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Abstract

We present the chemistry-climate model UM CAM in which a relatively detailed tro-
pospheric chemical module has been incorporated into the UK Met Office’s Unified
Model version 4.5. We obtain good agreements between the modelled ozone/nitrogen
species and a range of observations including surface ozone measurements, ozone5

sonde data, and some aircraft campaigns.
Four 2100 calculations assess model responses to projected changes of anthro-

pogenic emissions (SRES A2), climate change (due to doubling CO2), and idealised
climate change associated changes in biogenic emissions (i.e. 50% increase of iso-
prene emission and doubling emissions of soil-NOx). The global tropospheric ozone10

burden increases significantly for all the 2100 A2 simulations, with the largest response
caused by the increase of anthropogenic emissions. Climate change has diverse im-
pacts on O3 and its budgets through changes in circulation and meteorological vari-
ables. Increased water vapour causes a substantial ozone reduction especially in the
tropical lower troposphere (>10 ppbv reduction over the tropical ocean). On the other15

hand, an enhanced stratosphere-troposphere exchange of ozone, which increases by
80% due to doubling CO2, contributes to ozone increases in the extratropical free tro-
posphere which subsequently propagate to the surface. Projected higher temperatures
favour ozone chemical production and PAN decomposition which lead to high surface
ozone levels in certain regions. Enhanced convection transports ozone precursors20

more rapidly out of the boundary layer resulting in an increase of ozone production in
the free troposphere. Lightning-produced NOx increases by about 22% in the doubled
CO2 climate and contributes to ozone production.

The response to the increase of isoprene emissions shows that the change of ozone
is largely determined by background NOx levels: high NOx environment increases25

ozone production; isoprene emitting regions with low NOx levels see local ozone de-
creases, and increase of ozone levels in the remote region due to the influence of PAN
chemistry. The calculated ozone changes in response to a 50% increase of isoprene
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emissions are in the range of between –8 ppbv to 6 ppbv. Doubling soil-NOx emissions
will increase tropospheric ozone considerably, with up to 5 ppbv in source regions.

1 Introduction

Tropospheric ozone (O3) has important chemical and radiative roles and has been a
focus of many modelling studies. It can be a regional pollutant; high levels of ozone5

are harmful to human health and vegetation. O3 is the primary source of the hydroxyl
radical (OH), which plays a key role in the oxidizing capacity of the atmosphere. It
is also important because of its radiative impact; ozone is currently the third most
important greenhouse gas after carbon dioxide (CO2) and methane (CH4).

During the industrial era, human activities have changed the chemical composition10

of the atmosphere considerably. Increasing surface emissions of methane, carbon
monoxide (CO), volatile organic compounds (VOCs) and nitrogen oxides (NOx=NO +
NO2), produced by biomass burning and fossil-fuel combustion, have caused tropo-
spheric O3 concentrations to increase significantly (Volz and Kley, 1988; Thompson,
1992; Marenco et al., 1994). The total amount of tropospheric O3 is estimated to have15

increased by 30% globally since 1750, which corresponds to an average positive radia-
tive forcing of 0.35 W m−2 (Houghton et al., 2001). Further increases of tropospheric
O3 are anticipated in response to continuing increases in surface emissions.

Tropospheric ozone is formed as a secondary photochemical product of the oxidation
of CO and hydrocarbons in the presence of NOx. Its short chemical lifetime results20

in an inhomogeneous distribution and a stronger dependence on changes in source
gas emissions than for longer-lived greenhouse gases. The complex O3 chemistry in
the troposphere requires a comprehensive chemical mechanism describing NOx/VOC
chemistry to be incorporated in a 3-dimensional chemistry/climate model to simulate
the global O3 distribution and to assess climate feedbacks.25

Numerous studies of the evolution of tropospheric O3 changes since preindustrial
times and the associated radiative forcings have been carried out using various chem-
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ical transport or climate models (e.g., Hauglustaine et al., 1994; Forster et al., 1996;
Roelofs et al., 1997; Berntsen et al., 2000; Brasseur et al., 1998; Stevenson et al.,
1998a; Mickley et al., 1999; Hauglustaine and Brasseur, 2001; Grenfell et al., 2001).
However there is often significant difference between models in their predictions of
ozone change, (see, e.g. Houghton et al., 2001), even though these models normally5

reproduce present-day observations “satisfactory”. Future changes of tropospheric O3
will depend on how the emissions of ozone precursors change in the future and also
on how the climate will change. Continuing emissions of NOx and VOCs are predicted
to increase tropospheric O3, but the anticipated rise in temperature and humidity will
likewise have an impact. A number of studies have suggested that an anticipated10

warmer and wetter climate would slow down the increase in O3 abundance compared
to an unchanged climate (Brasseur et al., 1998; Johnson et al., 1999; Stevenson et al.,
2000).

We have reported earlier studies with a tropospheric chemical module (identi-
cal to the off-line CTM TOMCAT, see Law et al., 1998) incorporated into the UK15

Met Office (UKMO) Unified Model (UM) version 4.4. The chemistry comprised
NOx/CO/CH4/NMVOCs(C2-C3 alkanes, HCHO, CH3CHO and Acetone). The model
was used to assess tropospheric ozone changes between 2000 and 2100 using the
SRES A2 scenario (Zeng and Pyle, 2003). We assessed the feedback on chemical
ozone production following increased water vapour, but, in contrast to some of the20

earlier studies, found that large-scale dynamical changes in a future climate led to an
increase in tropospheric ozone through enhanced stratosphere-troposphere exchange
(Zeng and Pyle, 2003). An increased STE in a future climate was also reported by
Collins et al. (2003) and Sudo et al. (2003). However detailed studies on the feedbacks
between climate change and tropospheric composition are still limited. Stevenson et25

al. (2005) discuss the impact of changes in physical climate on tropospheric chemical
composition; the climate feedbacks are dominantly negative (e.g. reduced tropospheric
ozone burden and lifetime, and shortened methane lifetime), but more modelling stud-
ies are needed in order to reach a common consensus on climate feedbacks. Most
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recently, Stevenson et al. (2006) reported an ensemble modeling study from 25 mod-
els for the 4th IPCC assessment. Simulations for the assessment contrasted a 2000
atmosphere with the year 2030, including runs with changed precursor emissions only,
and a run considering both the changes of emissions and climate. The model-model
differences are largest when the climate change scenario is considered.5

It is likely that climate change will also affect emissions of trace gases from the bio-
sphere. Isoprene is an reactive biogenic compound, emitted by several plant species
and with a global source comparable to methane (Guenther et al., 1995). Isoprene
emission is sensitive to temperature (e.g., Monson and Fall, 1989; Sharkey et al.,
1996), CO2 concentration (Rosenstiel et al., 2003) and water availability (Pegoraro10

et al., 2005), amongst other factors. These driving variables are expected to change
in the future, hence there has been some interest in projecting future isoprene emis-
sions and quantifying their effect on atmospheric composition (Sanderson et al., 2003;
Hauglustaine et al., 2005; Wiedinmyer et al., 2006). Estimates of the emission at the
end of the 21st century range from 640 to 890 TgC/yr (Sanderson et al., 2003; Lathiere15

et al., 2005; Wiedinmyer et al., 2006), with the biggest driver being the projected in-
crease in surface temperature. Changes in the emission of NOx by microorganisms in
soils is another important climate-biosphere feedback, due to the importance of NOx in
tropospheric photochemistry. These emissions are expected to increase in a warmer,
wetter atmosphere (Yienger and Levy, 1995).20

In this paper, we present the results from a version of our chemistry-climate model
(UM CAM) updated to include an isoprene oxidation scheme. We calculate ozone
changes for a 2100 climate with associated chemical and dynamical changes (e.g.
ozone production/destruction, stratosphere-troposphere exchange). We chose the
SRES A2 scenario for the year 2100, which predicts relatively large emission increases,25

in order to explore a large range of influences on future air quality. Currently, there are
large uncertainties in the estimation of biogenic emissions. Here, we carry out an ini-
tial assessment of the impact of idealised increases in isoprene emissions and altered
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soil-NOx emissions on future tropospheric ozone. A paper by Young et al. (2007)1 will
discuss in detail the role of isoprene on ozone formation.

