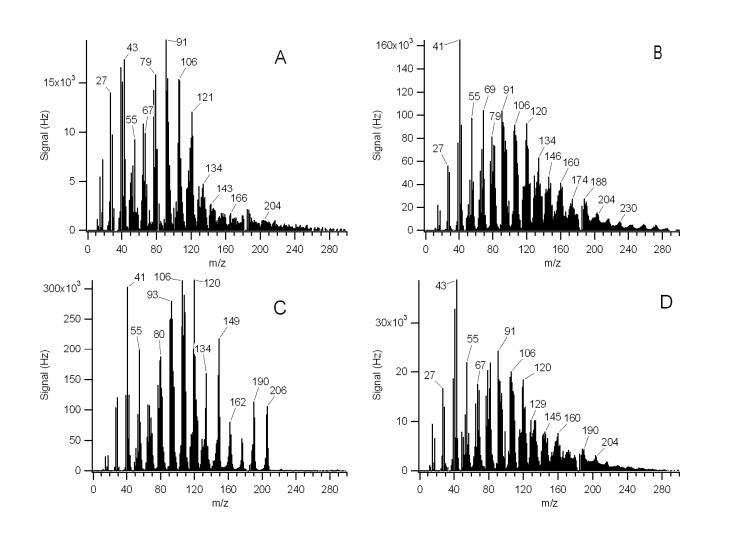
## Reversible and irreversible processing of biogenic olefins on acidic aerosols

## **Supplemental Information**

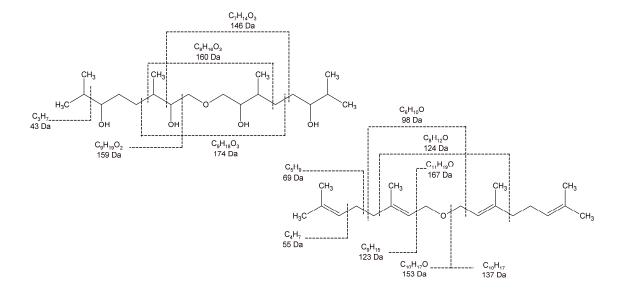
John Liggio and Shao-Meng Li

Air Quality Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada


4905 Dufferin Street, Toronto, Ontario, Canada, M3H 5T4.

Email: John.Liggio@ec.gc.ca

Figure 1. Structure of biogenic species used in this study


| Species    | Structure                                          | Species                      | Structure                                                          |
|------------|----------------------------------------------------|------------------------------|--------------------------------------------------------------------|
| eta-pinene | H <sub>3</sub> C CH <sub>3</sub>                   | Linalool                     | H <sub>3</sub> C OH CH <sub>2</sub>                                |
| Lim onene  | CH <sub>3</sub> H <sub>2</sub> C H CH <sub>3</sub> | β-Caryophyll                 | $H_3C$ $H_3C$ $H_2C$ $H_2C$                                        |
| 3-Carene   | H <sub>3</sub> C CH <sub>3</sub>                   | Humulene<br>H <sub>3</sub> C | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub>                    |
| Geraniol   | H <sub>3</sub> C OH CH <sub>3</sub>                | Nerolidol<br>H₃(             | CH <sub>3</sub> HO CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> |

*Figure 2.* Sample organic aerosol mass spectra for reactive uptake products of  $A - \beta$ -pinene, B – Linalool, C – Humulene, and D – Nerolidol at the end of each experiment.



*Figure 3.* Example of several potential mechanisms leading to heterogeneous products of  $\beta$ -caryophyllene

Figure 4. Potential fragments associated with organic ester products of geraniol

