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1Laboratoire d’Aérologie, Toulouse, France
2Centre National de Recherches Atmosphériques, Toulouse, France

Received: 8 November 2006 – Accepted: 11 January 2007 – Published: 29 January 2007

Correspondence to: A. Chevalier (amandine.chevalier@aero.obs-mip.fr)

1327

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/1327/2007/acpd-7-1327-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/1327/2007/acpd-7-1327-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
7, 1327–1356, 2007

Influence of altitude
on surface ozone in
Europe (2001–2004)

Chevalier et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Abstract

The PAES (French acronym for synoptic scale atmospheric pollution) network focuses
on the chemical composition (ozone, CO, NOx/y and aerosols) of the lower troposphere
(0–3000 m). Its high-altitude surface stations located in different mountainous areas in
France complete the low-altitude rural MERA stations (the French contribution to the5

european program EMEP, European Monitoring and Evaluation Program). They are
representative of pollution at the scale of the French territory because they are away
from any major source of pollution.

This study deals with ozone observations between 2001 and 2004 at 11 stations from
PAES and MERA, in addition to 16 elevated stations located in mountainous areas of10

Switzerland, Germany, Austria, Italy and Spain. The set of stations covers a range
of altitudes between 115 and 3550 m. The comparison between recent ozone mixing
ratios with those of the last decade found in the literature for two high-elevation sites
(Pic du Midi, 2877 m and Jungfraujoch, 3580 m) leads to a trend that has slowed down
compared to old trends but remains positive. This could be attribuable to the reduction15

of ozone precursors at European scale, that however do not compensate an ozone
increase at the global scale. Averaged levels of ozone increase with elevation in good
agreement with data provided by the airborne observation system MOZAIC (Measure-
ment of OZone and water vapour by Airbus In-service airCraft), showing a highly strati-
fied ozone field in the lower troposphere, with a transition at about 1000 m asl between20

a sharp gradient (30 ppb/km) below but a gentler gradient (3 ppb/km) above. Ozone
variability also reveals a clear transition between boundary-layer and free-tropospheric
regimes at the same altitude. Below, diurnal photochemistry accounts for about the
third of the variability in summer, but less than 20% above – and at all levels in winter
– where ozone variability is mostly due to day-to-day changes (linked to weather con-25

ditions or synoptic transport). Monthly-mean ozone mixing-ratios show at all levels a
minimum in winter and the classical summer broad maximum in spring and summer –
which is actually the superposition of the tropospheric spring maximum (April–May) and
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regional pollution episodes linked to persistent anticyclonic conditions that may occur
from June to September. To complement this classical result it is shown that summer
maxima are associated with considerably more variability than the spring maximum.
This ensemble of findings support the relevance of mountain station networks such as
PAES for the long-term observation of free-tropospheric ozone over Europe.5

1 Introduction

Tropospheric ozone is known as a pollutant since the 1950s, causing harm to human
health and ecosystems (e.g. Brunekreef and Holgate, 2002). It also plays a consider-
able role in the oxidising capacity of the troposphere and acts as the third greenhouse
gas in terms of additional radiative forcing at Earth’s surface (IPCC, 2001). For these10

reasons tropospheric ozone levels have been a matter of concern for the scientific
community over the last decades. There is considerable interest in quantifying surface
background ozone concentrations and associated trends as they may serve to define a
lower limit with respect to reductions of ozone by control of anthropogenic precursors.
Background ozone has several well documented sources, natural and anthropogenic:15

i) downward transport from the stratosphere, ii) local photochemical production from
its major anthropogenic precursors volatile organic compounds (VOC), carbon monox-
ide (CO) and nitrogen oxides (NOx), iii) remote production associated with long-range
transport. The ozone concentration results from a complex combination of production,
transport, chemical destruction and deposition.20

Ancient measurements have been used to identify some trends in background lev-
els of tropospheric ozone, as for instance in the study by Marenco et al. (1994). In
their study, data from measurements at the Pic du Midi (2877 m) between the 1870s
and 1910 and then in the 1980s were used to show that ozone mixing ratios have in-
creased by a factor of 5 since the beginning of the twentieth century, corresponding25

to an exponential increase at a rate of 1.6%.yr−1. Oltmans et al. (2006) showed that
ozone at Zugspitze increased of 12.6%/decade (1.3%.yr−1) between 1978 and 2004. In
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addition, Staehelin et al. (1994) found an increase by a factor of 2 between the 1950s
and the 1990s at Arosa (Switzerland). Such increase of ozone levels led European
countries to subscribe promises about emissions of atmospheric primary pollutants.
Two conventions were signed aiming at reducing VOC (Geneva 1991) and NOx (Sofia
1988), two major anthropogenic ozone precursors. As a consequence of the applica-5

