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Abstract

Long-term total column measurements of formaldehyde (HCHO) covering a 12 year
period from 1992 to 2004 are reported from spectra recorded with a high-resolution
Fourier Transform Spectrometer (FTS) using the sun as a light source at a South-
ern Hemisphere site (Lauder, New Zealand). The ambient HCHO concentrations at5

this rural location are often at background levels (<250 ppt) typical for remote marine
environments. Due to these low values of HCHO, which are often at or below the
detection limit of standard techniques, a method of analysis has been developed that
successfully produces HCHO columns with sufficient sensitivity throughout the whole
season. The HCHO column over Lauder was found to have a strong seasonal cycle10

(±50%), with a mean column of 4.2×1015 molecules cm−2, the maximum occurring
in the summer. A simple box model of CH4 oxidation reproduces the seasonal cycle,
but significantly underestimates the maximum HCHO ground concentrations deduced
from the column observations, particularly in summer. This implies the existence of a
significant source of HCHO that cannot be explained by oxidation of CH4 alone. The15

ground-based FTS column data compares well with collocated HCHO column mea-
surements from the Global Ozone Monitoring Experiment (GOME) satellite instrument
(r2=0.65, mean bias=10%, n=48).

1 Introduction

A key challenge in environmental science today is the change in atmospheric composi-20

tion introduced by increasing emissions of pollutants from human activities. Pollutants
introduced into the atmosphere are primarily removed by photo-oxidation. The oxida-
tion capacity of the atmosphere is therefore an important indicator of the ability of the
atmosphere to cleanse itself.

Formaldehyde (HCHO) is one of the most important species for understanding25

photo-oxidation pathways in the atmosphere. It is produced by the oxidation of methane
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(CH4) and other hydrocarbons, emitted into the atmosphere by plants and animals, and
generated by industrial processes as well as incomplete combustion of biomass and
fossil fuels. HCHO is closely linked with the atmosphere’s principal oxidant, the hy-
droxyl radical (OH). As a result, HCHO has a relatively short atmospheric lifetime of
the order of a few hours.5

Despite its importance, there are considerable discrepancies between measure-
ments of HCHO, and model predictions (for example, Fried et al., 2003; Frost et al.,
2002; Jaeglé et al., 2000; Riedel et al., 2005), High concentrations of HCHO observed
in both the Arctic (Sumner and Shepson, 1999) and Antarctic (Riedel et al., 1999,
2005], suggest photochemical HCHO production at the air-snow interface. Production10

of free radicals and carbon monoxide (CO) from photolysis of HCHO from this newly
discovered source is potentially important for the oxidative capacity of the polar tropo-
sphere (Sumner and Shepson, 1999). Modelling of observed HCHO degassing from
surface snow implies that this source contributes a significant fraction of the HCHO in
the atmospheric boundary layer in the spring and summer (Hutterli et al., 2002; Riedel15

et al., 2005). While this proposed source largely explains the high Arctic surface fluxes,
it does not account for very high Antarctic surface fluxes (Riedel et al., 2005).

Fourier Tranform InfraRed spectroscopy (FTIR), a method that has been rarely used
for measuring HCHO, has the potential to address many issues relating to atmospheric
HCHO concentrations and trends. This technique has the ability to simultaneously20

determine the concentrations of both HCHO and CO at the ground. Significant spectral
datasets already exist in both the Arctic (Notholt et al., 1997a) and Antarctic (Wood
et al., 2004) from state of the art high-resolution FTIR spectrometers, and well as a
number of long-term datasets dating back many years at several mid-latitude sites
(Rinsland et al., 2003).25

This paper describes the analysis method and compares HCHO columns and mixing
ratios with box model calculations and satellite measurements. In sect. 2 details of the
ground based Fourier Transform Spectroscopy (gb-FTS) are given including a formal
error analysis. Section 3.1 describes the results of the analysis on 12 years of infrared
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(IR) data from Lauder, New Zealand; Sect. 3.2 outlines a simple box model based on
CH4 oxidation chemistry, while Sect. 3.3 compares the gb-FTS results with co-located
measurements from GOME.