The base climate model is the UM version 4.5. We describe the model in Sect. 2.
In Sect. 3 the experimental setup is given. In Sect. 4, we present the present-day sim-
ulation and compare modelled O3, NOx and PAN to observations. Section 5 presents5

future simulations: impacts on tropospheric O3 from the anthropogenic emissions and
from changes in meteorology are discussed; idealised changes in the biogenic emis-
sion, related to climate change, are also assessed. The tropospheric ozone budgets
for the various cases in Sects. 4 and 5 are analysed. Conclusions are gathered in
Sect. 6.10

2 Model description

2.1 Climate model

The UM is developed and used at the UKMO for weather prediction and climate re-
search (Cullen, 1993; Senior and Mitchell, 2000; Johns et al., 2003). Here we use the
19 level UM version 4.5. It uses a hybrid sigma-pressure vertical coordinate, and the15

model domain extends from the surface up to 4.6 hPa. The horizontal resolution is 3.75◦

by 2.5◦. The model’s meteorology is forced using prescribed sea surface temperatures
(SSTs).

We adopt an improved tracer advection scheme (A. R. Gregory, private commu-
nication, 2001) to replace the existing scheme in the UM which is based on Roe’s20

flux redistribution method (Reo, 1985). The Roe “scheme” has the advantage of be-
ing a monotonic method but suffers from low accuracy at the climate resolution. The
new tracer transport scheme is based on the 1-D NIRVANA scheme of Leonard et al.

1Young, P. J., Zeng, G., and Pyle, J. A.: Isoprene chemistry in a future atmosphere, in
preparation, 2007.
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(1995) using the same extension to 3-D/sphere as the Roe scheme. The new scheme
is conservative, monotonic and more accurate than the Roe scheme at a lesser com-
putational cost. It is considerably less diffusive in the vertical than the Roe scheme.

Convection is parameterized by a penetrative mass flux scheme (Gregory and Rown-
tree, 1990) in which buoyant parcels are modified by entrainment and detrainment to5

represent an ensemble of convective clouds. The convection scheme has been tested
using 222Rn experiments; the agreement with observations is reasonable (Stevenson
et al., 1998b).

The Edwards and Slingo (1996) radiation code is used in the UM. Absorption by
water vapour, carbon dioxide, and O3 are included in both longwave and shortwave10

calculations. Absorption by methane, nitrous oxide, CFC-11 and CFC-12 are also
included in the longwave scheme. Water vapour is a basic model variable. Prescribed
monthly zonal mean O3 climatology fields are used in the radiation scheme unless
otherwise stated. Mixing ratios of other gases are assumed to be global constants.

2.2 Chemical module15

The tropospheric chemical mechanism includes CO, methane and NMVOC oxidation
as previously used in the off-line transport model TOMCAT (Law et al., 1998) and ear-
lier versions of the UM+chemistry model (Zeng and Pyle, 2003, 2005). An isoprene
oxidation scheme adopted from Poschl et al. (2000) was recently added into the model
(see Young, 2007 for more details). Reaction rates are taken from the recent IUPAC20

(Atkinson et al., 1999) and JPL (DeMore et al., 1997) evaluations. Chemical integra-
tions are performed using an implicit time integration scheme, IMPACT (Carver and
Stott, 2000), with a 15 min time step. The model includes 60 species and 174 chem-
ical reactions. Two tracers, Ox and NOx, are treated as chemical families. OH, HO2
and other short-lived peroxy radicals are assumed to be in steady state. The model25

uses the diurnal varying photolysis rates calculated off-line in a 2-D model (Law and
Pyle, 1993) and interpolated to 3-D fields. Loss of trace species by dry deposition is
included using deposition velocities which are calculated using prescribed deposition
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velocities at 1 m height (largely taken from Valentin, 1990 and Zhang et al., 2003), de-
pending on season, time of the day and on the type of surface (grass, forest, dessert,
water, snow/ice) and are extrapolated to the middle of the lowest model layer using a
formula described by Sorteberg and Hov (1996). Wet deposition of soluble species
is represented as a first order loss using model-calculated large-scale and convective5

rainfall rates. A detailed description of the dry and wet deposition schemes is given by
Giannakopoulos et al. (1999). Instead of explicit stratospheric chemistry in the model,
daily concentrations of O3, NOy and CH4 are prescribed at the top three model layers
(29.6, 14.8 and 4.6 hPa) using output from the 2-D model, to produce a realistic annual
cycle of these species in the stratosphere. Note that the scheme includes the impor-10

tant stratospheric NOx/HOx chemistry and is applied in the lowermost stratosphere (i.e.
below 30 hPa) but that no halogen chemistry is included.

3 Experimental setup

We have performed 5 simulations (see Table 1). The baseline run A covers the years
1996–2000 using emissions for year 2000 and is used to verify the model performance15

against observations. Run B uses 2100 emissions to assess changes of tropospheric
composition only due to changes in these anthropogenic emissions. Run C calculates
future changes due to changes in both anthropogenic emissions and the climate using
2100 emissions (same as run B) and a double CO2 climate forcing with appropriate
SSTs. In runs B and C biogenic emissions are held constant. Run D is based on20

run C but uses elevated isoprene emissions to assess the sensitivity of the model to
increased biogenic emissions which may be associated with climate change. Similar
to run C, run E also accounts for increased soil NOx emissions in addition to the an-
thropogenic emissions. All runs were for several years (3–5 years) with averaged data
analysed for each scenario.25

Emissions are seasonally varying but have no inter-annual variability except for NOx
produced from lightning which is climate-dependent. In detail, the anthropogenic emis-
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sions of NOx, CO and NMVOCs for the present-day are from the recently published
emission scenarios by the International Institute of Applied System Analysis (IIASA)
which was described in detail by Dentener et al. (2005) and references therein. An-
thropogenic emissions appropriate to 2100 are based on the IPCC Special Report on
Emission Scenarios (SRES) for the year 2100 (Nakićenović et al., 2000). We chose5

the A2 scenario to demonstrate the sensitivity to assumed large emission changes.
We include 512 TgC/yr total annual emissions of isoprene (Guenther et al., 1995) in

the base run. For run D, isoprene emissions are increased by 50% relative to the base
run (768 TgC/yr). This increased isoprene emission sits roughly in the middle of the
2100 estimates of Sanderson et al. (2003), Lathiere et al. (2005), and Wiedinmyer et10

al. (2006) (640−890 TgC/yr) although, unlike their experiments, we do not account for
any change in the distribution of the vegetation and simply scale up the present day
emissions. Run D is used to assess the sensitivity of the modelled 2100 atmosphere
to an increase in isoprene emission, rather than be a prediction of future isoprene
emissions.15

Large uncertainties exist in estimating the global soil-biogenic NOx emissions. In our
base run, we take the data from Yienger and Levy (1995) and scale to 7 TgN/yr which
is close to the upper end of their estimation for the 1990s. Yienger and Levy (1995)
related soil-NOx emissions to biome, soil temperature, precipitation and fertilizer appli-
cation. They estimated a 25% increase from 1990 to 2025 in response to a warmer,20

wetter climate. In our soil-NOx perturbation run E, we simply double the present-day
value to develop a scaled emission field appropriate for a 2100 atmosphere sensitivity
experiment.