tion of these conventions, anthropogenic emissions of ozone precursors have actually
decreased. In Europe, considerable emission reductions have been made since the
late 1980s; they are of the order of 30% for NOx and NMVOC and of 45% for CO for
Europe as a whole (Vestreng et al., 2004; Derwent et al., 2003). Despite these re-
ductions, most authors report an increase of background tropospheric ozone levels in10

the lower troposphere: for example (Brönnimann et al., 2002) found an increase of the
average value of around 0.5–0.9 ppb.yr−1for 13 Swiss stations – some of them above
1000 m (altitude hereafter given above see level) – between 1991 and 1999. Ordóñez
(2006) found an increase by around 0.5 ppb.yr−1for 8 alpine stations above 1000 m
between 1992 and 2002. Over the past decades there have been contradictory ex-15

planations about the origins of surface ozone over Europe and about the spring-time
maximum (Monks, 2000). Despite a decline in episodic peak ozone mixing ratio ((e.g.
Derwent et al., 2004; Brönnimann et al., 2002) mean ozone mixing ratios continue to
rise over Europe. Jonson et al. (2006) give some explanation about the factors affect-
ing European tropospheric ozone trends but conclude that if the increase in winter and20

the decrease in the magnitude of high ozone episodes may be attributed to the de-
crease in ozone precursor emissions since 1990, the trend in summer is very difficult
to identify from the measurements because of large inter-annual variability. There are
still many uncertainties about the evolution of ozone concentrations during the two next
decades in the free troposphere; long time series are thus needed. In a first part of the25

present study we will compare data from the literature of the 1990s to our recent data
as a contribution to the discussion on trends over the last decade.

Numerous studies based on surface measurements in Europe have been conducted
to investigate background tropospheric ozone, from the points of view of its spatial
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variability (e.g. Scheel et al., 1997) and temporal variability at different scales (decadal
trends, interannual variability, cycles, etc.) for both low-altitude stations especially on
coastal areas, (e.g. Ribas and Peñuelas, 2004; Simmonds et al., 2004; Carslaw, 2005)
and high-altitude stations (e.g. Bonasoni et al., 2000; Brönnimann et al., 2000; Schuep-
bach et al., 2001). In these studies the term “background ozone level” has different5

definitions but the common idea is an ozone level representative of the atmosphere at
large spatial (e.g., hemispheric) or temporal (e.g., monthly) scales, to which natural or
anthropogenic perturbations will add at smaller scales. For this purpose the consid-
ered stations are chosen away from the influence of direct pollution sources and more
or less sophisticated treatments are applied to the data running means, meteorological10

or trace-gas filters, (e.g. Zellweger et al., 2003).
Mountain stations most often fulfil the condition of being “clean sites” and hence are

of particular interest. Regarding the high-altitude sites (typically above 2000 m) it is
often claimed that they are “above the boundary layer” or “representative of the free
troposphere” by sole consideration of their elevation. However mountains considerably15

enhance atmospheric turbulence and affect circulation for many reasons (roughness,
synoptical lifting, hydraulic effects, thermally-induced circulations, etc.) and thus it can
be hardly stated that even a high-moutain station is free from the influence of the sur-
face without further investigation.

It is also known that background ozone level increases with height in the lower tro-20

posphere (ozone content being eroded near the surface by deposition and titration that
dominates in the boundary layer at the yearly time-scale). Climatologies of vertical
ozone profiles have been established from airborne in-situ measurents balloons data,
(e.g. Naja et al., 2003);aircraft data, (e.g. Fischer et al., 2006; Zbinden et al., 2006).
Few surface-data based studies considering a network of stations in a range of altitude25

(e.g. Brönnimann et al., 2000) also pay some attention to this stratification. However
no extensive comparison still exists in the literature between (airborne) data in the true
free troposphere (i.e., unaffected by surface effects) and surface data at equivalent
altitude.
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The present study aims at investigating the following two questions: (i) To what extent
measurements from surface stations ranged in altitude can capture the stratification of
background ozone in the lower troposphere? (ii) More generally to what extent an el-
evated surface station is representative of the free troposphere at similar altitude, in
terms of ozone level and variability? For this goal we propose an analysis of ozone5

data between 2001 and 2004, from not only 27 mountain or rural stations in western
Europe ranged in altitude up to 3500 m, but also from profiles above Frankfurt (Ger-
many) provided by MOZAIC (Measurements of OZone and water vapour by Airbus
In-service airCraft).