2 Method

The infrared spectra used in this study are from the Network for the Detection of Atmo-5

spheric Composition Change (NDACC, http://www.ndacc.org/) primary Southern Hemi-
sphere station at Lauder (45◦ S, 169◦ E, 0.37 km a.s.l.). The time period covers 12 years
from 1992 to 2005, and as such, season to season changes can be studied along with
long term trends. The instrumentation and Lauder program history is described in more
detail in previous papers (Jones et al., 1994; Jones et al., 2001; Rinsland et al., 2002).10

HCHO is a weak absorber in the mid-infrared with absorption depths of less than
1% under normal background conditions. Its quantification must therefore be done in a
careful manner. The chosen lines are all part of the ν1 and ν5 stretches, with the band
centers located at 2782 cm−1 and 2843 cm−1 respectively. The micro-windows that
have been adopted for use in the mid-IR in this study are based on 5 windows selected15

by using the method reported by Notholt et al. (2006). Table 1 outlines the windows,
wavelength ranges and interfering species. Because there are several major interfering
species in all microwindows, the concentration profiles of the interfering gases CH4 and
O3 were determined simultaneously with HCHO, while a single scaling parameter was
used for other gases. Further, pre-fitting several of these interferring gases (HDO, H2O,20

N2O, and CH4) in wavenumber regions specifically selected to obtain better estimates
of their individual a priori profiles (labelled as step 1 in Table 1) gave more consistent
results; for HDO and H2O this is due to the large variability of atmospheric humidity
levels. There are also very small but significant absorptions from solar CO; significant
in the context that the absorptions are very similar in shape to the HCHO feature in25

the 2869.650–2870.100 cm−1 window. To overcome this potential source of ambiguity,
a relatively isolated solar CO feature was fitted simultaneously in a separate window
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(2856.10–2856.35 cm−1) with only very minor interferences from CH4 and N2O.
All spectra were recorded using a 700 cm−1 wide filter centered at 2750 cm−1. Since

the HCHO spectral signature is very weak and broad (as the peak of its density is
close to the ground and therefore completely dominated by pressure broadening), the
resolution of the spectra were reduced to 0.02 cm−1 (optical path difference of 50 cm)5

and apodised with a triangular function, thus reducing the high frequency noise, and
increasing the signal to noise ratio (SNR) of the spectra to around 2000:1.

The algorithm used in the inversion, SFIT2 (version 3.91), has been developed jointly
by several groups within the NDACC (NASA Langley Research Center, University of
Denver, NCAR, NIWA Lauder, and the University of Wollongong). SFIT2 is capable10

of retrieving the vertical profiles of several gases simultaneously from ground-based
infrared spectra. The inverse model is based on a semi-empirical application of the op-
timal estimation method (OEM) (Rodgers, 2000). Both the forward and inverse models
have been described previously (Rinsland et al., 1998). The earlier simple solar model
used in SFIT2, however, has been replaced with a more accurate algorithm (Hase et15

al., 2004).
The global SNR assumed in the retrieval was 1200, and was reduced to slightly lower

values in selected spectral intervals (see Table 1) due to consistent residual features
in the fitted spectra caused by various inaccuracies in line parameters or unknown
absorbers.20

The OEM uses an assumed a priori concentration for all gases. In this study the
HCHO a priori profile is based on aircraft profile measurements (NASA/PEM-Tropics
B, Singh et al., 2001) and is shown in Fig. 1a. The a priori profile decreases expo-
nentially in the troposphere, with a concentration of 290 ppt at the ground. The scale
height is approximately 6.2 km in mixing ratio, with a HCHO density scale height of25

4.2 km. The 1 sigma uncertainties used in the OEM are directly employed in the a pri-
ori covariance matrix as a tuning parameter, i.e. they are adjusted empirically to obtain
stable retrievals while obtaining the maximum possible spectral information. The spe-
cific method used here was to adopt a 1 sigma value at the ground that is consistent
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with reported variability in the Pacific region (Fried et al., 2003; Singh et al., 2001) of
125%, exponentially decreasing to 10% at the tropopause. The a priori profile for all
other gases are based on a range of measurements from both balloons (e.g. MarkIV In-
terferometer, Toon et al., 1999), satellites (e.g. Upper Atmospheric Research Satellite,
http://badc.nerc.ac.uk/data/uars/), and local sondes (for H2O and O3) launched weekly5

from the Lauder site. Figure 1b shows the averaging kernels for the tropospheric part
of the HCHO profile; there is a clear semi-independent kernel from 0–3 km, consistent
with the degrees of freedom for signal (DOFS) of 1.2 to 1.8 (the range here reflects the
range of solar zenith angles in the measurements).