For all the runs, other natural emissions are kept the same as in 2000 and are taken
from the EDGAR3.2 global emission inventory (Oliver and Berdowski, 2001). Biomass25

burning is based on the Global Fire Emission Data averaged for 1997–2002 (van der
Werf et al., 2003). Lightning-produced NOx is calculated as a function of the cloud top
height using the parameterization of Price and Rind (1992, 1994) and scaled close to
4 Tg(N)yr−1 for the present day simulation. For the simulation with the future climate
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forcing, a 22% increase of NOx was found as a result of the increase in convection in
a warmer and wetter climate. Methane concentrations are constrained throughout the
model domain to reduce the spin-up time and eliminate possible trends. A summary
of the emissions is given in Table 2. All runs were for several years (3-5 years) with
averaged data analysed for each scenario.5

We use observed monthly mean sea surface temperature and sea ice climatology
compiled at the Hadley centre (GISST 2.0) to drive the present-day climate. The future
climate is driven by SSTs produced by the Hadley Centre coupled ocean-atmosphere
GCM (HadCM3) run with IS92a emissions for the year 2090–2100 (Johns et al., 2003;
Cox et al., 2004). In the radiation scheme, the same present-day O3 climatology from10

Li and Shine (1995) is used for all model runs; other trace gases mixing ratios are fixed
at present-day levels with only CO2 doubled in the future climate runs. Prescribed
stratospheric O3 and NOx, and photolysis rates are kept the same for all model runs.

4 Present-day simulation

4.1 Ozone15

Figure 1 shows modelled monthly mean distributions of surface O3 for January, April,
July and October. Surface O3 is generally higher in the NH than in the SH due to
the higher emissions of ozone precursors there. Seasonally, the highest surface O3
level occurs in July due to intensified photochemical production of O3, while in winter
the O3 level is generally low with higher values over the ocean. The model calculation20

shows that surface O3 is low all year round in the equatorial western Pacific region; this
area (the “warm pool”) is characterized by high sea surface temperatures and strong
convection and precipitation which lead to efficient chemical destruction of O3 and the
strong lifting of O3 precursors. It is evident that the long range transport of O3 and its
precursors results in elevated O3 away from its sources. Note, for example, the high25

ozone values over the Atlantic, downstream of the eastern US, and in the Pacific, to
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the east of the Asian Pacific rim.
Figure 2 shows zonally averaged O3 concentrations for January, April, July and

October. At the equator the air at all heights is characterized by relatively low O3,
as a result of convective transport of O3-poor air from the surface up to the tropical
tropopause. At higher latitudes, downward transport of O3-rich air dominates. The5

northern-hemispheric stratosphere/troposphere exchange (STE) is strong in April while
the O3 concentration is low in the tropical region reflecting stronger upwards transport.
In the southern hemisphere, STE maximizes in austral spring. Photochemical produc-
tion of O3 is strongest in summer in the NH and convection leads to efficient transport
of O3 precursors out of the boundary layer and mixing into the free troposphere.10

We have compared the baseline simulation with a wide range of long term obser-
vations. Figure 3 shows the simulated and observed monthly mean O3 concentra-
tions near the surface. The observational data are from the World Data Centre for
Surface Ozone (WDSO) (http://gaw.kishou.go.jp/wdcgg.html), with major contributions
from CMDL. We have selected stations with data covering the years 1996–2004 where15

possible. The ozone concentrations from the simulation are averaged over 1996–
2005. Most of the observations are well reproduced by the model. For the northern-
hemisphere extratropical remote sites, the observations are characterized by a spring
maximum and a summer minimum associated with relatively strong downward flux of
O3 from the stratosphere in the spring and efficient photochemical destruction in sum-20

mer. A summer maximum over polluted continental areas (e.g. at Hohenpeissenberg)
associated with intensified photochemical production is well reproduced by the model.
There are some discrepancies between the model and the measurements. At Bar-
row, the observed spring minimum in surface O3 may well be associated with bromine
chemistry (Barrie et al., 1988) which is not represented in the model. The observed25

summer minima at Ryori and Bermuda are weak in the model simulation. At the south-
ern tropical sites, the observations indicate an austral spring maximum which is well
captured by the model. The year-round low O3 value in Samoa is well simulated. The
austral spring maxima at Cuiaba, produced by biomass burning, is also accurately
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reproduced. The observed surface O3 concentrations at southern middle and high
latitudes shows a winter maximum and a summer minimum in the lower troposphere.
This feature is not well simulated by the model. The seasonal cycle produced by the
model is relatively weak and does not reflect that of the measurements. The model
over-estimates summer O3 concentrations in Baring Head and also underestimates O35

values by up to 20 ppbv in the austral winter-spring over Antarctica. The cause of these
discrepancies needs to be investigated further.

We have also compared the modelled vertical ozone concentrations to O3 sonde
measurements (Logan, 1999) made between 1985–1995 (Fig. 4). Note that the ozone
concentrations from the baseline simulation are averaged over 1996–2005. The model10

simulation agrees reasonably well with the observations. The model captures very well
the strong vertical O3 concentration gradient shown in the measurements in middle to
high latitudes in both hemispheres. However, the model overestimates spring-summer
mid-upper tropospheric O3 concentrations to some degree (e.g. at Edmonton). The mid
tropospheric maxima in the northern subtropical sites at Kagoshima and Hilo are well15

simulated by the model. In the southern tropical sites at Natal and Samoa, the model
simulates the steep decrease of O3 concentrations in the lower troposphere but cannot
reproduce well the elevated O3 concentrations in the middle and upper troposphere,
especially in Natal, indicating possibly that there is not enough convective lifting of O3
and its precursors to the middle and upper troposphere during the biomass burning20

season.
In general the model does a good job in simulating observed O3. However, to under-

stand factors affecting O3 it is necessary also to look at the processes involved in ozone
production, destruction and transport. The ozone budget depends critically on the con-
centration of ozone precursors and comprises the chemical production and destruction25

of O3, stratosphere/troposphere exchange (STE) and dry deposition at the surface. Al-
though models can generally reproduce the observations of O3 concentrations, there
are large differences in tropospheric O3 budgets between different models (see, e.g.,
Table 4.12 of IPCC, Houghton et al., 2001 and Table 5 of Shindell et al., 2001): the
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net chemical production varies from –810 to 550 Tg/year; the flux from the strato-
sphere to the troposphere from 390 to 1440 Tg/year; and the dry deposition from 533
to 1237 Tg/year. Most recent intermodel comparison shows that differences in O3 bud-
get caculations are reduced among models for the present-day scenario (see Steven-
son et al., 2006). In our calculations (see Table 3 − scenario A), the net influx from the5

stratosphere is 452 Tg/year which is within the range reported by Houghton (2001) and
Stevenson et al. (2006). The main chemical reactions contributing to O3 production are
reactions between NO and hydroxyl peroxide/other peroxyl radicals (RO2). The chem-
ical destruction channels are mainly through the reactions H2O+O(1D) and O3+HOx.
The net chemical production (NCP) of 512 Tg/year calculated from these main terms10

is within the reported range. Note that it is a small residual of two large production
and destruction terms which are 3620 to 3108 Tg/year, respectively, in our calculation.
Gross ozone production vary greatly across models on present-day simulations (2300
to 5300 Tg/year) (Stevenson et al., 2006) and are likely due to differences in complex-
ities of chemical mechanisms included (see also discussions by Wu et al., 2007). Our15

dry deposition of 1035 Tg/year is at the high end of the model range. The total tropo-
spheric burden of 314 Tg is within the range seen in other models. We use a 150 ppbv
O3 threshold to define tropospheric air. All the budget calculations are the global sum
below this threshold.

