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Abstract

Imperfect representation of vertical mixing near the surface in atmospheric transport
models leads to uncertainties in modelled tracer mixing ratios. When using the at-
mosphere as an integrator to derive surface-atmosphere exchange from mixing ratio
observations made in the atmospheric boundary layer, this uncertainty has to be quan-5

tified and taken into account. A comparison between radiosonde-derived mixed layer
heights and mixed layer heights derived from ECMWF meteorological data during May–
June 2005 in Europe revealed random discrepancies of about 40% for the daytime with
insignificant bias errors, and much larger values approaching 100% for nocturnal mixed
layers with bias errors also exceeding 50%. The Stochastic Time Inverted Lagrangian10

Transport (STILT) model was used to propagate this uncertainty into CO2 mixing ratio
uncertainties, accounting for spatial and temporal error covariance. Average values of
3 ppm were found for the 2 month period, indicating that this represents a large fraction
of the overall uncertainty. A pseudo data experiment shows that the error propagation
with STILT avoids biases in flux retrievals when applied in inversions. The results15

indicate that transport models driven by current generation data assimilation for mete-
orological fields is by far not sufficient for inversions of continental mixing ratio data. As
a solution we suggest the use of better, higher resolution atmospheric models, and a
modification of the overall sampling strategy.

1 Introduction20

Exchange of CO2 and other greenhouse gases between the surface and the atmo-
sphere leaves atmospheric signatures behind that can be used to retrieve information
about the surface fluxes. On regional scales, at which climate anomalies (droughts,
anomalies in rainfall, temperature, etc.) as well as human intervention (land use
change) influence biosphere-atmosphere exchange, such information is valuable for25

investigating biosphere-atmosphere feedback processes. Further, regional scale quan-
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tification of greenhouse gas budgets is a requirement for any carbon trading, such as
is currently being implemented under the Kyoto protocol. Regional scale budgets have
therefore become a research focus (Dolman et al., 2006; Lin et al., 2006; Wofsy and
Harriss, 2002).

For CO2, biosphere-atmosphere fluxes can be assessed by a range of methods—5

each covering specific spatial scales, including eddy-covariance measurements (Bal-
docchi et al., 2001) with flux-footprints extending over ∼1km2, remote sensing driven
diagnostic light use efficiency (LUE) models (Lin et al., 2006; Running et al., 2004)
with resolutions of several hundred meters, more process based biosphere models
covering multiple scales (Moorcroft et al., 2001; Running and Hunt Jr., 1993), but also10

atmospheric inversions of measured trace gas mixing ratios (the so called top-down
method). Inversions of background stations using global transport models are assumed
to constrain fluxes on scales of several thousands of km (Gurney et al., 2002). Mea-
surements from tall towers over continents are claimed to represent areas of roughly
about 106 km2 (Gloor et al., 2001), but this strongly depends on the spatial and tem-15

poral scales of the flux information to be retrieved (Gerbig et al., 2006). However,
when combined with prior flux information for example from eddy flux measurements
and remote sensing, regional scale inversions start to become feasible (Matross et al.,
2006).

Measurements of atmospheric mixing ratios can provide strong constraints, but this20

puts strong demands on the accuracy of atmospheric transport modelling. In case
of CO2 one is for example interested in small imbalances of otherwise large fluxes
of opposing sign, ecosystem respiration R and photosynthesis GEE. During growing
season the net ecosystem exchange NEE (=R+GEE), i.e. the biosphere-atmosphere
flux, has a diurnal amplitude that is already about an order of magnitude larger than the25

diurnal average, and at least 2 orders of magnitude larger than the annual to decadal
imbalances that contain the most relevant information on the processes involved in
climate change (Goulden et al., 1996). Thus the transport model needs to provide a
very tight relationship between fluxes and concentrations, with biases over the relevant
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timescales (annual) of only a few percent or less. Similarly, strong spatial variability in
biospheric fluxes causes strong variability in mixing ratios (Gerbig et al., 2003a; Lin et
al., 2004a). This variability has to be represented in transport models with very little
bias in order to utilize the information contained in atmospheric point measurements.

This requires uncertainties in atmospheric transport to be investigated quantitatively.5

So far, uncertainties in transport have been investigated mostly through model inter-
comparison studies such as Transcom 3 for global scale transport (Gurney et al., 2003).
However, the tempting assumption that the spread of the model-ensemble represents
the true uncertainty in the transport is false: there are many common sources of un-
certainty in different models due to the large similarity in spatial discretisation and sub-10

grid parameterizations (IPCC, 2001). Furthermore, there is the natural tendency in
modelling communities to “improve” models that are outliers rather than those close
to the average, which reduces the range of the ensemble. Other methods to derive
uncertainties in modelled transport use a direct comparison of modelled mixing ratios
with measurements (Mahowald et al., 1997), however residuals between modelled and15

measured values are also caused by uncertainties in the surface-atmosphere fluxes
themselves.