We present in Sect. 3.3 the first multi-year comparison between the gb-FTS data10

and space-borne column measurements of HCHO from the GOME satellite instrument,
which provides an independent validation dataset.

3 Results and discussion

3.1 Column averaged time-series

The full dataset is shown in Figs. 2 and 3. The HCHO total column is displayed in Fig. 2.15

The depicted points (diamonds) are monthly means, with error bars that are computed
from the root mean square error of all measurements within the month, assuming an
error of 16% per measurement (Table 2). This 16% error includes random components
from smoothing (10.5%), measurement (13.2%) and temperature (1.2%) errors, and
the systematic spectroscopic errors from uncertainties in the line strength (4.6%), air20

broadening half-width (6.6%), and the effective apodization parameter (0.9%), a mea-
sure of the instrumental performance. The error terms for all random error components
were computed using the OEM formalism (i.e. by calculating the gain and sensitivity
matrices), while the systematic error terms were dealt with using perturbation meth-
ods. A selection of spectra (50) were chosen at random with a range of zenith angles25

and HCHO column amounts, and their columns were compared with the same spectra
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analysed with the systematic error component terms perturbed by either 10% (the line
strength and the effective apodization parameter were multiplied by a factor of 1.1) or
5% (the air broadened half width was decreased by 5%). All errors are listed in Table
2. Also plotted in Fig. 2 (solid line) is the following function that consists of seasonal
and trend terms:5

HCHO(t) = a0 + a1t + a2t
2 + a3 cos[(2π(t −φ1)] + a4 cos[π(t −φ2)] (1)

where HCHO(t) is the HCHO column at time t, a0 the mean HCHO column at the start
of the fitting interval (1992.2), a1 the linear change in column, a2 a quadratic term, a3
and a4 the amplitudes of annual and semi-annual seasonal modulations respectively,
and φ1 and φ2 the annual and semi-annual phases respectively. The fitted coefficients10

for the total column are given in Table 3. The data show a clear seasonal cycle with
a summer maximum and winter minimum, consistent with expected photochemical
control by OH and known NOx sources at the site (see Sect. 3.2). While there are
statistically insignificant trends and semi-annual effects, there are obvious departures
from the mean seasonal trends in the summers of 1999, 2000, and 2002.15

Similarly, Fig. 3 shows partial columns of HCHO over two different height ranges,
0–3 km (red diamonds) and 3–12 km (black diamonds), for the same time period as the
HCHO total column data in Fig. 2. These height ranges correspond to the averaging
kernel function height ranges discussed in the previous section (see Fig. 1). The solid
red (0–3 km) and black (3–12 km) lines are fitted using Eq. (1) with the corresponding20

coefficients presented in Table 3. The error bars in Fig. 2 above, were computed for
both random and systematic terms. They are listed in Table 2. The overall features
of these two partial columns are comparable to each other as well as the total column
results from Fig.1 as would be expected from retrievals of HCHO with limited vertical
resolution. However there are notable features in the data occurring between 1999 and25

2002, referred to earlier, which appear to be prominent in the 0–3 km partial column
but not to the same extent above this. This feature is particularly evident in the summer
of 1999 where there is a factor 3 difference between the mean 1999 HCHO column
and the peak summer value. In 2000 and 2002 this difference (factor of 2) is less,

14549

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/14543/2007/acpd-7-14543-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/14543/2007/acpd-7-14543-2007-discussion.html
http://www.egu.eu


ACPD
7, 14543–14568, 2007

Long-term
tropospheric
formaldehyde

concentrations

N. B. Jones et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

while it is not always clear which partial column is perturbed the most with respect to
the mean. In other years, the HCHO column seems to be well captured by the simple
seasonal fit, particularly in the last two years of data. Most of this interannual difference
corresponds with long-range transport of biomass burning plumes from Australia, with
very high values of HCHO, a known biomass burning emission product, associated5

with particularly severe burning events in New South Wales (Paton-Walsh et al., 2004;
Paton-Walsh et al., 2005).