The paper is organised as follows. The networks and datasets are described in10

Part 2. Part 3 focuses on the trends of tropospheric ozone in Western Europe. Finally,
Part 4 analyses the influence of altitude on ozone levels and variability. The conclusions
are summarized in final Part 5.

2 Description of the observation networks and datasets

Ozone surface data come from:15

• 2 French observation networks, MERA and PAES. 8 stations belong to MERA and
3 to PAES.

• 4 Swiss organisations/networks: NABEL (National Air Pollution Monitoring Net-
work) , IAP (Institute for Applied Plant Biology), and the Swiss cantons Bern (BE)
and Graubünden (GR). Data of 9 Swiss Alpine stations are provided.20

• the World Data Centre for Greenhouse Gases (WDCGG: available on
http://gaw.kishou.go.jp/wdcgg.html).

All the sites are displayed in Fig. 1, and details are given in Table 1. Elevations range
from 115 m up to 3500 m so that air-masses from the boundary layer to the lower free
troposphere are sampled.25
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The MERA observation network is the French contribution to the international EMEP
Program (European Monitoring and Evaluation Program, http://www.emep.int/). The 8
stations have been settled far from urban, industrial and agricultural pollution sources.
The network was designed to monitor ozone concentration and atmospheric wet and
dry deposition. These stations are located in both mountainous and flat areas, and are5

well distributed over the French territory. All of them are in forest and/or grassland rural
areas. Their altitudes range from 115 m to 1750 m.

The PAES (french acronym for atmospheric pollution at synoptic scale) network is
complementary to MERA with 3 high altitude sites in the Pyrenees, Massif Central
and Vosges. It is devoted to photo-oxidant pollution at synoptic scale. PAES stations10

are away from any major source of pollution, and provide measurements (available
on http://paes.aero.obs-mip.fr/paes.html) of ozone and gaseous precursors, CO and
NOx/y, which are not yet systematically observed in France. Only ozone data from
PAES will be considered in this study. The station altitudes range from 750 m to 2877 m.
The Pic du Midi (PDM) is an isolated high summit in the Pyrenees; it is located 150 km15

to the east of the Atlantic Ocean and most of the time directly exposed to oceanic
westerlies. It may hence be considered as representative of background conditions
of Southern Europe. The Puy de Dôme (PDD) station is also an isolated summit in
the Massif Central. The Donon tower (DON) in the Vosges Mountains emerges from a
dense forest.20

In addition, different Swiss organisations provided ozone data for 9 elevated sta-
tions. Time series from 4 sites in the Swiss Air Quality Network NABEL were in-
vestigated: Chaumont (CHA), Rigi-Seebodenalp (RIG), Davos (DAV) and Jungfrau-
joch (JUN). Data of Arosa (ARO), and Castaneda (CAST) were provided by the Swiss
canton Graubünden; Zimmerwald (ZIM) by the Swiss canton Bern; finally, Zugerberg25

(ZUG) and Wengernalp (WEN) by the Institute for Applied Plant Biology. Some of the
Swiss sites are described by Staehelin et al. (1994); Brönnimann et al. (2000); Schuep-
bach et al. (2001).
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Finally, we used WDCGG hourly data for 7 additional stations, located in Germany
(HOH, SCH and ZSP), Austria (SON), Italia (MDC) and Spain (NOI and SAN).

Ozone data from the different ground stations were taken at various sampling rates
(from 5 min to 1 h) using standard UV absorption analysers. A coherent and synchro-
nized dataset has thus been first obtained by averaging data from stations on a hourly5

basis. Two other datasets derived from the latter are also used in this study: a daily
averaged dataset and a monthly averaged dataset.