4.2 Nitrogen species20

The model calculated NO2 column averaged for year 2000 is in good agreement with
the GOME measurement (not shown). Here we emphasize speciated comparisons; we
compare some measured and modelled NOx and PAN vertical profiles. The observa-
tion data are from short-term aircraft campaigns compiled by Emmons et al. (2000) and
should not necessarily compare in detail with model results from a climate simulation.25

Nevertheless, the modelled NOx concentrations are generally in reasonable agreement
with observations especially in the mid troposphere (see Fig. 5). The low NOx concen-
trations observed over the remote Pacific regions are well represented by the model.
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The model does a good job in reproducing higher NOx mixing ratios in the lower tro-
posphere during February-March (PEM-West-B) in East Asia, arising from the strong
influence of local anthropogenic emissions. Note, in particular, that the “C” shaped
profile found in observation along the Japanese coast is well simulated by the model.
Biomass burning in Africa and South America during September-November (TRACE-5

A) leads to a large near-surface enhancement of NOx mixing ratios in the surrounding
regions. The NOx profile in East Brazil is well reproduced but the model underestimates
NOx mixing ratios in the lower troposphere in South Africa during the biomass burn-
ing season. The higher mixing ratios of NOx seen in the middle to upper tropospheric
over the South Atlantic during September-November are from biomass burning emis-10

sions that have been transported from the continents (PEM-Tropics-A and Tracer-A)
(see Emmons et al., 2000 and references therein); this is not reproduced by the model.
Note that the modelled data are the average over a decade; hence they do not capture
interannual variability of emissions (which are the same for every year of the model
run) and meterological conditions. Savage et al. (2007)2 have recently pointed to the15

importance of interannual variations in meteorology for explaining observed NOx.
A comparison of modelled and observed PAN is shown in Fig. 6. Modelled PAN

depends strongly on the magnitude of the VOC and NOx emissions sources and the
regional meteorology, as well as on the precise hydrocarbon degradation scheme in-
cluded. With isoprene chemistry in this version of the model, modelled PAN has been20

improved considerably compared to the previous version without isoprene chemistry
which systematically underestimated PAN (not shown). The model simulates well the
increase of PAN with altitude over the oceans. The peak observed in the Pacific and
Atlantic oceans in the 4–8 km region during PEM-Tropics-A and Tracer-A, associated
with the transport of PAN from South America, Australia and Africa, is reproduced by25

the model. PAN profiles over the China Coast and Japan observed during PEM West
B reflect strong outflow of pollutants from Asia to the North Pacific with high values

2Savage, N. S., Pyle, J. A., Braesicke, P., et al.: The sensitivity of NO2 columns to interannual
variability of meteorology and emissions: a model-GOME study, submitted, 2007.
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seen near the surface; the model simulates this feature well. PAN over the Philippine
Sea peaks in the middle troposphere reflecting the transport of PAN from the Asian
continent (PEM West B). However, the seasonal change of PAN over the Philippine
sea is not well captured by the model. High levels of PAN observed during September-
November (TRACE A) are the result of biomass burning in Africa and South America5

and the transport to the South Atlantic ocean. The model well simulates the vertical
profiles of PAN in these regions. Addition of isoprene to the model has led to a much
improved NOy distribution compared with our earlier model simulations.

5 Tropospheric composition changes between 2000 and 2100

5.1 Response to anthropogenic emission changes10

Figure 7 shows calculated changes in surface O3 for January and July between 2000
and 2100 assuming only changes in emissions (i.e. Run B–Run A). In the Northern
Hemisphere, increases of O3 peaking above 40 ppbv are calculated over the polluted
continents, with the largest increase of O3 in the Far East in summer. The areas
of larger ozone increase are regions where rapid economic growth and population in-15

crease are predicted. In January, there are significant increases of O3 over the oceans.
For the Pacific region this corresponds to an outflow of pollutants from Asia, highlight-
ing the potential importance of the Asian plume and its impact on global O3 levels in
the future. In the Southern Hemisphere, O3 increases of 30 ppbv are calculated in
South Africa and South America. The long range transport of O3 from these regions is20

evident: There is a background O3 increase of up to 5–15 ppbv in the southern hemi-
sphere in remote oceanic areas. Increased surface emissions of O3 precursors not
only contribute to O3 formation in the source region (air quality) but also increase the
O3 level in remote regions through long-range transport.

Figure 8a shows the calculated zonally averaged O3 changes between 2000 and25

2100 (B-A). The largest increase of O3 occurs in the northern hemisphere subtropical
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free troposphere; it is a consequence of increases in emissions in northern latitudes
and weak destruction of O3 above the boundary layer. The O3 increase in the strato-
sphere results from transport of O3 precursors from the troposphere, although the in-
crease is relatively small compared to the background. Figure 8b shows NOx changes
for B-A; largest increases are in the boundary layer where the direct emissions occur,5

and in the upper tropical troposphere where its lifetime is long. There, large increases
of NOx result in substantial O3 production.

The global tropospheric O3 budgets for scenario B are shown in Table 3. The net
stratospheric influx is about 5% smaller than in scenario A. This small net decrease is
the result of a larger tropical troposphere-to-stratosphere O3 flux in B that more than10

offsets the middle latitude O3 influx from the stratosphere. Chemical production in-
creases substantially as a result of increasing emissions of O3 precursors. Chemical
destruction also increases in response to the increased O3. The overall net chemical
production of O3 is nearly three times that of scenario A. With higher O3, the dry de-
position increases by a factor of 1.7. The average tropospheric O3 burden increases15

from 314 to 549 Tg.
OH controls the oxidizing capacity in the troposphere and its distribution depends

critically on NOx and hydrocarbons. Increases of NOx and O3 tend to increase OH and
increases of CO and CH4 depress OH. Figure 8c shows changes in OH in response
to changes in NOx/VOCs emissions; there are increases throughout the tropical tro-20

posphere with the largest increase in the upper troposphere, corresponding to the
increase of NOx there. OH decreases in a large area of the NH and some of the SH
as a result of increases of VOCs over the continents. Although the tropospheric OH
burden increases by 17% from run A to run B, the methane lifetime decreases only
slightly from 11.3 to 11.2 years (see Table 3); the methane lifetime is mainly influenced25

by the changes in lower tropospheric OH.
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5.2 Response to climate change

The impact of climate change on the O3 distribution and its budget is assessed by
considering the differences between run C and run B, where only differences arise
from the doubling CO2 (see Table 1). Figure 9 shows the differences in temperatures
caused by a doubled CO2 forcing. The average temperature increase is 2–3 K at the5

surface (higher at high latitudes) and reaches 9K in the upper tropical troposphere.
Cooling in the lower stratosphere occurs in the double-CO2 climate. Specific humidity
increases throughout the troposphere with substantial increase in the tropical boundary
layer by 20% (not shown).

Figure 10 shows zonal mean changes of O3 due to climate change for January,10

April, July and October. It shows that for all seasons enhanced chemical destruction,
due to increased water vapour in the projected future climate, dominate O3 changes
in the tropical troposphere. A pronounced feedback is the substantial increase of O3
(over 200 ppbv) in the extratropical low stratosphere which is a response to changes
in circulation; the enhanced Brewer-Dobson circulation more rapidly lifts O3-poor air15

upwards in the tropics and transports O3-rich air into high latitudes. This leads to an
O3 reduction in the upper tropical troposphere and an O3 buildup at high latitudes in
the lower stratosphere, (in part also due to reduced ozone destruction in the cooler
lower stratosphere, consistent with our earlier finding based on an older model version
(Zeng and Pyle, 2003)). In a recent multimodel comparison (Butchart et al., 2006)20

most participating models also produce an increase in the stratosphere-troposphere
mass exchange rate in response to growing greenhouse gas concentrations. Conse-
quently, the enhanced STE transports stratospheric O3 more rapidly to the troposphere
leading to significant increases of O3 in the free troposphere; For the NH this feature
is most pronounced in April, shown in Fig. 10b when STE normally maximizes. The25

influence of STE peaks in Austral winter/spring for the SH, leading to increased O3 in
the free troposphere which also propagates to the lower troposphere. The elevated
O3 levels over the southern midlatitudes and the Antarctic in July and October shown
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in Figure 10c,d seems linked due to increased stratosphere to troposphere transport
of O3 and low surface O3 deposition rates at these locations (namely water and snow
surfaces). Note that the decreases of O3 along the tropopause are due to tropopause
lifting in a changed climate.