Mahieu et al. (1997) reported a mean HCHO column of 5.9±1.5×1014 molecules
cm−2 above the International Scientific Station of the Jungfraujoch (3.57 km a.s.l.),
Switzerland, from a high resolution FTIR averaged over the time period from 198810

to 1996. Data binned into several day averages were also reported by Mahieu et
al. (1997) but unlike the results presented here, seasonal effects were less clear. The
other studies that report multi-year datasets are two papers by Notholt et al. (1997b,
2000) who published column HCHO data from ground based instruments in the Arctic
(Ny Alesund, 78.9◦ N, 11.9◦ E) and the Antarctic (McMurdo, 77.9◦ N, 166.7◦ E ) covering15

4 seasons in the case of Ny Alesund and a single campaign in Antarctica (September–
October 1986). The Ny Alesund data in particular show seasonal behavior of a magni-
tude (range 2–5×1015 molecules cm−2) and phase consistent with our results, but are
also affected by direct transport of pollutants from the European continent in the winter
(giving a second maximum).20

Figure 3 also shows, in the right hand axis, the HCHO concentrations for the two
plotted layers. These concentrations are estimated by calculating the ratio of the re-
trieved partial column for the layer divided by the total air mass in the respective partial
column.

3.2 Box modelling25

We are currently developing a chemical box model to simulate gas-phase atmospheric
chemistry in the boundary layer above Lauder. Here we present preliminary results
relating to the generation of HCHO from CH4, and how this compares with the obser-
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vations reported above.
Our initial model setup uses the basic gas-phase chemistry of the Master Chemical

Mechanism version 3 (MCMv3) e.g., (Saunders et al., 2003). We use the MCMv3
functional forms for the appropriate photolysis j-values, but normalize their mid-day
values to the corresponding values obtained from the Tropospheric Ultraviolet Visible5

(TUV) model (Madronich and Flocke, 1998) at the position of Lauder. Appropriate dry
deposition rates are applied for HCHO, CH3OOH, H2O2, O3, etc.

The level of NOx (NO + NO2) has a strong influence on the production of HCHO
from the precursor species CH3O2 and CH3O. Measurements of NOx are not routinely
made at Lauder. However, Johnston and Mckenzie (1984) found using long path spec-10

troscopic absorption that the tropospheric mixing ratio of NO2 at Lauder was extremely
variable. Values ranged from below the measurement threshold of about 20 ppt during
windy conditions, to well over 1 ppb under still conditions, with typical values of a few
hundred ppt.

We ran our model under mid-June (winter) and mid-December (summer) conditions15

for 30 days to ensure the system had reached equilibrium and that the maximum HCHO
levels for the conditions were obtained, although generally only a few days were re-
quired to reach equilibrium. CH4, O3, and CO were constrained to synoptic values in
all cases. A boundary layer thickness of 1 km was chosen, consistent with the find-
ings of Johnston and Mckenzie (1984). Simulations were run for a range of mean NOx20

values between 20 ppt and 1000 ppt.
We found that for a 24-h mean value of 20 ppt NOx, the 24-h mean HCHO mixing

ratio in June was approx. 50 ppt, and in December approx. 150 ppt. In June, the HCHO
reached a maximum mean value of approx. 220 ppt when the mean NOx was about
400 ppt, decreasing slowly for larger NOx values. In December, the HCHO reached a25

maximum mean value of approx. 480 ppt when the mean NOx was about 700 ppt, again
decreasing slowly for larger NOx values. These maxima in HCHO arise because of the
action of NOx in depleting the precursor species CH3O2 and CH3O during the formation
of extra HCHO. Although the HCHO values are strongly dependent on the ambient NOx
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level, the model results imply a significant seasonal cycle in HCHO should exist, as is
indeed seen in the results presented in Sect. 3.1. Assuming a scale height of 6.2 km
(Sect. 3.1), the expected total column of HCHO from CH4 oxidation is approximately
in the range of 1.9 to 4.1×1015 molecules cm−2 for the high NOx assumption of 400 to
700 ppt.5

The simulations suggest that winter and summer HCHO mixing ratios (derived from
CH4 alone) of up to 220 ppt and 480 ppt respectively can plausibly be explained by the
existence of NOx mixing ratios of at least 400 ppt and 700 ppt in winter and summer
respectively. At present, we do not have concurrent measurements of HCHO and NOx
to confirm this. However, a notable feature of the measurements described in Sect. 3.110

is the regular occurrence of HCHO mixing ratios significantly larger than 480 ppt. Our
simulations suggest that these high HCHO values cannot be explained by oxidation of
CH4 alone.

