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• In my entire (albeit short) academic career I have never come across as thought-
ful and comprehensive a review as Dr. Hellmuth’s – thank you.

• Evaluation guidelines, comment 14: The reference to Hastings (Biometrika,
1970) has been added to the paper.

• Comment: Apart from the key paper of Metropolis et al. (1953), it is sound to refer
to a modern monograph, such as that of Draper (2006). It serves as a reference
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for the method. . . Unfortunately, it is still in preparation and, consequently, not
freely accessible.

I concur that it is unfortunate that the Draper’s work is still in preparation. I have ad-
dressed this deficiency by adding a reference to (Chib and Greenberg, 1995) in the
manuscript and expanding the explanations of the method (see below). The reason I
cite the work of Draper is because of all the treatments of MCMC I have found, Draper’s
is the most clear and easy to follow. Since his work was so influential in helping me
understand the method, I wanted to give credit where it is due.

One clarification that should be made: the review states that “The MCMC method is
used to approximate p(θ|Data) by generating random samples, from which the parame-
ters for the probing distribution PD(θ|Data) [sic] can be estimated.” The first part of the
sentence is correct; indeed, the goal of the MCMC method is to approximate p(θ|Data)
by generating random samples. Parameters for the probing distribution PD(θ∗|θ), how-
ever, are not determined from the posterior distribution. Rather, the probing distribution
is what guides how the Markov chain proceeds; specifically, samples from the probing
distribution determine the Markov steps. This has been clarified by adding the following
sentence to Section 3.4:

Samples from the probing distribution, also known as the candidate-generating (Chib
and Greenberg, 1995) and jumping (Gelman et al., 1996) density, determine the pro-
posed Markov steps.

• Comment: I recommend to move Appendix A1 “Probing Distribution” to the non-
numbered introducing paragraph of Section 3. Perhaps, it is useful to subsume
the whole methodology in an own subsection. Can you regive the related parts
of San Martini (2004) in more detail here?

I have moved the Probing Distribution section from the Appendix to Section 3.4.
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As noted by the reviewer, the paper is already long. The following additional explana-
tion of how the probing distribution is used to generate θ∗ is therefore given here:

Probing Distribution and its Implementation to Determine the Markov Steps

We selected a multi-variate normal probing distribution with mean θ, i.e., the current
position:

PD (θ) ∼ N9 (θ, Σ) (1)

where Σ is the covariance matrix. The task of selecting an efficient probing distribution
is complicated by the fact that several of the inputs to the equilibrium model are a sum
of (the unknown) random variables. Specifically, ISORROPIA requires the temperature,
relative humidity, and the concentration of sodium and sulfate as well as the total (i.e.,
particle + gas) concentration of ammonia, nitrate, and chloride (see equations 5, 6, and
7 in the manuscript).

While it is possible to formulate the problem in terms of a modified θ̃, where θ̃ is now
the vector [T, RH, NHt

3, NOt
3, SO4, Clt], this will lead to a Markov Chain that mixes

more poorly than one where θ=[T, RH, NH4, NO3, SO4, Cl, H2O, NH3, HNO3, HCl],1

because we are able to capture the covariance of the species by accounting separately
for the aerosol and gas phase species. For example, when sampling the gas phase
concentration of ammonia and nitric acid for the case of a dry aerosol, these concentra-
tions are not independent: they are inversely related through the equilibrium constant
KNH4NO3 (T ), i.e.,

PNH3PHNO3 = KNH4NO3 (T ) (2)

Therefore, a proposed Markov step that increases both the concentration of ammo-
nia and nitric acid (relative to the current equilibrium concentrations) will tend to be
rejected, while a proposed Markov step that increases one and decreases the other
according to (2) will tend to be accepted.

1Note that water is a calculated variable and not an input.
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If the elements of θ were independent, then the covariance matrix Σ would be a diag-
onal matrix whose off-diagonal elements are zero and whose diagonal elements are
the element variances. For the case where the elements of θ are not independent, the
vector of random variables θ will have covariance Σ given by:

Σ =

 σ2
1 . . . σ1n

...
. . .

