in 1 km increments
(Fig. 7). In the boundary layer mixing ratios of Hg◦ were essentially indistinguishable
between the three study regions. From 2–7 km the average mixing ratio of Hg◦ was
lowest around Mexico City and as much as 25 ppqv higher at mid-to-high latitudes over15

the north Pacific. Above 8 km there was little variation in the average mixing ratios
of Hg◦ observed during the Mexico City based flights, with values centered around
80 ppqv. As the study area moved northward, sharp decreases in average values were
documented. At 11.5 km altitude, the steepest decline occurred in the high latitude
flights out of Anchorage where the average mixing ratio of Hg◦ was 39±42 ppqv with a20

median of 13 ppqv. These low mixing ratios were driven by the substantial number of
150 s measurement intervals with no detectable Hg◦ (Talbot et al., 2007).

There have been few measurements of Hg◦ over the oceans. Laurier et al. (2003)
found a relatively constant 280 ppqv over the North Pacific during a May 2002 cruise
between Osaka, Japan, and Honolulu, Hawaii. These relatively high concentrations25

were collected about ∼10 m above the sea surface and could be influenced by recent
oceanic emissions of Hg◦. During ACE-Asia 2001 over the western Pacific Friedli et
al. (2004) observed an average TGM concentration of about ∼225 ppqv in the marine
boundary layer (MBL). Over the eastern Pacific just offshore from California, Oregon,
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and Washington in spring 2002, measurements of Hg◦ during ITCT2K2 yielded an
average MBL concentration of ∼135±22 ppqv (Radke et al., 2007). The Radke et
al. (2007) data are well within the range of our MBL (<2 km) grand mean value of
105±27 ppqv (n=691).

We note that, on the average and over a large geographic region, there was no5

noticeable removal of Hg◦ in the MBL based on the vertical profiles. The following sce-
nario, which is largely speculative, may explain this result. In the MBL, rapid oxidation
of Hg◦ through reactions with marine-derived halogen species (e.g., Cl, Br, Cl2, Br2,
BrCl, BrO) (Oum et al., 1998; Knipping et al., 2000; Laurier et al., 2003) to form RGM
and particulate mercury (HgP ) may lead to efficient loss of mercury via dry and wet10

deposition. In the surface ocean RGM may be reduced to Hg◦ and reemitted to the
atmosphere (Laurier et al., 2003; Mason and Sheu, 2002). Rapid ocean-atmosphere
recycling of Hg◦ in the MBL (Strode et al., 2007) could account for our observed Hg◦

and obscure the oceanic sink.

3.1 Correlation with source tracer species15

Regional correlations between Hg◦ and CO, CO2, CH4, and C2Cl4 are illustrated in
Fig. 8. Although these relationships are somewhat diffuse, they suggest a continental
urban source for Hg◦ in the sampled air masses, especially at latitudes downwind of
Asian and possibly European sources. It is well known that there is rapid and sub-
stantial export of polluted air masses to the North Pacific from the Asian continent in20

springtime (Talbot et al., 1997b; Russo et al., 2003). Kinematic backward trajectories
calculated along the INTEX-B flight tracks indicated that the plumes originated over
the Asian continent usually 2–3 days prior to our sampling of them (not shown). The
general correlation of Hg◦ with C2Cl4 in these plumes is indicative of urban/industrial
sources, and there was also an identical relationship with CHCl3 (not shown) but not25

halon-1211 (CF2ClBr) which is a fairly recent specific tracer of Chinese urban emis-
sions (Blake et al., 2003). The apparent correlation of Hg◦ with CH4 and other hy-
drocarbons such as C2H6, C2H2, and C3H8 (not shown) likely reflects their co-located
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sources in Asia such as landfills, wastewater treatment, and bio/fossil fuel burning
(Bartlett et al., 2003). There was little or no correlation of Hg◦ with SO2, CO2, or
aerosol-SO2−

4 as might be expected from the large and increasing emissions from coal
combustion in China (Streets et al., 2005). This result probably reflects the influence of
wet convective processing on Asian sulfur emissions and a complexity of sources for5

CO2.
Overall, the correlations were weaker in the Honolulu dataset and essentially nonex-

istent around Mexico City except in concentrated pollution plumes. At low latitudes
this may have been the result of aged well processed equatorial air masses sampled
above 4 km altitude. This consequently was reflected in, for example, the mixing ra-10

tios of CO2 being several ppmv less at low compared to mid-to-high latitudes (Fig. 8).
These trends were present despite CO2 reaching its seasonal maximum mixing ratio
in March (Mexico City) and approaching the high northern latitude minimum in May
(Anchorage).