A possible additional HCHO precursor is isoprene (C5H8), the oxidation of which can
yield relatively large quantities of HCHO e.g., (Carter and Atkinson, 1996; Zimmer-15

mann and Poppe, 1996). Lewis et al. (2001) measured isoprene mixing ratios up to
120 ppt at Cape Grim, Tasmania, in air masses originating principally from Tasmanian
forest and grassland. It is possible that similar high isoprene episodes can occur at
Lauder. Another possibility is that HCHO from biomass burning events, either local
or transported from Australian bush fires (see Sect. 3.1), could be contributing to the20

seasonal large HCHO values measured at Lauder.

3.3 A comparison with GOME HCHO vertical columns

The Global Ozone Monitoring Experiment (GOME) is a space-based grating spectrom-
eter that measures backscattered solar radiation in the UV/VIS spectral range (240–
790 nm) at a spectral resolution of 0.2–0.4 nm (Burrows et al., 1999). HCHO slant25

columns are fitted in the 336–356 nm wavelength region with a mean column fitting un-
certainty of 4×1015 molec cm−2 (Chance et al., 2000). An air-mass factor (AMF) that
accounts for scattering processes from aerosols and clouds, in addition to Rayleigh
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scattering, is used to convert these slant columns to vertical columns (Palmer et al.,
2001). For the work shown here we use only GOME data with an associated cloud
fraction of less than 40% and with the geolocation of the gb-FTS located within the
corner coordinates of the 320×40 km2 GOME pixel (which occurs on average every 3
days).5

Figure 4 shows GOME averaging kernels that are derived using the method de-
scribed by Eskes and Boersma (2003) based on the Rodgers formulation (Rodgers,
2000) for summer (red) and winter (blue) profiles, while the averaging kernel for the gb-
FTS is plotted in green for reference (from Fig. 1). The GOME averaging kernels are
the means of assumed summer/winter model profiles from GEOS-Chem (Bey et al.,10

2001) at several different airmasses. The specific computation assumes that the slant
column is linear with respect to gas amount and that the dependence of the spectrum
on the HCHO vertical distribution can be described by a single scaling factor (Eskes
and Boersma, 2003). The averaging kernel for each layer can therefore be expressed
as the ratio of the air-mass factor for the particular layer to the total a priori air-mass15

factor. While there are clear differences in the relative weights of the GOME and gb-
FTS averaging kernels, in the lower half of the troposphere (below about 6 km), the
kernels are reasonably similar in magnitude and shape. Both the gb-FTS and GOME
averaging kernels tend to over-weight the HCHO column in the upper troposphere but
this has little effect on the column due to the rapidly decreasing HCHO mixing ratio.20

The nature of the analysis techniques, instruments, platforms and geometries mean
that the two datasets are not directly comparable. We have therefore used the method
outlined by Rodgers and Connor (2003). For simplicity, we assume that the gb-FTS
is the “truth”, against which the GOME measurement is compared. We can there-
fore write the following expression, following the nomenclature of Rodgers and Connor25

(2003), that relates the GOME column with the gb-FTS derived column:

C̃Gf = Cc + aT
G(x̃f − xc) (2)

where C̃Gf is the smoothed gb-FTS column, Cc the ensemble gb-FTS column average,
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aT
G the transpose of the GOME column averaging kernel, x̃f the gb-FTS mixing ratio

profile, and xc the gb-FTS ensemble average mixing ratio profile. The gb-FTS ensem-
ble averages for both the column and vertical profile were taken as the mean from all
gb-FTS data.

Figure 5 shows the monthly mean smoothed gb-FTS total columns along with GOME5

total columns over the time period of 1996 to 2001. The GOME data has been averaged
with a 21 day running mean and regridded spatially to match all gb-FTS monthly mean
data points, a total of 51 data values over the 1996 to 2001 time period. The GOME
data was also uniformly scaled down by 20% according to recent laboratory UV cross
section measurements of HCHO (Gratien et al., 2007). The use of monthly mean data10

was adopted for two reasons, 1) to improve the statistics of the presented data due
to the inherently very weak spectroscopic lines, and 2) to average over large short-
term (order of hours) variability in the HCHO concentration from local sources near the
ground that will affect the gb-FTS measurements but will be more than likely missed
by GOME (both spatially and temporally). Also shown in Fig. 5 are three fitted curves,15

using equation 1) to the regridded GOME data (solid blue line), gb-FTS data smoothed
with the GOME summer or winter averaging kernel (solid red line), and the original pre-
smoothed fit to the gb-FTS data (dotted red line) as displayed in Fig. 2. The smoothing
operation on the gb-FTS data had little effect on the ground-based data. The two
datasets are in good agreement in terms of seasonal trends (the fitted phases agree20