Responses of ground-level O3 to climate change are highly complex. Figure 115

shows monthly mean surface O3 changes for January, April, July and October, in
response to a doubling of CO2. O3 changes are predominately negative through
increased water vapour for all the seasons, with the largest decrease over tropical
oceans. However, we note some prominent, seasonally-varying O3 increases, e.g.,
over some of the polar regions, over the Southern Ocean in Austral winter, and over10

some of the continents, with largest increases over Amazonia, Africa, North America,
southern and central Europe in summer. The significant increase of O3 over the Arctic
in April shown in Fig. 11b (most pronounced in February/March, not shown) may be due
to an intensified poleward transport of O3/O3 precursors from North America and Eu-
rope, possibly associated with increased STE, but needs further investigation. There is15

also some increase of O3 over the Arctic in October following summer increases of sur-
face O3 over Europe and North America. We also note that, to some extent, increases
of surface O3 are linked to increased surface temperatures. A number of mechanisms
can lead to increased O3 production following increased temperature: 1) favoured pro-
duction of HOx due to mostly positive temperature-dependencies of CH4/VOC oxidation20

reaction rate constant which fuel ozone formation; our calculations show that increases
of HOx correlate closely to the increase in O3, and 2) the faster decomposition of PAN
which releases NO2 leading to regionally increase of ozone production, especially in
the NH polluted regions. Over Amazonia, southern Africa and southern Europe the
model predicts a reduced humidity following the increased temperaure associated with25

reduced soil moisture (Cox et al., 2004), reducing the O3 destruction in those regions.
The climate change also comprises changes of convection, which play an important

role in redistributing O3 and its precursors in the troposphere (see Lawrence et al.
2003; Doherty et al., 2005). Figure 12a displays ∆NOx for runs C-B; increases of
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NOx occur mainly in the tropical upper and middle troposphere, which are likely due to
increased deep convection and the increased lightning activity respectively. Enhanced
convection can transport NOx and other O3 precursors to the upper troposphere more
efficiently, while intensified lightning produces NOx directly in the free troposphere,
leading to increased O3 chemical production in the free troposphere. On the other5

hand, increased convection could bring O3-poor air (e.g. from the Pacific “warm pool”)
to the upper troposphere which contributes to O3 decreases there. The O3 increases
at 5–10 km over the tropics in July and into October shown in Fig. 10 are most likely
associated with increased convection/lightning. Note that the large negative changes
of NOx above 10 km are partly due to strengthened circulation associated with the10

double-CO2 climate forcing, and in part due to increased formation of HNO3 from NOx
in extratropical latitudes, favoured by the lower temperatures.

In a future climate the OH concentration will be modified following the increase of wa-
ter vapour, which can subsequently modify the oxidizing capacity of the atmosphere.
Responding to a double-CO2 climate, increases of OH occur throughout the tropo-15

sphere (Fig. 12b) with an important feedback on the methane lifetime. Methane is an
important greenhouse gas and is also a key trace gas controlling background O3 con-
centrations. In these calculations the methane lifetime has shortened considerably (by
1.8 years) in response to the double-CO2 forcing, due not only to increased OH con-
centrations but also to the increased reaction rate coefficient of OH+CH4 which has a20

strongly positive temperature-dependence.
Impacts of the climate change on the chemical and dynamical processes that affect

tropospheric O3 are reflected in the O3 budget. Budget calculations (Table 3) show
that with climate change included, the tropospheric O3 burden reduces slightly, as a
result of several competing processes. The most significant positive feedback is a 80%25

increase of net flux of O3 from the stratosphere to the troposphere. Both chemical
production and destruction show increases under the climate change. The largest
negative chemical change is through reaction O(1D)+H2O following photolysis of O3.
Positive chemical changes are mainly through increased reaction fluxes of NO+HO2
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(by 4.5%) and NO+CH3O2 (by 13%), which lead to O3 production. We note the larger
relative increase in NO+CH3O2; the driving factor is the strong positive temperature-
dependence of the methane oxidation by OH which favours CH3O2 production at higher
temperatures (Recall that CH4 concentrations are fixed at the same value for runs B
and C). Higher CH4 levels could have a significant impact on tropospheric O3 in a future5

warmer climate. Finally, note that enhanced convection is reflected in a 26% increase
of lightning-NOx emission.

We have shown here that climate change has diverse impacts on O3 production,
loss and transport, and that the oxidizing capacity of the troposphere is modified by
climate change. The feedbacks of climate change on tropospheric ozone are complex.10

In particular, changes of surface O3 in response to climate change vary regionally and
seasonally. More studies are needed to address in detail, for example, how changes in
transport patterns can affect surface O3 changes.

5.3 Response to climate change induced natural emission changes

5.3.1 Increased isoprene emissions15

Relatively to scenario C, we increase isoprene emissions by 50% globally to assess
the possible impact on O3. Note that the major emission regions are in the tropics in
the maritime continent, in South America and Africa. The Southeast USA is a region-
ally important extra tropical source. Our calculation shows that increasing isoprene
emissions has little impact on the global tropospheric ozone burden, which decreases20

by less than 1% (see Table 3). However, the spatial distribution of ozone is modified;
Fig. 13a shows that ozone generally increases in the northern hemisphere throughout
the model domain and decreases in the equatorial and southern subtropical regions.
The largest negative change of O3 occurs between 5–10 km in the southern tropics
where NOx concentrations are low. Budget calculations (see Table 3) show that with25

extra isoprene emissions, the gross chemical production is reduced slightly due to a
reduced NOx level which is consumed by elevated RO2 radicals from isoprene oxida-
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tion to form PAN. O3 loss increases due to increased destruction by reactions with HO2
and isoprene, respectively. Following the reduced OH level, the global methane lifetime
increases by 0.6 years.

The largest impact of the increased isoprene emissions occurs in summer. Fig. 14a
shows O3 changes at the surface for July; O3 generally decreases over the isoprene5

source regions where NOx levels are also low, as a result of ozone destruction (less
O3 production) in the NOx-limited regime. In high NOx regions (Europe and Asia), O3
increases by up to 4–6 ppbv due to increased peroxy radicals from the degradation of
isoprene which contribute positively to ozone production in the NOx-rich (VOC-limited)
environment. We also find elevated ozone concentrations away from the main emitting10

sources (e.g. over the North Atlantic and western Africa). This suggests that PAN plays
an important role in ozone formation; PAN can transport NOx away from its source and
contribute to ozone production in remote regions. In our simulation background O3
concentrations has increased by around 1 ppbv except over the southern oceans. We
will consider a range of future isoprene scenarios in more detail (Young et al., 20071;15