Attempts to separate the influence from transport uncertainty as short time scale
variability in the residuals from the longer time scale residuals that are assumed to
be caused by uncertainties in the targeted fluxes are also questionable: covariance20

of the uncertainty in transport with variability of the fluxes can lead to biases when
aggregating to longer time scales. A famous example for this is the so called “diurnal
rectifier effect” (Denning et al., 1996), where the overestimation of mixing height during
night, when C02 is released due to respiration, combined with little or no overestimation
of daytime mixing heights, when CO2 is taken up by photosynthesis, leads to strongly25

biased (underestimated) 24 h averaged near-surface concentrations.
First attempts to directly quantify transport uncertainties based on uncertainties in

winds have been made by Lin and Gerbig (Lin and Gerbig, 2005), where wind er-
rors including their spatial and temporal correlations, derived from model - radiosonde
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comparisons, have been propagated using the STILT model (Lin et al., 2003) to yield
uncertainties in simulated C02. The approach utilized the ability of the Lagrangian
particle dispersion model STILT to model ensembles that correspond to not just turbu-
lence, but also to wind errors. These uncertainties due to advection errors amounted to
5 ppm during a summer period with active vegetation, largely exceeding measurement5

uncertainties, which currently are targeted at 0.1 ppm. However, this is by far not the
only uncertainty in transport modelling. As mentioned above in reference to the rectifier
effect, the imperfect representation of vertical mixing processes near the surface can
cause significant biases. Mixing within the planetary boundary layer (PBL) vertically
redistributes the influence from surface fluxes to an atmospheric column, whose thick-10

ness is described as mixing height z i . Uncertainties in this scale proportionally affect
the transport from a source at the surface to a measurement site located within the
PBL.

This paper addresses uncertainties in transport related to this uncertainty in vertical
mixing. Recently a comparison with airborne CO2 measurements revealed that all15

models used for global scale inversions, at least the ones investigated, misrepresent
vertical mixing, since none was able to simultaneously reproduce the annual average
and the seasonal cycle of measured vertical gradients (Stephens et al., 2007). An
important part of this misrepresentation is the depth of the mixed layer. It has been
widely discussed that the determination of mixing heights is associated with significant20

uncertainty, see for example the review by Seibert et al. (2000).
Here, in an approach similar to Lin and Gerbig (Lin and Gerbig, 2005), we use com-

parisons of model and radiosonde derived mixed layer heights to investigate uncer-
tainties and their spatial and temporal covariances. This information is then used to
propagate the uncertainty into mixing ratio uncertainties using STILT, and a pseudo25

data experiment is set up to test the usefulness of the approach for atmospheric in-
versions. For the experiment the STILT model is set up for a domain covering most of
Europe and for the time period May–June 2005 that covers the CarboEurope Regional
Experiment Strategy (CERES)(Dolman et al., 2006).
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The outline of this paper is as follows: the methodology is presented in the next
chapter, starting with the analysis of mixed layer height uncertainties (section 2.1) and
spatio-temporal covariances (2.2), followed by the error propagation using STILT (2.3).
Results as well as the application to atmospheric inversions in form of a pseudo data
experiment are presented in chapter 3, and are discussed in chapter 4 with some5

recommendations for dealing with the uncertainty in mixing.

2 Methodology

2.1 Analysis of uncertainties in mixed layer heights

Offline transport simulations use profiles of temperature, humidity, and horizontal winds
from forecasted or analyzed meteorological fields to determine the profile of turbulent10

mixing within the boundary layer, or simply to determine the mixed layer height, which
can be regarded as the altitude up to which surface fluxes are mixed on short (hourly)
timescales. In order to assess the quality of such analysis based mixed layer heights,
we compare them with mixed layer heights diagnosed from radio soundings. Here we
analyze mixing heights zi (RS) derived from radiosonde data from May and June 200515

for temperature, humidity, and winds (http://raob.fsl.noaa.gov/) from 98 radiosonding
stations using the bulk Richardson number method with a critical Richardson num-
ber of Ric=0.25. This radiosonde based estimate is compared to mixed layer heights
zi (ECMWF) derived from short-term forecasted data from the ECMWF (12 hr and 24 hr,
hybrid-level output), fields which are used in many transport simulations in order to sim-20

ulate global and regional transport. The same method was applied to both datasets
(radio soundings and ECMWF fields) to avoid any methodological bias. The ECMWF
profiles are interpolated to the location of the radio soundings. When the bulk Richard-
son number method didn’t find a stable layer starting from the surface upward, the
observation was not used. Thus only easily identifiable situations were compared.25