Data from the MOZAIC program were also used in this study. The MOZAIC pro-
gram was initiated in 1993 by European scientists, aircraft manufacturers and airlines
to collect experimental data. Its goal is to help to understand the atmosphere and how10

it is changing under the influence of aircraft traffic and more widely of human activity
(Marenco et al., 1998). MOZAIC consists of automatic and regular measurements of
ozone and water vapour by five long range passenger airliners flying all over the world,
with a sampling rate of 4 s, i.e., approximately every 50–100 m along the vertical pro-
files. MOZAIC data provide, in particular, detailed ozone and water vapour climatolo-15

gies in the troposphere and lowermost stratosphere since 1994 as well as CO and NOy
since 2001. Details on the measurements performed by the MOZAIC program can be
found in Marenco et al. (1998), Thouret et al. (1998) and Nédélec et al. (2003). Ozone
measurements during MOZAIC ascent and descent vertical profiles over Frankfurt and
Paris for the period January 2001–July 2004 were used in the present study.20

3 Trends in tropospheric ozone

Marenco et al. (1994) exploited ancient measurements at the Pic du Midi (PDM) station,
and showed that the mean ozone concentration in the free troposphere has increased
by a factor of 5 since the end of the 19th century, to reach 50 ppb at present. This
corresponds to a rate of +1.6%.yr−1. However, ozone levels were in the range of 47–25

49 ppb between 1990 and 1993 and of 48.3 ppb on average between 2001 and 2004.
Thus ozone mixing ratios at PDM seem to stabilize instead of following further the trend
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proposed by Marenco et al. (1994), as shown in Fig. 2.
This result at PDM can be put in wider perspective considering trends at other high-

altitude sites in the Alps or also trends observed from MOZAIC measurements over
comparable periods. All the results are summarized in Table 2. To estimate these
trends we used mean ozone mixing ratios given in the literature and compared them to5

our recent values. Ozone levels remain stable at MDC (but this result has to be con-
sidered cautiously because the covered period is shorter than for the other estimated
trends). Ozone levels at JUN (3580 m) increased at the rate 0.4–0.5 ppb.yr−1(0.8-0.9
%.yr−1); those at SON and ZSP increased at a rate of 0.4 ppb.yr−1(0.7 %.yr−1) and
0.3 ppb.yr−1(0.6 %.yr−1) respectively. These estimations are consistent with those by10

Ordóñez (2006) based on data from 8 sites in Central Alps (Germany, Switzerland and
Austria), 3 of them above 2000 m (including JUN, SON and ZSP) and 5 between 1000
and 2000 m (including ARO, DAV, RIG and CHA). For these stations, they found an
average increase of 0.5 ppb.yr−1between 1992 and 2002 (except in summer).

These trends (increase by 0.5 ppb.yr−1since the early 1990s for stations above15

2000 m) based on surface data are also consistent with those proposed by Zbinden
et al. (2006) based on MOZAIC data. They showed for the trends of integrated tropo-
spheric ozone column over the period 1995–2001 a linear increase by 0.7%.yr−1above
Frankfurt and 0.9%.yr−1above Paris. This motivated the comparisons between surface
data and MOZAIC profiles made in this study (see Sect. 4).20

In summary, ozone mixing ratios appear to go on increasing in the troposphere over
Western Europe, but the ozone evolution in Western Europe does not seem to follow
any longer the rapid trend proposed 12 years ago by Marenco et al. (1994). In addition,
for some stations such as PDM, no trend is found since the early 1990s, in contrast
to the rapid increase between the 1980s and the 1990s. This is probably due to the25

significant decrease of ozone precursors emissions in Europe since the late 1980s.
Finally, it should be noted that the trend established by Marenco et al. (1994) is based
on ozone mixing ratios of stations of very different altitude, and therefore should be
interpreted with caution. Indeed ozone level and variability strongly depend on altitude
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in the lower troposphere. This is considered in detail in the next section.

4 Influence of altitude on ozone levels and variability

4.1 Background levels and variability

The mean ozone concentration is known to strongly increase with altitude in the first
kilometres of the troposphere (e.g. Brönnimann et al., 2000; Zaveri et al., 1995). Near5

the ground, ozone depletion is mainly due to surface deposition. It is thus of primary
importance to quantify this stratification when considering data from mountainous sta-
tions at different altitudes. Therefore, we propose a comparison of the ozone levels
as a function of altitude between a set of surface stations with good vertical coverage
in the first 4 kilometres of the troposphere and a climatology of MOZAIC vertical pro-10

files. Prior to this, Fig. 3 overlays the mean ozone profiles for 4 years of flights above
Frankfurt and Paris (note that MOZAIC flights are less frequent above Paris than above
Frankfurt so that Fig. 3 only includes data from commonly covered periods, namely 24
months out of 43 in the period January 2001–July 2004). Both profiles are very sim-
ilar to each other, which justifies the representativity of Frankfurt for Western Europe15

and hence that a direct comparison can be done between Frankfurt profiles (with the
43-month complete dataset) and the surface stations over the same 43 months. As
Frankfurt MOZAIC take-offs and landings are well distributed within the day (with a fre-
quency of around 70 profiles per month and a minimum of 30 profiles except in March
2001, according to Zbinden et al., 2006), we used the monthly data and hourly asso-20