...
σn1 · · · σ2

n

 (3)

Σ is positive definite and symmetric, i.e., σij=σji. The covariance σij of the random
variables θi and θj is given by:

σij = E [(θi − E [θi]) (θj − E [θj ])] (4)

A positive or negative covariance indicates that for a single experiment the values of
θi − E[θi] and θj − E[θj ] tend to have the same or opposite sign.

In order to have an efficient sampling routine, we want the covariance matrix of the
probing distribution (Σ) to resemble the covariance of the random variables. This is not
required but merely efficient: it has been shown that the Markov Chain will converge for
just about any probing distribution (Gilks et al., 1996). The more the probing distribution
resembles the distribution of the random variables, the more efficient the sampling. For
example, if two random variables θ1 and θ2 are negatively correlated, then proposed
Markov steps that increase both of the variables will tend to be rejected. What is
desired is a probing distribution that leads to a well-mixed chain: a probing distribution
whose covariance does not resemble that of the random variables is likely to lead to a
low acceptance probability and a Markov Chain that mixes poorly.

In general, slow mixing may be due to at least two reasons: the proposed Markov steps
are too small so that the simulation moves very slowly through the target distribution;
or the proposed Markov steps are to low-probability areas, leading the Markov chain to
stand still most of the time (Gelman et al., 1996).
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The question now is how to estimate the covariance of the random variables θ, given
that this is unknown before the analysis. The strategy used here is termed adaptive
Metropolis sampling (see Gilks et al., 1998) and (Draper, Forthcoming)):

• Start with a poorly-tuned probing distribution (e.g., assume the variables are in-
dependent and the variances scale with the magnitude of available observations)

• Run the MCMC simulation for a long time, with a large burn-in2 and thin3 the
output

• Use the resulting MCMC dataset to estimate Σ

• Repeat until the estimate of Σ does not change significantly.

Gilks et al. showed that a danger of the adaptive strategy is that if adaptation is allowed
to take place infinitely often, the MCMC simulation may not sample from the true target
distribution (Gilks et al., 1998). Therefore, approximately 5 adaptation iterations were
used in this work.

A final consideration when selecting the probing distribution concerns the magnitude
of the Markov steps. If the Markov steps are too small, the chain will move too slowly
through the solution space; conversely, if the Markov steps are too large, the proposed
steps will try to wander far from the ‘true’ variable values, i.e., the proposed steps will

2Burn-in refers to the initial Markov steps that are discarded to ensure that likelihood determined by the MCMC
analysis is independent of the initial guess (see, for example, page 14 in .Gilks, W., Richardson, S. and Spiegelhalter,
D., 1996. Introducing Markov Chain Monte Carlo. In: W. Gilks, S. Richardson and D. Spiegelhalter (Editors),
Markov Chain Monte Carlo in Practice. Chapman & Hall, London, UK, pp. 1-21.).

3Thinning refers to practice of only storing everykth Markov step to reduce storage requirements and help
ensure that the Markov samples are not highly auto-correlated (see, for example, Raferty, A.E. and Lewis, S.M.,
1992. How Many Iterations in the Gibbs Sampler? In: J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith
(Editors), Bayesian Statistics 4. Oxford University Press, Oxford, U.K., pp. 763-774.).

S3745

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/S3741/2006/acpd-6-S3741-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/5933/2006/acpd-6-5933-2006-discussion.html
http://www.atmos-chem-phys-discuss.net/6/5933/2006/acpd-6-5933-2006.pdf
http://www.egu.eu


ACPD
6, S3741–S3754, 2006

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

EGU

be to low-probability areas, leading to a Markov chain that mixes poorly. In the words
of Draper, what we want is a chain that moves around freely, happily jumping all over
the place (Draper, Forthcoming). One measure of how ‘happy’ the chain is jumping all
over the place is the average acceptance probability: too low an acceptance proba-
bility indicates that the Markov steps may be too large, while too high an acceptance
probability suggests the steps may be too small. Gelman et al. showed that for the
type of probing distribution used here, the average acceptance rate should range from
∼44% for a univariate target distribution, and decreases to ∼23% for high dimensional
problems (Gelman et al., 1996). Following the approach of .(Draper, Forthcoming), a
scale factor κ is used, such that:

Σ = κΣi (5)

The scale parameter κ plays the role of tuning parameter, where κ is varied such
that, once the covariance matrix Σi is estimated from the ith iteration of the adap-
tive Metropolis sampling algorithm above, the acceptance probability is approximately
equal to that suggested by (Gelman et al., 1996).

Equation (1) indicates that we wish to generate a 9-dimensional normal distribution,
where the mean is the current position, and with covariance matrix Σ. Since gener-
ating this distribution is computationally inconvenient, the approach outlined in (Rao,
1992) is followed. Consider the normally distributed random variables θ1, θ2, . . . , θn

with known mean θ and covariance Σ. To generate the required set of correlated ran-
dom numbers θ∗, first a set of n statistically independent normally distributed random
numbers W1,W2, . . . , Wn are generated with mean Wi and variances σ2

Wi
.4 The de-

sired correlated random variables θ∗ are then expressed as a linear function of the
Wi:

θ∗i = ai1W1 + ai2W2 + ... + ainWn (6)

or, in matrix notation:
θ∗ = AW (7)

4Recall that since theWi are independent, the covarianceσij=0 for all i 6= j.
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where A is the nxn matrix containing the aij ’s of equation (6) and W is an nxn matrix
where each row is the vector W1,W2, . . . , Wn (see equation (6)). Recall that if X is a
normal random variable with mean µ and variance σ2

x, and if a, b are scalars, then the
random variable Y given by:

Y = aX + b (8)

is also normal, with mean and variance given by:

E[Y ] = aµ + b (9)

σ2
Y = a2σ2

x (10)

Therefore, from equation (6), θ = AW , and from equation (7) we see that the covari-
ance matrix of θ, Σθ, is given by:

Σθ = AΣW AT (11)

In order to determine the matrices A and W , recall that a symmetric matrix S can be
decomposed into the form of a matrix product as:

S = LDLT (12)

where L is a lower triangular matrix with ones on the main diagonal and D is a diagonal
matrix. This decomposition method is a modified version of the Choleski method whose
solution is well known. By comparing equations (11) and (12) we find that:

Σθ = S (13)

A = L (14)

ΣW = D (15)

Since D is a diagonal matrix, the square root of its diagonal entries are the standard
deviation of the Wi, i.e.,

σWi =
√

dii (16)
S3747
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In order to generate the n-element vector of normally distributed random numbers W ,
a further computational shortcut is taken. A vector of n independent random numbers
X is generated by sampling from the standard normal N (0,1) n times. The random
numbers Wi are then calculated using:

Wi = αiXi (17)

Recall that Xi has mean 0 and unit variance. Since Wi is a linear function of the
normal random variable Xi, we know from equation (10) that the variance of Wi is α2

i ,
and therefore from equation (16) the scalars αi are simply the standard deviations of
the Wi, i.e., the square root of the diagonal entries of ΣW :

Wi =
√

ΣiiXi (18)

The algorithm to generate the proposed Markov step given Σ is therefore:

• Calculate the modified Choleski decomposition of the probing distribution covari-
ance matrix using equation (11)

• Sample the standard normal distribution n= 9 times and assign these values to
the vector X

• Calculate the 9-element vector of independent normally distributed numbers W
using equation (18)

• Calculate the proposed Markov step according to:

θ∗ = θ + A ·W (19)

where θ is the current position and A is the lower diagonal matrix calculated in the
modified Choleski decomposition.
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The result of this algorithm is a symmetric probing distribution, where the mean is the
current position θ and with covariance Σ.