The general patterns of mixed layer heights show agreement between radiosonde
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and ECMWF derived values for daytime (between 11:00 and 17:00 GMT, mostly at
12:00 GMT), with low mixing heights over oceans and locations with oceanic influ-
ence, and high mixing heights for dry and hot regions (Fig. 1). However, a closer
look at the differences (Fig. 2) shows both bias and random differences between
the two datasets. Relative biases, i.e. the mean of the differences between mixing5

heights based on ECMWF fields and those based on radio soundings normalized by
the mean radiosonde derived mixing heights, 〈zi (ECMWF)-zi (RS)〉/〈zi (RS)〉, calculated
for each station, are in the range of +/−20% for most stations in central and west-
ern Europe, except for a few stations mostly located at coastal sites. Relative random
errors stdev(zi (ECMWF)-zi (RS))/〈zi (RS)〉 are in the general range from 25% to 50%,10

with some stations in coastal areas showing random errors of 80% and more. Over-
all statistics of the differences indicate large differences also for nighttime data (Table
1), with biases of 50%, and standard deviations of the residuals nearly approaching
100%. Excluding coastal sites from the analysis has only a minor impact (see Table 1,
“selected”).15

We need to exclude trivial causes for the observed differences, namely insufficient
vertical resolution in both, radiosonde profiles and ECMWF fields. Most radiosonde
profiles contain more than 30 levels below 3 km, i.e. the error due to regridding can be
estimated to less than 50 m. To properly test if vertical resolution of the radiosonde data
poses a problem, we compared zi (RS) based on standard radiosonde data to zi (RShr )20

based to high vertical resolution (∼10 mm) radiosonde data obtained from UKMO via
the BADC database (UK Meteorological Office, 2006) as well as from Météo-France
(Joel Noilhan, personnel communication 2006) for a small subset of stations. The re-
sults (also shown in Table 1) indicate that vertical resolution in the radiosonde data
can be excluded as a dominant cause for the discrepancy between radiosonde and25

ECMWF data derived mixed layer heights. Somewhat of an exception are nighttime
random differences, where resolution can explain about half of the observed discrep-
ancy. This relates to the low nighttime mixing heights, in comparison to which the
vertical spacing and thus resolution becomes more important. Vertical resolution of
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the ECMWF fields used for the analysis can similarly be excluded as a major cause
for the discrepancy, since the profiles have about 17 levels below 3 km, with increasing
density near the surface providing a spacing that starts at less than 50 m.

What remains as a possible cause is that the way the weather prediction model as-
similates temperatures, humidity and winds measured by radiosondes doesn’t ensure5

the same shape in the vertical profile. For example, the level at which an inversion is
found in the assimilated data (and thus also in forecasts) is not necessarily the level
at which an inversion was observed. Specific reasons are probably imperfection of
the boundary layer scheme within the ECMWF model, land surface model, or also soil
moisture fields.10

For the rest of this paper, we regard the random component of the residuals be-
tween the more model based zi (ECMWF) and the measurement based zi (RS) as
an estimate of the relative error in mixed layer heights, i.e. σZi,rel=stdev(zi (ECMWF)-
zi (RS))/〈zi (RS)〉. Further, we neglect the bias component due to its relatively small size
compared to the random part.15

2.2 Spatial and temporal covariances

For atmospheric transport of tracers it is not only important to quantify the error in
mixed layer heights at a specific location and time, but it matters how these errors are
spatially and temporally correlated. A long correlation would cause bias errors in the
source-receptor relationship for larger regions or for longer time periods. In order to20

assess the temporal and spatial scale over which the random error in mixing height is
correlated, a variogram analysis was performed, similar to the analysis of wind errors
in (Lin and Gerbig, 2005). A variogram is the variance of the difference of a spatial
variable, i.e. var(R(x) – R(x+h)) for the variable R, as a function of the distance h
(Cressie, 1993). The variogram and the covariance differ only in sign and a constant,25