Young, 2007).
Of course, the link between climate and isoprene emission is more complicated than

the simple scaling up of the emissions in this sensitivity experiment. Besides the effect
of temperature, the magnitude and spatial distribution of isoprene emission is highly
dependent on the plant species. Thus, any future natural or anthropogenic land use20

change, such as the drying of the Amazon rain forest (Cox et al., 2004) or increase in
crop growth, would have a large impact on the isoprene emission field. Furthermore,
increases in atmospheric CO2 may well decrease isoprene emission (Rosensteil et
al., 2003; Arneth et al., 2007). Other climate-related factors such as water availability,
changes in the flux of photosynthetically active radiation (PAR), nutrient delivery and25

air pollution, will also effect isoprene and other biogenic emissions, either directly or
through their impact on primary productivity.
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5.3.2 Increased soil-NOx emissions

We double the soil-NOx emission globally in this experiment and compare run E to
run C to assess the impact associated with increasing soil-NOx emissions. The major
emissions regions are the tropics and subtropics with the strongest sources from agri-
culture, grassland, and tropical rain forests. Results show that increased soil NOx has5

a substantial positive feedback on tropospheric ozone (3% increase of the tropospheric
burden, see Table 3). Both gross chemical production and net chemical production in-
crease compared to run C, which is driven by increased NOx levels. Figure 13b shows
that changes in zonal mean O3 are positive globally with a peak in the southern sub-
tropics. Increases of O3 at the surface are largely in the source region but are also10

due to transport to remote regions through long-range transport (Fig. 14b). This indi-
cates that emission changes in the tropics have a significant impact on O3 formation.
O3 precursors are subjected to faster transport and are more chemically active in that
region.

These calculations of the effects of natural emissions on O3 are very simple and the15

results are merely indicative of possible impacts. However the impacts are potentially
significant, and more detailed studies are needed to project future changes of natural
emissions which can be included in models.

6 Conclusions

We have evaluated an updated tropospheric chemistry model which is incorporated into20

a version of the UK Met Office climate model. The model is satisfactory in modelling
present-day observed tropospheric ozone and nitrogen species. The ozone budget
falls within reported ranges. We calculate a net stratospheric to tropospheric ozone
flux of 452 Tg/year, a gross O3 chemical production of 3620 Tg(O3)/year, and a gross
O3 chemical destruction of 3108 Tg/year. However, the gross chemical production of25

O3 is relatively low compared to a recent multimodel study.
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Calculations for a series of 2100 scenarios suggest that projected significant in-
crease of anthropogenic emissions of ozone precursors could contribute to large ozone
increases throughout the troposphere. A pessimistic (large emissions) scenario (SEES
A2) leads to an unacceptable increases of surface ozone. Such that these would be
significant exceedences of suggested health-related thresholds. An assessment of the5

impact of climate change on global tropospheric ozone reveals a number of important
feedbacks. Increased water vapour leads to increased O3 destruction in the tropics,
whereas enhanced stratosphere-troposphere exchange increases the net O3 flux to
the troposphere. The O3 changes at the surface in a future climate are complex and
regionally varying, and are strongly influenced by changes in temperature, humidity,10

STE, and hemispheric transport patterns. We pay attention to some positive changes:
in particular, we find elevated O3 over polluted continents especially during summer
months; increase of background O3 over the Southern Ocean and the Antarctic during
austral winter/spring; and intensified poleward transport of pollutants from Europe and
North America leading to elevated O3 in the Arctic, in particular during winter/spring.15

Recent studies of the response of tropospheric O3 to climate change reveal diverse
model responses (Shindell et al., 2006; Brasseur et al., 2006). Multi-model studies
are important to achieve a consensus on the impact of future climate change on tropo-
spheric O3, in particular at ground-level.

Changes in convection in a double CO2 climate can modify the NOx distribution; En-20

hanced convection lifts NOx and other ozone precursors more efficiently in the tropical
region which contribute positively to the O3 chemical production through elevated NOx
and HOx in that region. The associated change in lightning-produced NOx is approx-
imately a 22% increase in our calculation and contributes positively to tropospheric
ozone formation. However, the effect of the convection on ozone budgets are still un-25

certain (Doherty et al., 2005) and further studies are needed to quantify to what extent
the tropospheric ozone budget is influenced.

Climate change modifies the tropospheric oxidizing capacity considerably. The
methane lifetime is shortened by 1.8 years when climate change is included in the
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calculation, due to increased OH concentrations in a more humid climate. In contrast,
the methane lifetime was not changed significantly in run B which considered just the
increases of anthropogenic emissions. In a warmer and wetter climate, methane can
play a significant role in ozone formation due to the strong positive temperature depen-
dence of its oxidation rate coefficient. Further studies are needed to assess the role of5

methane on ozone formation, particularly in a changed climate.
In addition to considering changing anthropogenic emissions in the 2100 climate

change experiment, we have also examined idealised changes of some natural emis-
sions and their impact on tropospheric ozone. With a 50% increase of the isoprene
emission, changes in surface ozone range from –8 ppbv to 6 ppbv. The impacts are10

regionally varying and have a relatively strong seasonal cycle. The largest decreases
of surface ozone occur over isoprene source regions (Amazonia, US, Africa and South
East Asia) and the largest increases are over China and Europe in summer where NOx
levels are high. Generally the response to changed isoprene depends on whether the
chemical regime is NOx- or VOC-limited: so we predict zonal mean ozone decrease in15

the southern hemisphere and tropics, with ozone increases in the north hemisphere.
The increased isoprene emission increases methane lifetime by 0.6 years, which is
large compared with changing anthropogenic emissions. By doubling soil-NOx emis-
sions, we obtain substantial increases of ozone over emitting regions and a 0.4 years
reduction on methane lifetime. Changes in biogenic emissions, which are mainly from20

tropics and subtropics, can significantly affect the oxidizing capacity of the troposphere.
More study is needed to reduce the uncertainty in present estimates of natural emis-
sions. Accurate projections of the future biogenic emissions are crucial to assessing
chemistry-climate-biosphere feedbacks.

Acknowledgements. This work is funded by the NERC National Centre for Atmospheric Sci-25

ence (NCAS). The anthropogenic emission data are made available by the ACCENT commu-
nity. Hadley Centre is thanked for the use of the UM. P. J. Young is funded by NERC through a
studentship with a CASE award from the UKMO.

11164

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/11141/2007/acpd-7-11141-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/11141/2007/acpd-7-11141-2007-discussion.html
http://www.egu.eu


ACPD
7, 11141–11189, 2007

Climate change and
tropospheric ozone

G. Zeng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

References

Arneth, A., Niinemets, U., Pressley, S., et al.: Process-based estimates of terrestrial ecosystem
isoprene emissions, Atmos. Chem. Phys., 7, 31–53, 2007,
http://www.atmos-chem-phys.net/7/31/2007/.

Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Rossi, M. J., and Troe, J.:5

Evaluated kinetic and photochemical data for atmospheric chemistry, organic species: Sup-
plement VII, J. Phys. Chem. Ref. Data, 28(2), 191–393, 1999. 11147

Barrie, L. A., Bottenheim, J. W., Schell, R. C., Crutzen, P. J., and Rasmussen, R. A.: Ozone
destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere,
Nature, 334, 138–140, 1988.10

Berntsen, T. K., Myhre, G., Stordal, F., and Isaksen, I. S. A.: Time evolution of tropospheric
ozone and its radiative forcing, J. Geophys. Res., 105, 8915–8930, 2000. 11144

Brasseur, G., Kiehl, J. T., Müller, J.-F., Schneider, T., Granier, C., Tie, X., and Hauglustaine, D.:
Past and future changes in global tropospheric ozone: Impact on radiative forcing, Geophys.
Res. Lett., 25, 3807–3810, 1998. 1114415

Brasseur, G. P., Schultz, M., Granier, C., Saunois, M., Diehl, T., Botzet, M., Roeckner, E.,
and Walters, S.: Impact of climate change on the future chemical composition of the global
troposphere, J. Clim., 19, 3932–3951, 2006.