Pollution plumes originating from Mexico City were easily identifiable by their anoma-15

lously enriched mixing ratios of C3H8 (Blake and Rowland, 1995), on the order of tens
of ppbv. The largest mixing ratios of Hg◦ observed during INTEX-B were also found
in these plumes. The plumes, sampled near 2.6 km (i.e., near the altitude of Mexico
City), were thin well defined layers rich in combustion related trace gases represented
by CO in Fig. 9. The highest mixing ratio of Hg◦ in the Mexico City plumes approached20

500 ppqv (Fig. 9, lower panel), coincident with C3H8 levels near 30 ppbv. While some
of the C3H8 was undoubtedly a combustion byproduct, its exceedingly high mixing ra-
tios and C2H6/C3H8 ratios <0.5 indicate that leakage is still occurring from liquefied
petroleum storage on a massive scale as identified by Blake and Rowland (1995) more
than a decade ago. Moreover, many of the layers contained mixing ratios of HCN and25

CH3CN at several ppbv which is indicative of combustion contributions from biomass
burning. There were not, however, coincidently enhanced mixing ratios of the biomass
burning tracer CH3Cl, a result that complicates source identification. There was little
correspondence between Hg◦ and SO2 which presumably is due to emissions from
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coal combustion, refineries, and active volcanoes in the area. In fact, Hg◦ and SO2
were almost anti-correlated in these layers (Fig. 9), and all the other ones encountered
during the Mexico City flight series. Our analysis of the composition of these Mex-
ico City plumes indicates that widespread multi-source urban/industrial emissions may
have a more important influence on Hg◦ than specific point sources.5

3.2 Plume Hg◦-CO relationships

It is apparent from the vertical distributions of Hg◦ and CO (Fig. 4) that pollution plumes
were sampled in all three study areas. These data were extracted from the dataset
by calculating the median CO mixing ratio in 2 km altitude bins to generate subsets
with several hundred data points in each. The data corresponding to CO values10

greater than the median value are plotted in Fig. 10. We were able to fit the data
from the flight series in Honolulu and Anchorage with a linear correlation that produced
slopes of 0.37±0.07 ppqv/ppbv and 0.66±0.05 ppqv/ppbv respectively. The data ob-
tained around the Mexico City area exhibited too much scatter to reliably determine a
relationship between Hg◦ and CO with the few measurements obtained in the highly15

concentrated plumes emanating from Mexico City. We also examined the Hg◦-CO2
relationship in all three study locations, but the scatter was too great to provide mean-
ingful information.

For comparison to our Hg◦- CO correlations, Jaffe et al. (2005) reported a mean
value of 0.63±0.18 ppqv/ppbv determined at Okinawa, Japan and a similar value for20

Asian plumes sampled at Mount Bachelor, Oregon. The Asian plume data collected
at Mount Bachelor between March 2004 and September 2005 was summarized by
Weiss-Penzias et al. (2007), and yielded 0.52±0.15 ppqv/ppbv. Friedli et al. (2004) also
examined the Hg◦- CO relationship in Asian emissions over the western Pacific during
ACE-Asia-2001. They found no clear relationship and attributed it to the suite of mixed25

combustion sources sampled in the same air masses. In the Shanghai plume, sampled
separately, a value of 0.63 ppqv/ppbv was determined. These two studies close to Asia
and our data for the central North Pacific all indicate that Asian, in particular continental
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outflow from China, has a characteristic Hg◦-CO ratio near 0.56 ppqv/ppbv. In the
U.S. with lower mercury emissions (Pacyna and Pacyna, 2002), we have determined a
distinguishing value for the Northeast of ∼0.22 ppqv/ppbv (Mao et al., 2007). This value
is similar to what was found on one flight over the Los Angeles Basin where the Hg◦-CO
relationship varied from 0.17 to 0.27 ppqv/ppbv (Radke et al., 2007). Somewhat lower5

Hg◦- CO emission ratios result from biomass burning in South America, South Africa,
Canada, and the U.S., falling within the rather narrow range of 0.67–2.4±10−7 mol/mol
(∼0.16 ppqv/ppbv) (Ebinghaus et al., 2007).