namely the variance of the variable itself. Here we use the variogram of the residuals
R=zi (ECMWF)-zi (RS). Due to the large difference in mixing heights a separation into
day and night time was necessary. As expected, the difference in residuals increases
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with increasing distance for both, day and night (Fig. 3), with smaller variogram values
indicating spatial correlation for short distances. In order to estimate the associated
correlation length scale, an exponential variogram model was fitted. The exponential
variogram is the one of several possible variogram models that provides the best fit
to the data. For distances larger than about 1300 km the variogram estimates start5

increasing, which is probably related to the fact that the meteorological profiles are
located within a different synoptic system. These distances were therefore excluded
from the fit to allow an estimation of the local correlation scale. The correlation scale
for daytime is about 100 km, which is in the range of the smallest distances of the
radiosonde network. This scale is thus not very well constrained; however, it is obvious10

that the error in mixed layer height is not just local. This is supported by the enhanced
variogram values at larger distances. The correlation length scale during nighttime
of 230 km is somewhat better constrained, again indicating that it is not just a local
effect. Given that both scales are significantly larger than the horizontal resolution of
the ECMWF fields with about 35 km, we attribute the larger part of this difference to the15

ECMWF model rather than to a representation error caused by small scale variability
in the mixing heights.

A similar analysis was performed to derive the temporal covariance scale of zi
errors—i.e., the covariance of errors over time at a particular location. The temporal
covariance scale was found to be 10 h for daytime, and 16 h for nighttime data. Again,20

these scales are not well constrained due to the lack of high frequency data within the
radiosonde network; standard sites have 2 soundings per day.

In general, the correlation scales indicate that there is no regional coherence of
several hundreds of kilometers, or a temporal coherence of several days scale, but it is
also not a spatially and temporally local effect.25

2.3 Propagating uncertainties in mixed layer heights into mixing ratios

To propagate the uncertainty in mixed layer heights to derive uncertainties in CO2 mix-
ing ratios, we use the STILT (stochastic time inverted Lagrangian transport) framework
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described in (Gerbig et al., 2003b) and in (Lin et al., 2004b). STILT was set up for
a domain covering most of Europe (see Fig. 4) and run for the Bialystok tall tower in
eastern Poland as a receptor over the period May and June 2005. The tower, located
at 53◦14′N and 23◦01′E at an altitude of 180 m is an instrumented, 300 m tall tower
close to the city of Bialystok, and has been operated by the Max Planck Institute for5

Biogeochemistry since 2005 for continuous measurement of several biogeochemical
trace gases. As meteorological input for STILT we used the ECMWF fields, where the
00:00 and 12:00 UTC analysis fields are combined with short term forecasts to pro-
vide 3-hourly fields. STILT trajectory ensembles are coupled to surface fluxes on high
spatial resolution (a Cartesian grid with 1/12 x 1/8 grid (lat. x lon.), corresponding to10

about 10×10 km2), with biosphere-atmosphere exchange as the dominant surface flux
represented with the Greatly Simplified Biosphere model (GSB (Gerbig et al., 2003b))
as temperature and radiation response keyed to different vegetation types, using the
SYNMAP land cover product at 1 km resolution (Jung et al., 2006). For simplicity only
the dominant vegetation classes forest and crop (Fig. 4) are used similar to the ap-15

proach in Gerbig et al. (2006), and the nonlinear part of the light response is neglected.
Thus the only parameters (the elements of the state vectorλ) within the GSB used here
are four scaling factors to adjust the light response of photosynthesis and the tem-
perature response of respiration for the two vegetation classes. The initial light and
temperature response and their uncertainty was taken from Gerbig et al. (2006), which20

resulted from a fit to eddy flux data. Since the largest effect is expected for signals
from surface-atmosphere exchange in the near-field, i.e. near the measurement site,
lateral boundary conditions are neglected and only anomalies due to regional fluxes
are considered.

The approach to propagate the transport error is similar to the one used in (Lin and25

Gerbig, 2005). Here we give only give a brief description, and the reader is referred
to Lin and Gerbig (2005). We use the stochastic nature of STILT to implement errors
in mixing heights as a stochastic process within the transport model run. Standard
runs of STILT provide a distribution of mixing ratios for an ensemble of trajectories, in
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which the different members differ in their realization of turbulent winds, i.e. turbulence
is the only stochastic process. The width σC02,turb of the CO2 mixing ratio distribution
then reflects the combined effect of turbulence modifying the path of each trajectory
and spatial variability of CO2 surface fluxes. We then run the model a second time
with an additional stochastic process to describe the effect from errors in mixed layer5

heights: for each trajectory and each time step a random number is drawn from a
Gaussian distribution with a mean of one and a standard deviation corresponding to
the relative error in daytime mixing height σZi,rel, estimated from stdev(zi (ECMWF)-
zi (RS))/〈zi (RS)〉 as 40% (Table 1, selected data not including coastal stations). Unlikely
cases of values below zero are set to zero. This random number is then used to rescale10

the footprint (local sensitivity of mixing ratio to surface fluxes). Temporal and spatial
correlations are taken into account by decorrelating the random numbers exponentially
using the spatial and temporal variogram models, with a timescale of 12 h and spatial
scale of 100 km as derived from the daytime mixing height residuals.