ciated variability from the surface stations and a monthly mean dataset for MOZAIC
for the comparison between them. Figure 4 shows the statistics for ozone levels and
variability. Average ozone levels for surface data are in good agreement with MOZAIC.
The 3 lowest stations (BRO, TAR and PEY) show a positive bias with respect to the
MOZAIC profile. A poorer agreement is expected for the lowest levels, where local25

effects (e.g., surface deposition) usually play an important role. In addition, the three
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sites are exposed to oceanic air masses while Frankfurt is a continental site. Averaged
ozone level strongly depends on altitude and vary from 25 ppb to 53 ppb over the range
100 m–3500 m. The ozone gradient is very steep up to 1000 m (around 30 ppb/km) and
gentler but still meaningfull above (around 3 ppb per kilometre).

The change in slope around 1000 m, clearly shown by the MOZAIC mean profile,5

indicates how deep is the direct influence of surface deposition and boundary-layer
chemistry on the ozone level. The striking result here is that also a set of surface sta-
tions at different elevations is able to capture this transition in ozone mean stratification
despite the fact that each surface station, even at high altitude, is intrinsically under the
influence of the surface.10

To further investigate this point, we consider ozone variability (standard deviation) as
a function of station elevation, on the base of a comparison between hourly and daily
data. With the second dataset (daily data) the component of the diurnal photochemical
cycle of ozone is indeed filtered out from the calculated variability. So the comparison
of both results allows to discriminate boundary-layer photochemistry from the other15

sources of variability. Results are displayed in Fig. 5. Variability based on hourly data
(Fig.5a-b) is maximum at sea level (15 ppb in summer and 10 ppb in winter) and de-
creases with height in both seasons (8 ppb in summer and 5 ppb in winter at JUN).
(Note that this decrease is opposite to the increase of ozone mean level, so it is even
more pronounced in relative value – not shown). This result is not surprising because20

ozone is strongly affected by surface effects and boundary-layer photochemistry. The
role of the latter in the variability compared to the contribution of day-to-day changes
in ozone level (due to changing weather conditions, transport at synoptic scale, etc.)
is made evident considering the ratio daily variability / hourly variability (Fig.5c-d). In
winter when photochemistry is not very active the day-to-day changes account for 75–25

90% of the variability at all levels. Note that this ratio is maximum for some stations at
around 1000 m asl. This may be due to the varying depth of the boundary layer accord-
ing to changing weather conditions. So these mid-altitude stations may be alternatively
under the influence of either the boundary-layer or the free troposphere. In summer
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the ratio remains in the range 80–90% for stations above 1000 m but drops to only
60–70% below, where therefore diurnal photochemistry takes a considerable part —
about the third — of the total variability. Thus the altitude 1000 m asl appears to mark
a clear transition from a boundary-layer to a free-tropopheric regime for ozone (at least
as observed by surface stations). This is moreover consistent with the change in slope5

of ozone stratification noted above.
To summarize it can be stated that altitude is a key parameter for surface observation

of both mean level and variability of ozone mixing ratio. Ozone mean level is indeed
a highly stratified field in the lower troposphere. Hence, estimations of the long term
trends should be only done using data from the same site, or at least from sites of10

comparable altitudes. Photochemistry appears to be the major source of variability
in the lowest kilometre, while day-to-day variability peaks around 1000 m. Seasonal
aspects of ozone variability are considered in more detail in the following paragraph.

4.2 Seasonal aspects

Figure 6 represents comparisons between daily data at surface stations and MOZAIC15

profiles distinguishing winter and summer. It clearly shows 10 ppb higher ozone values
in summer than in winter. During summer, variability is also almost twice as impor-
tant as during winter likely because of enhanced photochemistry. Indeed day-to-day
net photoproduction in the boundary layer during lasting pollution episodes may be ex-
ported into the free troposphere. This is precised now with a more detailed seasonal20

analysis.
The yearly evolution of the monthly-averaged ozone mixing ratios was analysed for

the 4 years (Fig. 7). It shows a systematic seasonal variation with minimum values
between 10 and 45 ppb in autumn-winter (November–January) from the lowest to the
highest station. The first maximum values (between 30 and 70 ppb according to the25

elevation of the station) are systematically observed during late spring and correspond
to the spring tropospheric ozone maximum well documented in the literature (Monks,
2000; Vingarzan, 2004). Depending on the years and also on the stations, between