3.3 Hg◦ depletion in upper troposphere

A prominent feature of the INTEX-B dataset was the frequent total depletion of Hg◦
10

(∼zero ppqv) in the upper troposphere/lower stratosphere (Talbot et al., 2007). Deple-
tion (i.e., Hg◦<50 ppqv, the minimum observed in the lower troposphere) was observed
on four of the six flights flown from Anchorage, Alaska, and on one flight from Houston,
Texas to Moffett Field, California during March 2006. The mixing ratios of O3 in these
air masses were commonly 200–400 ppbv, and peaked near 1 ppmv during flight 14.15

A negative correlation between Hg◦ and O3 was also observed previously at 6–8 km
altitude during two ITCT2K2 flights along the U.S. west coast (Radke et al., 2007).

The DIAL data, for example, show that on flight 16 the tropopause folding region
north of 48◦N indicating that the DC-8 was well within this stratospherically influenced
region during three Hg◦ depletion events (Fig. 11). It also appears that the stratospheric20

influence (i.e., elevated O3) penetrated downward to 2 km altitude. Overall, the DIAL
data demonstrate that a pervasive stratospheric impact on the tropospheric column
was a common feature of all flights out of Honolulu and Anchorage.

Our previous measurements have shown that in tropospheric air impacted by strato-
spheric inputs there is good correspondence between O3 and potential vorticity over25

large regions (Browell et al., 2003a, b). Mixing of stratospheric and tropospheric air
would effectively reduce the mixing ratio of Hg◦ in the free troposphere by addition of
stratospheric air containing little or no Hg◦. Eventually this impact must filter down into
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the MBL, but there was no evidence of a gradient in the Hg◦ mixing ratio at low altitude
(Fig. 7). Because tropopause folding events occur with highest frequency in late winter
and spring (Seo and Bowman, 2001; Holton et al., 1995), they are likely a major factor
driving large-scale seasonality in tropospheric Hg◦ mixing ratios. In fact, the INTEX-B
data probably reflect the minimum annual level of Hg◦ over the central and North Pacific5

basins. Interestingly, the lowest average Hg◦ mixing ratios below 6 km altitude were ob-
served in the Mexico City area (Fig. 7), which potentially could be related to emission
of mega-city anthropogenic halogen compounds. A better understanding of this phe-
nomenon will require additional measurements and modeling to determine the relative
influence of halogen chemistry with subsequent removal of RGM by precipitation scav-10

enging compared to an impact from Hg◦-depleted stratospheric air. We note that a
stratospheric influence is not evident in the boundary layer over populated mid-latitude
continental areas due to active emission/sink processes obscuring the effect. A case in
point is in the northeastern U.S. where the UNH AIRMAP ground-based atmospheric
mercury monitoring network shows a reproducible seasonality in Hg◦, driven largely by15

local removal processes, with the highest mixing ratios occurring in late March/early
April and the lowest levels in late September/early October (Mao et al., 2007).

4 Conclusions

Our findings increase the complexity required to simulate atmospheric mercury with a
global chemical transport model and also seemingly explain the low mixing ratios of20

Hg◦ that were present below 8 km altitude. An important unanswered question arises,
“What is the fate of stratospheric HgP that is presumably transported throughout the
tropospheric column?” Furthermore, tropospheric halogen chemistry is probably an
important factor influencing mixing ratios of Hg◦, which needs to be separated from the
stratospheric effect identified here that could potentially penetrate deep into the lower25

troposphere. Clearly, global atmospheric mercury cycling is multifaceted and very de-
tailed simultaneous measurements of Hg◦, RGM, and HgP are highly desirable to gain
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increased insight on processes revealed by our dataset and better inform regional and
global models.
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 625 
 626 
 627 
 628 

Fig. 1 Schematic representation of custom cold vapor atomic fluorescence spectrometer 629 
configured for operation on the DC-8.  Note that significant details have not been included in this 630 
conceptual layout. 631 

Fig. 1. Schematic representation of custom cold vapor atomic fluorescence spectrometer con-
figured for operation on the DC-8. Note that significant details have not been included in this
conceptual layout.
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 632 
 633 