To a first order, this captures the effect of a changed mixed layer height on mixing15

ratios within the boundary layer. Not included with this method are secondary effects
such as changes in advection, which are expected with different mixing heights. How-
ever, we regard the modified dilution of surface fluxes into a boundary layer column
with different top as the dominant effect, which provides a lower bound for the overall
error. Further, this does not include the much larger uncertainties (both, random error20

and bias) for nocturnal mixing heights, making it an even more conservative estimate.
This second STILT run then provides a distribution of CO2 mixing ratios with an

increased width σC02,turb+Zi, that reflects the effect of turbulence plus the effect of the
error in mixed layer heights. The mixing ratio error due to mixed layer height uncertainty
can then be calculated from the broadening of the mixing ratio distribution, assuming25

statistical independence:

σ2
CO2,Zi

= σ2
CO2,turb+Zi

− σ2
CO2,turb

(1)

This uncertainty σC02,Zi is computed for every measurement time, providing time de-
pendent uncertainties that can be used quantitatively in atmospheric inversions.
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3 Results and application to inversions

Uncertainties for CO2 mixing ratios are calculated using the above mentioned frame-
work for the May–June 2005 period (Fig. 5). σCO2,Zi was on average 3.5 ppm, or 30%
of the simulated CO2 from biospheric fluxes within the near-field (up to 5 days prior
to the measurements, or limited by the regional model domain). This is expected for5

a relative uncertainty in mixed layer heights (σZi,rel) of 40% and a decorrelation scale
of 100 km that is somewhat smaller than the footprint area (see Fig. 4), allowing the
effective uncertainty in mixing ratios to become smaller due to the aggregation over the
footprint area.

In order to test the application of transport errors due to uncertainties in vertical10

mixing to atmospheric inversions, we make the following steps: first pseudo data are
generated based on a “true” mixing height field different from the one assumed in the
standard model, then these pseudo data are used for an inversion to retrieve the state
vector λ within the GSB (i.e. the light and temperature responses of the biospheric
fluxes). The inversion is done for two cases: case 1), where the state vector is retrieved15

without consideration of the propagated transport uncertainties, which corresponds to
the standard case applied in other inversions, and case 2), where we take the transport
uncertainty into account. Finally, we compare the retrievals from both cases with the
known truth.

Pseudo data are generated using a realization of relative errors in mixed layer heights20

that is consistent with the spatial and temporal covariances found in the statistical anal-
ysis above. This was used to create the “true” mixed layer height field, and these fields
were used by STILT to calculate pseudo data for CO2 mixing ratios, following the equa-
tion

yps = Ktrueλtrue (2)25

with yps as the pseudo data, Ktrue as the “true” Jacobian (sensitivities of measurements
y with respect to the biospheric parameters λ), and the state vector λtrue. Ktrue is
the combination of the “true” transport operator and the operator relating biospheric
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parameters to fluxes (i.e. radiation and temperature). As “true” fluxes we use the GSB
model with all scaling parameters set to 1. Resulting pseudo data are shown in Fig. 5
as time series, with typical synoptic variations of about 20 ppm.

The result of the “forward” model,

yprior = Kλprior (3)5

using a Jacobian K with unmodified mixing heights, and using a priori scaling factors
(state vector λprior) that are different from the “truth”, is also shown in Fig. 5. As a priori
values for λ we use for each element a random number taken from a Gaussian distri-
bution with the prior uncertainty as the width. The forward model is strongly correlated
with the true signal, but it is different due to the prior uncertainty (here a case of a10

stronger biospheric fluxes) as well as due to the transport uncertainty. The prior error
is calculated as a projection in measurement space (the product of Jacobian K with the
prior uncertainty in state space) and shown in Fig. 5. It is obvious that during times with
larger differences between the forward model and the truth, the uncertainties are large,
while small uncertainties are usually only found for periods with small differences.15