to within their respective errors, see Table 3), but the magnitudes of their respective
cycles and year-to-year variations are clearly different. The variance in the GOME
columns is much higher than the gb-FTS data. Figure 6 shows a correlation plot of the
smoothed gb-FTS data against the regridded GOME data. The correlation coefficient
r2 is 0.65, indicating that the two datasets are well correlated, driven mainly by the25

annual season change. A simple statistical analysis on the means of the total columns
of the two datasets using a T-test (gb-FTS=5.1±0.3, GOME = 5.6±0.7, both in units of
1015 molecules cm−2), gives a T paired value of 1.2 and an associated P-value of 0.22
for 49 degrees of freedom, i.e., the means are not statistically different. In the test we
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excluded three outliers, marked with green stars.
In general the two datasets agree very well given the preliminary nature of this com-

parison. On seasonal scales the two HCHO data sets (ground and space based) agree
to within their respective errors. However, the GOME data does appear to show larger
variations in the columns throughout anyone particular year. This is indicative of influ-5

ences from heterogeneous sources being captured by one measuring platform, and not
the other. We note that the east and west coasts of the South Island of New Zealand
have significantly different vegetation types, the west being wet with large tracks of
dense forest, while the east coast is dry and less vegetated. The exact orbital path
of the spacecraft could therefore have an impact on whether short term volatile com-10

pounds like HCHO are successfully correlated with ground based observations. How-
ever, as the HCHO concentrations are normally at background levels, the agreement
between the two data sets is remarkable given the difficulties of the HCHO measure-
ments from both the gb-FTS and GOME platform. New data products from the Ozone
Monitoring Instrument (OMI) will likely improve this statistical comparison because of15

better spatial and temporal resolution of the OMI measurement.

4 Summary and conclusions

Long-term total column measurements of HCHO are reported from the Southern Hemi-
sphere site at Lauder, New Zealand, and compared with co-located satellite measure-
ments and a box model. A robust method of retrieving HCHO columns from ground20

based remotely sensed infrared spectra is described. As the low ambient HCHO con-
centrations often recorded at Lauder are often close to detection level, this poses a
challenge for analysis techniques. The mean HCHO column over Lauder from 1992 to
2005 was 4.0±0.3×1015 molecules cm−2, with a strong seasonal cycle (±50%) maxi-
mizing in the summer. A simple box model reproduces the seasonal cycle, but signif-25

icantly underestimates the maximum HCHO ground concentrations deduced from the
column observations, particularly in summer. This cannot be explained by oxidation of
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CH4 alone and therefore implies the existence of a significant extra source of HCHO. A
comparison of the ground-based FTS column data with collocated measurements from
the GOME satellite instrument shows good agreement in the respective mean HCHO
columns with the data also being well correlated (r2=0.65).
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Table 1. Details of the microwindows, target gases, and interfering species used in the analysis
of HCHO. The windows listed as “step 1” were first fitted for the listed target species. The
retrieved profiles from step 1 were used as a priori profiles in the windows listed in step 2.

Window (cm−1) Target gas Interfering species SNR

Step 1
2713.800–2713.950 HDO 100
2806.200–2806.480 N2O 100
2819.200–2819.700 H2O HCl 100
2819.950–2820.120 CH4 100

Step 2
2713.800–2713.950 HDO 800
2778.425–2778.564 H2CO O3,N2O,CO2,CH4, Solar CO 1200
2780.650–2781.110 H2CO O3,N2O,CO2,CH4,HDO, Solar CO 1200
2856.100–2856.350 Solar CO CH4, O3 800
2869.650–2870.100 H2CO O3,NO2,CH4,HDO,H2O, Solar CO 1200
2912.000–2912.300 H2CO H2O, OCS 1200
2914.600–2914.700 NO2 1000

14560

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/14543/2007/acpd-7-14543-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/14543/2007/acpd-7-14543-2007-discussion.html
http://www.egu.eu


ACPD
7, 14543–14568, 2007

Long-term
tropospheric
formaldehyde

concentrations

N. B. Jones et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 2. The characteristics (DOFS and contribution of the a priori HCHO profile to the final
retrieval) and sources of error for the total column and two partial columns (0–3 and 3–12 km)
given the assumed measurement conditions used in Fig. 1, i.e. a solar zenith angle of 74.3◦.