Butchart, N., Scaife, A. A., Bourqui, M., et al.: Simulations of anthropogenic change in the
strength of the Brewer-Dobson circulation, Clim. Dynam. 27, 727–741, 2006.20

Carver, G. D. and Stott, P. A.: IMPACT: An implicit time integration scheme for chemical species
and families, Ann. Geophys., 18, 337–346, 2000,
http://www.ann-geophys.net/18/337/2000/. 11147

Collins, W. J., Derwent, R. G., Garnier, B., Johnson, C. E., Sanderson, M. G., and Stevenson,
D. S.: The effect of stratosphere-troposphere exchange on the future tropospheric ozone25

trend, J. Geophys. Res., 108, 8528, doi:10.1029/2002JD002617, 2003. 11144
Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C, and Jones, C. D.: Amazo-

nian forest dieback under climate-carbon cycle projections for the 21st Century, Theor. Appl.
Climatol., 78, 137–156, 2004.

Cullen, M. J. P.: The unified forecast/climate model, Meteorol. Mag., 122, 81–94, 1993. 1114630

DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Rav-
ishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical kinetics and photochemical data

11165

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/11141/2007/acpd-7-11141-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/11141/2007/acpd-7-11141-2007-discussion.html
http://www.egu.eu
http://www.atmos-chem-phys.net/7/31/2007/
http://www.ann-geophys.net/18/337/2000/


ACPD
7, 11141–11189, 2007

Climate change and
tropospheric ozone

G. Zeng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

for use in stratospheric modeling, evaluation number 12: NASA panel for data evaluation,
JPL Pub. 97-4, 1997. 11147

Dentener, F., Stevenson, D., Cofala, J., Mechier, R., Amann, M., Bergamaschi, P., Raes, F., and
Derwent, R.: The impact of air pollutant and methane emission controls on tropospheric
ozone and radiative forcing: CTM calculations for the period 1990-2030, Atmos. Chem.5

Phys., 5, 1731–1755, 2005,
http://www.atmos-chem-phys.net/5/1731/2005/. 11149

Doherty, R. M., Stevenson, D. S., Collins, W. J., and Sanderson, M. G.: Influence of convective
transport on tropospheric ozone and its precursors in a chemistry-climate model, Atmos.
Chem. Phys., 5, 205–3218, 2005,10

http://www.atmos-chem-phys.net/5/205/2005/.
Edwards, J. M. and Slingo, A.: Studies with a flexible new radiation code. I: Choosing a config-

uration for a large-scale model, Q. J. Roy. Meteor. Soc., 122, 689–719, 1996. 11147
Emmons, L. K., Hauglustaine, D. A., Müller, J.-F., Carroll, M. A., Brasseur, G. P., Brunner, D.,

Staehelin, J., Thouret, V., and Marenco, A.: Data composites of airborne observations of15

tropospheric ozone and its precursors, J. Geophys. Res., 105(D16), 20 497–20 538, 2000.
Forster, P. M. F., Johnson, C. E., Law, K. S., Pyle, J. A., and Shine, K. P.: Further estimates

of radiative forcing due to tropospheric ozone, Geophys. Res. Lett., 23, 3321–3324, 1996.
11144

Giannakopoulos, C., Chipperfield, M. P., Law, K. S., and Pyle, J. A.: Validation and intercom-20

parison of wet and dry deposition schemes using 210Pb in a global three-dimensional off-line
chemical transport model, J. Geophys. Res., 104, 23 761–23 784, 1999. 11148

Gregory, D. and Rowntree, P. R.: A mass flux convection scheme with representation of cloud
ensemble characteristics and stability dependent closure, Mon. Weather Rev., 118, 1483–
1506, 1990. 1114725

Grenfell, J. L., Shindell, D. T., Koch, D., and Rind, D.: Chemistry-climate interactions in the
Goddard Institute for Space Studies general circulation model 2. New insights into modeling
the preindustrial atmosphere, J. Geophys. Res., 106, 33 435–33 451, 2001. 11144

Guenther, A., Hewitt, C. N., Erickson, D., et al.: A global model of natural volatile organic-
compound emissions, J. Geophys. Res., 100, 8873–8892, 1995. 11145, 1114930

Hauglustaine, D. A., Granier, C., Brasseur, G. P., and Mégie, G.: The importance of atmospheric
chemistry in the calculation of radiative forcing on the climate system, J. Geophys. Res., 99,
1173–1186, 1994. 11144

11166

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/11141/2007/acpd-7-11141-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/11141/2007/acpd-7-11141-2007-discussion.html
http://www.egu.eu
http://www.atmos-chem-phys.net/5/1731/2005/
http://www.atmos-chem-phys.net/5/205/2005/


ACPD
7, 11141–11189, 2007

Climate change and
tropospheric ozone

G. Zeng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Hauglustaine, D. A. and Brasseur, G. P.: Evolution of tropospheric ozone under anthropogenic
activities and associated radiative forcing of climate, J. Geophys. Res., 106, 32 337–32 360,
2001 11144

Hauglustaine, D. A., Lathiere, J., Szopa, S., and Folberth, G. A.: Future tropospheric ozone
simulated with a climate-chemistry-biosphere model, Geophys. Res. Lett., 32, L24807,5

doi:10.1029/2005GL024031, 2005. 11145
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K.,

and Johnson, C. A. (Eds.): Climate Change 2001: The Scientific Basis, Cambridge Univ.
Press, Cambridge, UK, 2001. 11143

Johns, T. C., Gregory, J. M., Ingram, W., J., et al.: Anthropogenic climate change for 1860 to10

2100 simulated with the HadCM3 model under updated emissions scenarios, Clim. Dyn., 20,
583–612, 2003. 11146

Johnson, C. E., Collins, W. J., Stevenson, D. S., and Derwent, R. G.: Relative roles of climate
and emissions changes on future tropospheric oxidant concentrations, J. Geophys, Res.,
104, 18 631–18 645, 1999. 1114415

Lathiere, J., Hauglustaine, D. A., De Noblet-Ducoudre, N., Krinner, G., and Folberth, G. A.: Past
and future changes in biogenic volatile organic compound emissions simulated with a global
dynamic vegetation model. Geophys. Res. Lett., 32, L20818, doi:10.1029/2005GL024164,
2005. 11145

Law, K. S. and Pyle, J. A.: Modeling trace gas budgets in the troposphere, 1. Ozone and odd20

nitrogen, J. Geophys. Res., 98, 18 377–18 400, 1993. 11147
Law, K. S., Plantevin, P. H., Shallcross, D. E., Rogers, H. L., Pyle, J. A., Grouhel, C., Thouret,

V., and Marenco, A.: Evaluation of modeled O3 using Measurement of Ozone by Airbus
In-Service Aircraft (MOZAIC) data, J. Geophys, Res., 103, 25 721–25 737, 1998. 11147

Lawrence, M. G., von Kuhlmann, R., Salzmann, M., and Rasch, P. J.: The balance of ef-25

fects of deep convective mixing on tropospheric ozone, Geophys. Res. Lett., 30(18), 1940,
doi:10.1029/2003GL017644, 2003,

Leonard, B. P., Lock, A. P., and MacVean, M. K.: The NIRVANX scheme applied to one-
dimensional advection, Int. J. Numer. Methods for Heat and Fluid Flow, 5, 341–377, 1995.
1114630

Li, D. and Shine, K. P.: A 4-D ozone climatology for UGAMP models, UGAMP internal report,
1995.