The different components of K show different temporal patterns (Fig. 5b): signals due
to fluxes from crop areas usually dominate over forest signals, photosynthesis signals
dominate over respiration signals. There is a high degree of correlation between all
four signals, indicating a strong common influence through the modulation by transport.
However, there are also significant differences left that allow separation of the different20

components in an inversion.
Now we retrieve the state vector λ based on the pseudo observations, which are re-

lated through the measurement equation ytrue = Kλ+εy , with εy accounting for errors.
Although εy is often referred to as “measurement error”, it can incorporate errors not
related to instrument errors, but in the model representation (e.g., uncertainties in zi ).25

The optimal estimate (Rodgers, 2000) is

λ̂ =
(

KTS−1
ε K + S−1

prior

)−1 (
KTS−1

ε y + S−1
priorλprior

)
(4)
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with Sε as the error covariance corresponding to εy , and the prior error covariance

Sprior. The posterior uncertainty of the retrieved state vector λ̂ is calculated from Ŝλ =(
KTS−1

ε K + S−1
prior

)−1
.

For case 1 that doesn’t take into account any transport error, we use a diagonal ma-
trix with 2 ppm uncertainty as error covariance Sε to account for uncertainties such as5

the insufficient grid resolution to resolve heterogeneity in surface fluxes (“representa-
tion error”). In case 2 that takes into account the uncertainties in mixed layer height,
we add to Sε a transport error with diagonal elements based on Eq. (1) and with off-
diagonal elements that correspond to a 12 h temporal covariance scale.

The inversion of the pseudo data was conducted on a weekly time basis, allowing the10

state vector to adjust weekly to measurements. This reflects the fact that the biosphere
model only accounts for responses to light and temperature, but not for example to soil
moisture or to changes in the phenology which usually vary more slowly.

Retrieved time series of the state vector components with their uncertainties (Fig. 6)
during the May–June 2005 period show that there is a strong reduction in uncertainty15

for both cases (with and without consideration of the transport error), with posterior
uncertainties that are about an order of magnitude smaller than the corresponding
prior uncertainties (also shown in Fig. 6). Although for generation of the pseudo data no
temporal variation in the state vector was imposed, the retrievals show variations and
differences from the truth. Case 1 shows significant differences from the truth, which20

means that the truth is often far outside the range given by the posterior uncertainty
around the retrieved state (grey bands in Fig. 6). Thus the retrieval for case 1 is biased.
In contrast, case 2 has less deviation from the truth, and also the truth is included
in the range of posterior uncertainties (Fig. 6, light blue bands) so that differences
between retrieved state and truth are not statistically significant. This is achieved by an25

uncertainty for case 2 that is much larger (by about a factor two) than for case 1), but
this is the price to pay in order to get a retrieval that is consistent with the truth.

It is important to note that the bias in the retrieved state for case 1 depends on the
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combination of spatial and temporal decorrelation scales in the mixed layer uncertainty
and temporal scale of the retrieved parameters that one is interested in. When ag-
gregating parameters or fluxes to temporal scales long compared to the decorrelation
scale, the resulting bias will diminish. However, given that mixing height uncertainty
that was used in STILT didn’t account for the much larger night time error, which in-5

cluded not only a random part, but also a significant bias, the estimation of the retrieval
bias is on the low side. Inclusion of the bias error for nocturnal mixing heights would
have shown the diurnal rectification effect (Denning et al., 1996).

4 Discussion and outlook

Since the uncertainties in mixed layer heights found in this study are quite large, it is10

appropriate to spend some time in discussing potential reasons as well as to exam-
ine potential approaches to deal with them. As shown in this analysis, uncertainties
in mixed layer heights as used in atmospheric inverse studies pose a considerable
problem when interpreting measurements made in the continental boundary layer. An
average uncertainty of about 40% for daytime mixing heights results in a correspond-15

ing uncertainty in mixing ratios, which in case of CO2 amounts to several ppm during
the growing season, or to 30% of the regional biosphere-atmosphere signals. Together
with the uncertainty in advection due to wind errors (Lin and Gerbig, 2005), this is the
dominant source of uncertainty in any inverse modelling system targeted at continental
measurements (Table 2). Other sources of uncertainty such as the pure measurement20

uncertainty are generally small compared to these transport model uncertainties.
The variogram analysis of mixed layer height errors (Sect. 2.2, also Fig. 3) shows

that although the error is not uncorrelated in space, there is a significant random com-
ponent that is spatially uncorrelated. Spatial variations in mixing heights respond in
some degree to spatial variations of surface properties such as albedo and wetness,25