 634 
Fig. 2 Response factor of the modified instrument during INTEX-B, including all ambient 635 
measurements and standard addition calibrations. 636 
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Fig. 2. Response factor of the modified instrument during INTEX-B, including all ambient mea-
surements and standard addition calibrations.
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 659 
 660 
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 663 
 664 
 665 
 666 
Fig. 3 Large-scale distribution of Hg° in the Mexico City area and over the North Pacific.  667 
Breaks in the mixing ratio plot are where zeros and standard additions were conducted.668 

Fig. 3. Large-scale distribution of Hg◦ in the Mexico City area and over the North Pacific.
Breaks in the mixing ratio plot are where zeros and standard additions were conducted.
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 669 
 670 
 671 
 672 

 673 
Fig. 4 Vertical distribution of Hg°, O3, and CO covering the latitude band of 14-62°N.  Note 674 
that the high O3 and low Hg° present at 11.5 km occurred on the transit flight from Houston, 675 
TX to Moffett Field, CA [(for details, see Talbot et al., (2007)]. 676 
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Fig. 4. Vertical distribution of Hg◦, O3, and CO covering the latitude band of 14–62◦ N. Note
that the high O3 and low Hg◦ present at 11.5 km occurred on the transit flight from Houston, TX
to Moffett Field, CA (for details, see Talbot et al., 2007).
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 685 

Fig. 5 Kinematic 5-day backward trajectory for the middle troposphere during flight 7. 686 
 687 

 688 
 689 
 690 
 691 
 692 

Fig. 5. Kinematic 5-day backward trajectory for the middle troposphere during flight 7.

15557

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/15533/2007/acpd-7-15533-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/15533/2007/acpd-7-15533-2007-discussion.html
http://www.egu.eu


ACPD
7, 15533–15563, 2007

Large-scale
distribution of Hg◦

over the Pacific

R. Talbot et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

 33

 693 
 694 

 695 
Fig. 6 Vertical distribution of O3 determined by the DIAL system during flight 7 in the Mexico 696 
City area.  Note the Mexico City urban plume embedded in O3<40 ppbv background air from the 697 
surface to 12 km altitude. 698 
 699 
 700 
 701 
 702 
 703 
 704 
 705 
 706 
 707 

Fig. 6. Vertical distribution of O3 determined by the DIAL system during flight 7 in the Mexico
City area. Note the Mexico City urban plume embedded in O3 <40 ppbv background air from
the surface to 12 km altitude.
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 708 
 709 
 710 
 711 
 712 

 713 
 714 

Fig. 7 Vertical distribution of Hg° based on binning the data in 1 km altitude increments.  715 
The data are plotted as the mean ± standard deviation. 716 
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Fig. 7. Vertical distribution of Hg◦ based on binning the data in 1 km altitude increments. The
data are plotted as the mean ± standard deviation.
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 732 

 733 
 734 

Fig. 8 Regional correlations between Hg° and CO2, CO, CH4, and C2Cl4. 735 
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Fig. 8. Regional correlations between Hg◦ and CO2, CO, CH4, and C2Cl4.
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 749 

 750 
 751 

Fig. 9 Selected plume composition at 2.6 km altitude around Mexico City on flights 6 752 
and 7. 753 
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Fig. 9. Selected plume composition at 2.6 km altitude around Mexico City on flights 6 and 7.
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Fig. 10 Relationship between Hg° and CO in plumes with CO > median value in 2 km 808 
altitude bins.809 
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Fig. 10. Relationship between Hg◦ and CO in plumes with CO> median value in 2 km altitude
bins.
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 810 
 811 

 812 
Fig. 11 Vertical distribution of O3 measured by the DIAL system along the flight track of 813 
mission 16.  The three regions of Hg° depletion occurred north of 48°N at 10 km altitude.  814 
These regions were well into the lower stratosphere as indicated by the O3 mixing ratios 815 
exceeding 100 ppbv. 816 

 817 

Fig. 11. Vertical distribution of O3 measured by the DIAL system along the flight track of mission
16. The three regions of Hg◦ depletion occurred north of 48◦ N at 10 km altitude. These regions
were well into the lower stratosphere as indicated by the O3 mixing ratios exceeding 100 ppbv
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