Logan, J. A.: An analysis of ozonesonde data for the troposphere: Recommendations for test-

11167

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/11141/2007/acpd-7-11141-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/11141/2007/acpd-7-11141-2007-discussion.html
http://www.egu.eu


ACPD
7, 11141–11189, 2007

Climate change and
tropospheric ozone

G. Zeng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

ing 3-D models and development of a grided climatology for tropospheric ozone, J. Geophys.
Res., 104, 16 115–16 149, 1999.
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Table 1. Simulations.

Simulations Emissions Meteorology Description

Run A IIASA-2000 2000s Present-day
Run B A2-2100 2000s Future (A+∆anthropogenic emissions)
Run C A2-2100 2100s Future (B+climate change)
Run D A2-2100+∆isoprene 2100s Future (C+∆isoprene emissions)
Run E A2-2100+∆soil-NOx 2100s Future (C+∆soil-NOx emissions)
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Table 2. Summary of annual total emissions.

IIASA-2000 A2-2100(B) A2-2100(C) A2-2100(D) A2-2100(E)
CO (Tg CO)
Fossil fuel 470 1720 1720 1720 1720
Biomass burning 507 507 507 507 507
Ocean/vegetation 100 100 100 100 100

NOx (Tg NO2)
Fossil fuel 91.4 333 333 333 333
Biomass burning 33.4 33.4 33.4 33.4 33.4
Soil 23 23 23 23 46
Aircraft 2.58 5.67 5.67 5.67 5.67
Lightning 10.3 10.3 12.6 12.6 12.6

NMVOCs (Tg VOC)
Industrial source 116 306 306 306 306
Biomass burning 31.2 31.2 31.2 31.2 31.2
Natural (isoprene) 580 580 580 870 580

CH4 (ppbv) 1760 3731 3731 3731 3731

11173

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/11141/2007/acpd-7-11141-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/11141/2007/acpd-7-11141-2007-discussion.html
http://www.egu.eu


ACPD
7, 11141–11189, 2007

Climate change and
tropospheric ozone

G. Zeng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 3. Tropospheric budgets. Units are Tg/yr unless stated differently.

2000 (A) 2100 (B) 2100 (C) 2100 (D) 2100 (E)

NO+HO2 2464 5095 5322 5311 5556
NO+CH3O2 811 1833 2074 2014 2179
NO+RO2 346 625 627 695 643
Total chemical production 3620 7550 8022 8018 8376

O1D+H2O 1737 3167 3794 3756 3943
OH+O3 343 667 749 707 806
HO2+O3 965 2239 2384 2441 2477
Isoprene+O3 64 57 54 106 52
Total chemical loss 3108 6128 6980 7029 7276

Net chemical production 512 1422 1042 989 1100
STE 452 430 773 774 772
Dry deposition 1035 1767 1695 1684 1746
O3 burden (Tg) 314 549 530 527 546
OH burden (Mg) 172 201 223 207 234
Global mean CH4 lifetime (yr) 11.3 11.2 9.4 10.0 9.0
Lightning NOx emission (Tg[NO2]/yr) 10.3 10.3 12.6 12.6 12.6
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Fig. 1. Modelled surface O3 (ppbv) in January, April, July and October from the present-day simulation.
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Fig. 2. Zonal mean O3 (ppbv) profile in January, April, July and October from the present-day simulation.

Fig. 1. Modelled surface O3 (ppbv) in January, April, July and October from the present-day
simulation.
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Fig. 1. Modelled surface O3 (ppbv) in January, April, July and October from the present-day simulation.
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Fig. 2. Zonal mean O3 (ppbv) profile in January, April, July and October from the present-day simulation.
Fig. 2. Zonal mean O3 (ppbv) profile in January, April, July and October from the present-day
simulation.
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Fig. 3. Observed (symbols) and simulated (lines) surface ozone (ppbv). Data from the World Data Centre for Surface Ozone (see text).

Fig. 3. Observed (symbols) and simulated (lines) surface ozone (ppbv). Data from the World
Data Centre for Surface Ozone (see text).

11177

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/11141/2007/acpd-7-11141-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/11141/2007/acpd-7-11141-2007-discussion.html
http://www.egu.eu


ACPD
7, 11141–11189, 2007

Climate change and
tropospheric ozone

G. Zeng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

G. Zeng et al.: Climate change and tropospheric ozone 15

Edmonton 53N 114W DJF

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p 
[h

P
a]

Edmonton 53N 114W MAM

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p [hPa]

Edmonton 53N 114W JJA

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p [hPa]

Edmonton 53N 114W SON

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p [hPa]

Sapporo 43N 141E DJF

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p 
[h

P
a]

Sapporo 43N 141E MAM

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p [hPa]

Sapporo 43N 141E JJA

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p [hPa]

Sapporo 43N 141E SON

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p [hPa]

Kagoshima 32N 131E DJF

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p 
[h

P
a]

Kagoshima 32N 131E MAM

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p [hPa]

Kagoshima 32N 131E JJA

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p [hPa]

Kagoshima 32N 131E SON

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p [hPa]

Hilo 20N 155W DJF

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p 
[h

P
a]

Hilo 20N 155W MAM

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p [hPa]

Hilo 20N 155W JJA

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p [hPa]

Hilo 20N 155W SON

0 20 40 60 80 100 120 140
O3 [ppbv]

1000

800

600

400

200

p [hPa]

Fig. 4. Seasonal averaged O3 profile (ppbv) by measurements (symbols) and by calculations (lines). Data from Logan (1999).

Fig. 4. Seasonal averaged O3 profile (ppbv) by measurements (symbols) and by calculations
(lines). Data from Logan (1999).
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Fig. 4. Continued.

Fig. 4. Continued.
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Fig. 5. Observed and simulated profiles of NOx (pptv) for various locations and seasons. Solid and dashed lines indicate measured mean
values and standard deviations respectively. Model calculations are indicated by symbols. Observation data are taken from Emmons et
al.(2000).Fig. 5. Observed and simulated profiles of NOx (pptv) for various locations and seasons. Solid

and dashed lines indicate measured mean values and standard deviations respectively. Model
calculations are indicated by symbols. Observation data are taken from Emmons et al. (2000).
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Fig. 6. Observed and simulated PAN (pptv) as indicated in fig. 5.

Fig. 6. Observed and simulated PAN (pptv) as indicated in Fig. 5.
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Fig. 7. Changes in surface O3 (ppbv) between 2000 and 2100 due
to anthropogenic emission changes, for January and July.
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Fig. 8. Changes in zonal and annual mean O3 (ppbv), NOx (pptv)
and OH (105molecules/cm3) between 2000 and 2100 due to anthro-
pogenic emission changes.
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Fig. 7. Changes in surface O3 (ppbv) between 2000 and 2100 due to anthropogenic emission
changes, for January and July.
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Fig. 8. Changes in zonal and annual mean O3 (ppbv), NOx (pptv) and OH (105molecules/cm3)
between 2000 and 2100 due to anthropogenic emission changes.
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Fig. 10. Changes in zonal mean O3 (ppbv) between 2000 and 2100 due to climate change (C-B), for January, April, July and October.

Fig. 11. Changes in surface O3 (ppbv) between 2000 and 2100 due to climate change, for January, April, July and October.

Fig. 10. Changes in zonal mean O3 (ppbv) between 2000 and 2100 due to climate change
(C-B), for January, April, July and October.
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Fig. 13. Changes in annual and zonal mean O3 (ppbv) due to (a) increase of isoprene emissions (D-C) and (b) increase of soil-NOx emissions
(E-C).

Fig. 14. Changes in surface O3 (ppbv) due to (a) increase of isoprene emissions (D-C) and (b) increase of soil-NOx emissions (E-C). Both
changes are for July.

Fig. 13. Changes in annual and zonal mean O3 (ppbv) due to (a) increase of isoprene emis-
sions (D-C) and (b) increase of soil-NOx emissions (E-C).
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