depending on wind speed and on scale of the surface heterogeneity (Mahrt, 2000).
Scales of a few tens of km are favourable for the formation of mesoscale patterns
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(Chen and Avissar, 1994), so it is not really surprising that the ECMWF model at a
resolution of around 35 km doesn’t capture the full spatial variability. Small scale vari-
ability in radiosonde derived mixed layer heights can also be caused by broken clouds
in that in-cloud and clear air profiles of temperature etc. are different. On average, this
is represented in the ECMWF model, but since clouds remain unresolved there is a5

significant variability that is not represented in modelled fields.
There are in general three approaches that have the potential to mitigate these prob-

lems in an inversion system: 1) to allow for additional uncertainty by quantifying and
propagating the error, 2) to improve the transport model, or 3) to use an approach
that is less sensitive to the transport error. In the following these approaches and their10

benefits and limitations are discussed.
Approach 1), as has been shown in this paper, can provide unbiased inversion re-

sults. It can further be implemented for other regions and times given that the statistical
analysis to quantify the error covariance for the uncertainty in mixing heights has been
extended to cover these times and locations. However, it requires running a stochas-15

tic model such as STILT in order to propagate the mixing height error into a mixing
ratio uncertainty. Further, significant care has to be taken to ensure that the different
spatial and temporal scales are appropriately characterized. The simple exponential
decorrelation assumed for the error covariance in this study might not be true, and it
has impact on the corresponding scales in the retrieved state vector, especially when20

solving for spatially explicit fluxes. Retrievals might thus still be biased on given scales
due to remaining biases in the transport representation.

The second approach (2) means that a transport model has to be applied that sig-
nificantly better reproduces boundary layer mixing. This could partly be achieved by
using more sophisticated boundary layer schemes and a more sophisticated land sur-25

face model. However, it is probably inevitable to use a higher spatial resolution to
better represent the atmospheric circulation in the vicinity of the measurements (van
der Molen and Dolman, 2007). Such approaches using mesoscale transport models
embedded in inversion systems are being implemented by different groups now, and
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first exploratory applications were performed in the CarboEurope Regional Experiment
Strategy (CERES) (Ahmadov et al., 2007; Dolman et al., 2006; Sarrat et al., 2007a,
2007b). Since there will never be a perfect model, it is obvious that also for this ap-
proach, that seeks to reduce uncertainties by improving the model, it is obvious that
a detailed validation and analysis of the remaining uncertainties is required based on5

extensive comparisons with measurements.
Approach 3) could be realized by replacing the point measurements from tall towers

by column observations. Column amounts are not as sensitive to the exact height of the
mixed layer, since to first order a difference between true and modelled mixing height
just reshuffles air between the free troposphere (FT) and the PBL, leaving the column10

amount constant. Such column observations can be made by aircrafts or with remote
sensing techniques. A slight drawback of using column amounts is that the signature
of surface fluxes (change in tracer mixing ratio) is diluted over the atmospheric column.
Hence the temporal and spatial variability of column amounts is not as large, and thus
the method is less sensitive to surface fluxes. Profile information would be better in this15

regard, since then a separation of PBL and FT remains possible and the measured
vertical distribution can be adjusted by reshuffling between PBL and FT (with constant
column amount) to match the thickness of the PBL in the model. The main drawback is
that column or profile measurements are still limited in accuracy and precision in case
of remote sensing techniques, or are still quite expensive in case of regular aircraft20

measurements. Satellite remote sensing techniques are being developed further, but
observations will only become available within the next years, first with limited quality
(Crisp et al., 2004). An increasing network of ground based FTIR measurement sta-
tions, primarily intended for validation of the upcoming satellite instrument OCO, can
also be utilized for inversions, but there is significant work to be done in improving25

retrieval algorithms in order to provide accurate measurements (Washenfelder et al.,
2006).

Another way to realize approach 3) is to use additional tracer measurements such
as 222Rn or SF6 that are subject to the same transport, but for which fluxes are known.
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This would allow “calibrating” the transport, and reduce errors this way (Schmidt et
al., 1996). However, this requires the fluxes to be known at least as well as we already
have knowledge about the fluxes targeted in the inversion. Given the prior knowledge of
CO2 fluxes and their spatial and temporal patterns, and given the problems in properly
simulating the emanation rate of 222Rn (Olivié et al., 2004), we see only limited potential5

in this tracer. For SF6, the location and strength of local emissions are often dominating
variability of measurements in the continental boundary layer (Rivier et al., 2006). A
recent study also found significant uncertainties in the emission database (Hurst et al.,
2006). Since detailed and accurate information on these emissions is hard to come by,
this tracer is also not too promising to reduce transport errors.10