Altitude ranges (km)
0–3 (%) 3–12 (%) 0–100 (%)

Characteristics
DOFS 0.61 0.75 1.4
A priori (%) −43.6 −23.0 −9.3

Random Errors
Temperature 8.6 17.3 1.2
Measurement 24.6 11.4 13.2
Smoothing 40.0 27.9 10.5
total random errors 48 35 11

Systematic Errors
Air broadening coefficient −5.1 26.1 6.6
Line strength 4.5 5.0 4.6
EAP 3.7 −3.7 0.9
total systematic errors 3.1 27.4 12

Total Error 48 44 16
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Table 3. The coefficients from Eq. (1), for the HCHO total column, partial columns 0–3 km and
3–12 km for the gb-FTS data while the right two columns contain the smoothed gb-FTS total
column using the GOME averaging kernel and the GOME total column results respectively.

Total Column 0–3 km 3–12 km dFTS GOME

aa0 4.0 (0.3)b 2.2 (0.4) 1.7 (0.4) 4.2 (0.4) 3.8 (0.4)
a1 0.22 (0.1) 0.3 (0.1) −0.03 (0.1) 0.8 (0.4) 0.2 (0.4)
a2 −0.01 (0.1) −0.02 (0.01) 0.01 (0.01) −0.1 (0.06) 0.1 (0.06)
a3 2.0 (0.1) 1.3 (0.1) 0.7 (0.1) 3.0 (0.2) 6.2 (0.2)
a4 −0.2 (0.1) 0.05 (0.1) 0.1 (0.1) 0.4 (0.2) 0.9 (0.2)
φ11

c17 (4) 20 (6) 12 (12) 37 (4) 26 (2)
φ12

c349 (106) 345 (314) 348 (166) 31 (66) 295 (29)

Notes:
a For all coefficients a0 through a4 the units are × 1015 molecules cm−2.
b The numbers in brackets are the standard deviation.
c For coefficients φ1 and φ2 the values are day of year.
d Smoothed gb-FTS total columns.
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Fig. 1. (a) The a priori HCHO mixing ratio profile used in all analysis, as well as the computation
of the averaging kernel function in Fig. 1b. This profile is based on measured aircraft profile
measurements (NASA/PEM-Tropics B, (Singh et al., 2001). (b) Averaging kernels for the total
column (0–100 km), 0–3 and 3–12 km partial columns for a solar zenith angle of 73.4◦. Also
shown (black dotted line) is the contribution of the a priori profile to the final retrieved solution.
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Fig. 2. The monthly mean HCHO total column amount for the years 1992 to 2005 (black
symbols). The error bars assume a total error of 16% per spectrum (Table 2) that is divided by
the square root of the number of measurements per month. The blue line is a seasonal mean
least squares fit to the data using Eq. (1).
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Fig. 3. The monthy mean HCHO partial columns and seasonal trend line for the 0–3 km (red
symbols and red line respectively) and 3–12 km (black symbols and black line respectively)
layers. The error bars are based on the results from the full error analysis data in Table 2, while
the seasonal trend lines are computed from the coefficients in Table 3.
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Fig. 4. Averaging kernels for GOME (blue line summer, red line winter) based on HCHO model
profiles from GEOS-Chem, with the gb-FTS kernels (solid black line total column, dotted black
line 0–3 km) from Fig. 1 for direct comparison. The light gray vertical line at weight=1.0 is the
“perfect” averaging kernel for reference.
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Fig. 5. A comparison of total columns from GOME (blue diamonds) that have been regridded
onto the spatial grid of the gb-FTS. The gb-FTS data (red diamonds) have been smoothed with
the GOME averaging kernel (either summer or winter kernels, Fig. 4). Also plotted are seasonal
fits, using Eq. (1), to the GOME data (solid blue line), smoothed gb-FTS (solid red line), and
the fit of the “pre-smoothed” gb-FTS total column from Fig. 2. The fitting statistics are reported
in Table 3. The vertical error bars are mean GOME errors derived from the original smoothed
GOME data.
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Fig. 6. A correlation plot of the gb-FTS versus GOME from the data of Fig. 5. The solid line
is a linear fit to the gb-FTS and GOME data for reference. The dashed lines are 1 sigma error
limits based on the mean error from the gb-FTS and GOME error statistics. The data points
marked with a green star were excluded from the correlation calculation as outliers.
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