1338

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/1327/2007/acpd-7-1327-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/1327/2007/acpd-7-1327-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
7, 1327–1356, 2007

Influence of altitude
on surface ozone in
Europe (2001–2004)

Chevalier et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

one and three additional maxima in ozone values may be observed during summer and
early autumn according to the variable occurrence of lasting anticyclonic episodes and
heatwaves. Such episodes can be evidenced by meteorological observations at PDD
(Fig. 8). Each can be linked to ozone peaks at low- or mid-altitude stations and even
at high altitude stations in some case in Fig. 7 (episodes marked with arrows). Ozone5

levels of some mid-altitude stations (between 700 m and 1400 m) thus may sometimes
exceed ozone levels at the highest stations (e.g., during the extremely warm and dry
summer of 2003). Summer photochemical episodes following the spring (tropospheric)
maximum induce a more or less constant ozone level from April to September known in
the literature as the broad summer maximum (Ribas and Peñuelas, 2004). Note how-10

ever that summer pollution episodes occur at local, or at most regional, scale whereas
the spring maximum is a hemispheric phenomenon.

The variability associated to seasonal (3-month) statistics on ozone for the 4 years is
displayed in Fig. 9. For clarity mean seasonal ozone levels and relative variability based
on daily data are represented only for two distinct groups of stations: below 500 m and15

above 2800 m (the stations inbetween – not shown –have intermediary behaviors).
The seasonal cycle of relative variability (ratio of standard deviation to mean level) is
quite different for the two groups: at low altitude variability is maximum in winter and
minimum in spring; at high altitude, variability is maximum in summer and minimum in
winter.20

The winter maximum of (relative) variability at low altitude can be explained by low
mean levels and in the same time variable deposition and destruction that occur in
the boundary layer and cause enhanced variability (e.g. Ordóñez et al., 2005). Con-
trariwise the high altitude stations are decoupled from the boundary layer and sample
mostly free-tropospheric air, which explains low variability (even in relative value).25

Relative variability at high altitude reaches its maximum in summer (despite high
ozone level). At low altitude it is not as high as winter (it is in fact higher in absolute
value – not shown – especially for the “photochemical” summers 2001 and 2003) but
however higher than in spring and autumn. Thus variability appears to be enhanced at
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all levels. This is due to boundary layer photochemistry, that also (indirectly) affects the
highest stations.

Finally the spring variability is at all altitudes lower than the summer variability while
ozone levels are comparable (broad summer maximum). (There was a notable ex-
ception in 2002 when summer variability was especially low for some stations due to5

particularly bad weather and weak photochemistry.) Low variability has to be linked to
the hemispheric scale of the ozone spring maximum.

To summarize the most commonly observed annual evolution of background ozone
level is a first maximum in spring (April-May) linked to the increase of tropospheric
ozone at the hemispheric scale, followed by a second one in summer when persistent10

anticyclonic weather allows enhanced photochemical production in the low levels. The
summer maximum is associated with larger variability than the spring maximum, indi-
cating the local or at most regional character of the phenomenon and its link to rapid
photochemistry. This result is also valid for the highest stations and hence is an indi-
cation that the boundary layer photochemical-production in summer is susceptible to15

affect the composition of the lower free troposphere for sufficiently lasting episodes.

5 Conclusions

The present study – an analysis of 4 years (2001–2004) of ozone data from 27 surface
stations in France, Switzerland, Germany, Austria, Italy and Spain – has been the first
opportunity to put original databases from two French networks, MERA and PAES, in20

a European perspective including more widely known sites for ozone measurements
(e.g., Jungfraujoch, Zugspitze) as well as airborne MOZAIC data. The considered set
of stations covers a range of altitudes between 115 and 3580 m and therefore allows to
improve our knowledge on the vertical distribution of ozone in the lower troposphere.

Decadal trends in mean tropospheric ozone level were first discussed. The most25

recent series of measurements (2001–2004) at the French station Pic-du-Midi (2877 m)
does not show any trend since the early 1990s, and therefore does not continue the
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rapid increase during the 1980s. Other data or studies (surface data at Alpine sites,
MOZAIC airborne data) confirm a trend that has slowed down but remains positive
(0.5–0.9 ppb/yr).