The real solution to this problem is probably a combination of the above mentioned
approaches. This means that the inversion system or data assimilation framework
targeted at surface-atmosphere exchange would combine improved and higher spatial
resolution models with quantitative information on uncertainties. This framework would
then use both, tall tower measurements with good temporal coverage as well as profile15

or column measurements with more limited temporal but better vertical coverage.
What we regard as an indispensable addition for the observational system are de-

vices to determine the boundary layer height that are collocated with tall towers and
aircraft profiling sites. Such measurements could be made by remote sensing systems
such as lidars, sodars, RASS, or wind profiling radars (Clifford et al., 1994). A relatively20

cheap and operationally feasible method is the use of ceilometers, where the backscat-
ter profile can be used to retrieve stable and convective mixed layer heights (Eresmaa
et al., 2006). These methods give continuous mixing height information, which is very
useful to better constrain the temporal covariances discussed in Sect. 2.2. Further,
these data could be used in the data assimilation framework to improve the represen-25

tation of atmospheric mixing where it is most relevant, at the measurement site.
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Table 1. Average values for relative bias and relative standard deviation between radiosonde
and ECMWF derived mixed layer heights, separated by day/night and by data selection (all
data vs. selected data, excluding coastal locations).

Time Data used relative bias [%] relative stdev [%]

Daytime ECMWF vs. radiosonde, all –0.9 42
Daytime ECMWF vs. radiosonde, selected 6 39
Daytime high resolution vs. standard radiosonde 0.2 7
Nighttime ECMWF vs. radiosonde, all 58 91
Nighttime ECMWF vs. radiosonde, selected 53 83
Nighttime high resolution vs. standard radiosonde 16 72
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Table 2. Typical uncertainties for boundary layer CO2 mixing ratios in an inverse modeling
study.

Source of uncertainty Type or error Size Reference

Transport Model

Advection ∼5 ppm (summertime) Lin and Gerbig, 2005
PBL mixing ∼3.5 ppm (summertime) This study
Convection No estimate –

Transport Model + Flux Model Grid resolution ∼1 ppm @ 200 km (summertime) Gerbig et al., 2003
Flux Model Aggregation Depending on Aggregation and

Model
Gerbig et al., 2006

Measurement Precision, accuracy 0.1 ppm (targeted) WMO
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Fig. 1. Daytime mixed layer heights derived from radio soundings (left) and from ECMWF short
term forecasts (right), averaged over the May–June 2005 period. Sounding locations are indi-
cated by open circles, with filled circles showing the location of high resolution sounding data.
Crosses indicate stations near coasts not selected for further statistical analysis. Interpolation
for the contour plot was done with inverse distance weighting.
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Fig. 2. Left: temporally averaged daytime residuals between ECMWF based and radio sound-
ing based mixed layer heights, normalized by the radio sounding based estimate. Right: stan-
dard deviation of daytime residuals, normalized by the radio sounding based estimate. Symbols
are the same as in Fig. 1.
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Fig. 3. Variogram of mixed layer height residuals zi (ECMWF)-zi (RS) for day (left) and night
(right). The lines show a fit with an exponential variogram, for which distances larger then
1300 km where excluded.
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Fig. 4. Example of a footprint for the Bialystok tall Tower, calculated using STILT driven by
ECMWF meteorology. Inserts show the fractional land coverage with forests (left) and crop-
lands (right).
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Fig. 5. (a) Time series of the CO2 signal due to biosphere-atmosphere exchange within the
model domain (“biospheric signal”) for a 2 week period in May 2005. Pseudo data are shown
as blue line (“Obs”). Simulated values are shown in black (“Model”) on top of the grey band
indicating the propagated transport error (“TransErr”). Also the prior errors are shown as green
band (“PriorErr”). (b) Time series of CO2 signals due to different flux components from the dif-
ferent vegetation classes. Abbreviations: R denotes respiration, GEE denotes gross ecosystem
exchange.
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Fig. 6. Retrieved weekly scaling factors for respiration (left) and photosynthesis (right) plotted
against time for forest (top row) and crop (bottom). Abbreviations as in Fig. 5. The “true”
scaling factor is one, plotted as red line, prior values are indicated by the dotted line, and prior
uncertainties shown as error bars plotted at the left side of each graph. Retrievals without
consideration of the transport error are plotted as black lines, with posterior uncertainty as grey
band; retrievals taking into account the propagated transport error are plotted as blue lines,
with posterior uncertainty as light blue band.
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