The main focus of the study was on the vertical distribution of ozone mixing-ratio and
variability in the lower troposphere. The mean ozone levels (multi-annual average) at5

the surface stations appear to follow closely the mean vertical profile given by MOZAIC,
characterized by a sharp positive gradient (30 ppb/km) in the first kilometre, a transition
layer around 1000 m, and a slower increase above (about 3 ppb/km). This first points
out that ozone mixing-ratio is a highly stratified field in the lower troposphere. Therefore
the station altitude and even, the possible role of rapid vertical transport, should be con-10

sidered as key elements for the interpretation of ozone surface data. The agreement
between surface and free-troposphere data at similar elevation was not a priori evident
(due to possible surface effect on ozone level). To some extent this result qualifies
mountain stations to monitor long-term changes in ozone.

Investigation of ozone variability as a function of altitude confirms that levels around15

1000 m mark a rather clear transition between boundary-layer and free-tropospheric
regimes for ozone, especially in summer when photochemistry account for about the
third of the variability in the lowest kilometre whereas only less than 20% above where
day-to-day changing weather conditions (and perhaps also transport of ozone at the
synoptic scale) cause most of ozone variability.20

Nevertheless day-to-day net photochemical production in the boundary layer remains
detectable at high-altitude sites during sufficiently lasting pollution episodes at the re-
gional scale – in general in summer. Such episodes influence ozone monthly means at
all altitudes. Maxima may appear for summer months (June to September) in addition
to the spring tropospheric maximum (April–May). As a result the ozone level remains25

more or less constant and high in spring and summer – what is known as the broad
summer maximum. An complementary and newer result concerns variability, that is
clearly higher (even in relative value) during summer than spring. This confirms that
spring and summer maxima have causes of different natures and at different scales.
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Downscaling in time, one above mentioned result was the strong dependence of ozone
sub-daily variability on station altitude. This opens the question of the diurnal variation
of ozone observed at various altitudes, that will be addressed in detail in a coming
paper.
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Nédélec, P., Cammas, J., Thouret, V., Athier, G., Cousin, J., Legrand, C., Abonnel, C., Lecoeur,30

F., Cayez, G., and Marisy, C.: An improved infrared carbon monoxide analyser for routine
measurements aboard commercial Airbus aircraft: technical validation and first scientific
results of the MOZAIC III program, Atmos. Chem. Phys., 3, 1551–1564, 2003,

1343

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/1327/2007/acpd-7-1327-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/1327/2007/acpd-7-1327-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html
http://www.atmos-chem-phys.net/6/339/2006/
http://www.atmos-chem-phys.net/6/51/2006/


ACPD
7, 1327–1356, 2007

Influence of altitude
on surface ozone in
Europe (2001–2004)

Chevalier et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

http://www.atmos-chem-phys.net/3/1551/2003/. 1334
Oltmans, S., Lefohn, A., Harris, J., Galbally, I., Scheel, H., Bodeker, G., Brunke, E., Claude, H.,

Tarasick, D., Johnson, B., Simmonds, P., Shadwick, D., Anlauf, K., Schmidlin, F., Fujimoto,
T., Akagi, K., Meyer, C., Nichol, S., Davies, J., Redondas, A., and Cuevas, E.: Long-term
changes in tropospheric ozone, Atmos. Environ., 40, 3156–3173, 2006. 13295
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Site Abbrev. Altitude Ozone (ppb) Description Organisation
(m) 2001–2004

Brotonne BRO 115 25.3±6.3 plain, forest MERA
La Tardière TAR 143 30.4±7.4 plain, forest MERA
Peyrusse PEY 200 32.8±7.3 plain, forest, grassland MERA
Revin REV 390 30.3±8.8 plain, forest MERA
Morvan MOR 620 31.8±7.4 plain, forest MERA
Noia NOI 685 40.3±6.3 WDCGG
Montandon MON 746 28.4 ± 8.3 plain, forest MERA
Donon DON 755 38.9±9.7 Vosges Mountains, forest PAES
Castaneda CAST 770 39.5±12.2 Pre-Alps, hillside GR
Zimmerwald ZIM 898 36.6±9.8 hill BE
San Pablo de los Montes SAN 917 45.2±8.7 WDCGG
Hohenpeissenberg HOH 985 41.5±10.3 top of a hill WDCGG
Zugerberg ZUG 990 38.3±13.7 Top of a hill, pasture IAP
Rigi-Seebodenalp RIG 1031 42.3±10.3 Pre-Alps, on a terrace, pasture NABEL
Chaumont CHA 1137 43.3±9.9 Jura, on a ridge, pasture NABEL
Schauinsland SCH 1205 43.4±9.1 WDCGG
Iraty IRA 1400 46.4±5.8 high station, top of forest, dry plateau MERA
Puy de Dôme PDD 1465 44.9±9.8 high station, on the top, pasture PAES
Davos DAV 1638 42.0±7.1 Pre-Alps, slope, forest NABEL
Le Casset CAS 1750 46.8±7.4 high station, slope MERA
Arosa ARO 1840 42.3±8.2 Pre-Alps, high mountains around GR
Wengernalp WEN 1890 46.8±7.1 slope, top of the hill, pasture and forest IAP
Monte Cimone MDC 2165 52.8±9.0 WDCGG
Pic du Midi PDM 2877 48.3±6.8 high station, on the top PAES
Zugspitze ZSP 2960 51.5±13.7 high alpine, top WDCGG/IMK-IFU**
Sonnblick SON 3106 51.4±6.5 high alpine WDCGG/Umw.*
Jungfraujoch JUN 3580 53.3±6.8 high alpine, on a saddle, ice NABEL

Table 1. Characteristics of the measurement sites used in this study. * Umw.: Umweltbunde-
samt Österreich (Federal Environmental Agency of Austria). ** IMK-IFU: Institut für Meteorolo-
gie une Klimaforschung (Germany, Forschungszentrum Karlsruhe)
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Station Source Period Ozone (ppb) Trend

JUNGFRAUJOCH Schuepbach et al. (2001) 1988–1997 49.3 + 0.8 %.yr−1(+ 0.4 ppb.yr−1)
Brönniman et al. (2000) 1992–1998 50.2 + 0.9 %.yr−1(+ 0.5 ppb.yr−1)

this analysis 2001–2004 53.3
SONNBLICK Scheel et al. (1997) 1989–1993 47.5 + 0.7 %.yr−1(+ 0.4 ppb.yr−1)

this analysis 2001–2004 51.4
ZUGSPITZE Scheel et al. (1997) 1989–1993 48.5 + 0.6 %.yr−1(+ 0.3 ppb.yr−1)

this analysis 2001–2004 51.5
PIC DU MIDI Marenco et al. (1994) 1990–1993 47–49 =

this analysis 2001–2004 48.3
MT. CIMONE Bonasoni et al. (2000) 1996–1998 53 =

this analysis 2001–2004 52.8
MOZAIC Frankfurt Zbinden et al. (2006) 1994–2002 + 0.7 ppb.yr−1

MOZAIC Paris Zbinden et al. (2006) 1994–2002 + 0.9 ppb.yr−1

Table 2. Ozone averaged levels for high stations (above 2000 m) for different periods start-
ing around the early 1990s. Trends are calculated from ozone averaged levels in the 1990s
provided by the literature and those betwwen 2001 and 2004.
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Fig. 1. (a) Location of the monitoring sites used in this study; (b) zoom on Swiss sites. See
correspondence between station full names and abbreviations in Table 1.
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Fig. 2. Ozone evolution in the free troposphere over western Europe, extracted from Marenco
et al. (1994) completed with mean mixing-ratio at JUN and PDM between 2001 and 2004.
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Fig. 3. Comparison between MOZAIC mean ozone profiles above Paris and Frankfurt over the
period January 2001–July 2004.
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Fig. 4. Comparison between MOZAIC profiles above Frankfurt (bold red line: monthly mean
ozone level; light red bars: ±1 standard deviation) and data from surface stations (black dots:
monthly mean ozone level; black bars: ±1 standard deviation) during the period January 2001–
July 2004 (when MOZAIC data are available). The statistics (standard deviation) are based on
hourly data (statistics based on daily data gave similar results).
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a) b)

c) d)

Fig. 5. Variability (standard deviation) of hourly surface ozone data during the period 2001-
2004 for (a) summer and (b) winter. Ratio of daily variability to hourly variability for (c) summer
and (d) winter.
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a)

b)

Fig. 6. As Fig. 4 for (a) winter (DJF) and (b) summer (JJA).
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Fig. 7. Monthly averaged ozone mixing ratios (ppb) for all stations (sorted and colored by
growing altitude). Arrows: see explanation in Fig. 8.
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Fig. 8. 15 day-averaged temperature (a) and pressure (b) at PDD between 2001 and 2004.
Arrows indicate the occurrence of lasting anticyclonic episodes and accompanying heat-waves.
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Fig. 9. (a) Seasonal (3-month) averaged ozone mixing ratio and (b) relative day-to-day variabil-
ity (i.e., standard deviation based on the daily data divided by seasonal mixing ratio) for stations
below 500 m. (c-d) as (a,b) but for stations above 2800 m.
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