The algorithm to estimate the covariance matrix Σ is (Draper, Forthcoming):

• Start with a Markov Chain whose Markov steps are a series of N(0, κiσ
2
i ) moves,

i.e., the mean is the current position and the magnitude of the step is determined
by κiσ

2
i . For the aerosol variables, temperature, and relative humidity, the σ2

i

will scale approximately with the uncertainty of the measurements. For the gas
phase variables, the range of any available previous observations may be used
to estimate an upper bound on σ2

i .

• Run the MCMC with a high burnin and thinning and use the covariance of the
resulting dataset as an estimate Σ⊗

s of Σ. If Σ⊗
s differs significantly from Σ⊗

s−1,
repeat.

• Run a simulation whose Markov steps are a series of N(0,κΣ⊗
s ) and vary κ to

optimize the acceptance probability

Run the MCMC simulation with Σ = κΣ⊗
s

• Comment: Please itemize the principal premises of the Markovian Chain ap-
proach:

The two key premises of the MCMC approach are:

1. The model relating the unknown variables to the observations (see Section 3.1),
and

2. A probability model describing the likelihood of the observations (see Section
3.2).
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In addition, the following components of the MCMC method must be carefully consid-
ered:

• The selection of the prior distributions (see Section 3.3)

• The selection of the probing distribution (see Section 3.4 and response above);

Finally, in order to ensure the validity of the results, the convergence of the Markov
chains must be ensured. This was accomplished using the convergence diagnostics
discussed in Appendix A.

• Comment: Is it possible to exemplarily illustrate how the proposed new θ∗ and the
probing PD(θ∗|θ) distribution are generated? [This can be done verbally]

See explanation above.

• Comment: This is related to the question of how you arrive at a “prediction value”
of, e.g., NH3, HNO3, etc. I suspect what you call “prediction” (denoted as “Mode”,
e.g., in Fig. 9), is nothing else but the modal value of the a postiori PDF according
to the left hand side of Eq. 2. Is this interpretation correct?

As noted above, the ultimate goal of the MCMC approach is to determine the posterior
distribution, p(θ|Data). The goal is thus not to predict a single value, but a probability
distribution, thus giving the range of likely values as well as their probability. In a
sampling-based approach such as the MCMC method, the modal value is the most
likely value. In Figure 9(a) we only show the measurement time series, the most likely
value (the mode of the posterior) and the 95% confidence interval. Figure 9(b) shows
an image plot of the posterior distribution. In Figure 10 we compare the most likely
value predicted with the MCMC approach with the measurements.
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In sum, the modal value of the posterior probability density function is the most likely
value of the random variable θi.However, the left-hand-side of equation (2) deals with
the entire pdf rather than a single value (e.g., mode or expected value). As stated
above, the ultimate goal of the MCMC approach is to determine the posterior prob-
ability density function. This pdf can then be used to provide a decision maker with
representative values of interest (e.g., mode, 95% confidence interval, etc.).

• Comment: This way, your “predictive values” are intrinsically diagnostic values.
With respect to deterministic models, the word “prediction” colloquially refers to a
future state along a trajectory in the phase space. This way, the evolution of an
intrinsically predictive variable is fully determined by any conservation law with
corresponding initial and boundary conditions. Measurements enter the predic-
tion only via the determination of the initial and boundary conditions. I think, the
situation here is different. You have observations, which are used the estimate
the most likely “true” state.

Although ‘predict’ is often understood to apply to future states (e.g., weather forecast-
ing), it is also understood colloquially for model estimates of unobserved or unobserv-
able quantities. Since we do not know the ‘true’ value of θ, we feel this is an appropriate
use of the term.

• Comment: Can you give a physical interpretation of the “acceptance rule” for the
probing distribution given by Eq (3)?

The acceptance rule given by Equation (3) is the probability of a move, i.e., if the
current position of the Markov Chain is θ, then the probability that the move to the
proposed θ∗ is accepted in the Metropolis algorithm is determined simply by ratio of
the likelihood function evaluated at the respective position (or, if this ratio is greater
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than unity, the step is accepted). The contribution of Hastings (1970) was to generalize
the algorithm of Metropolis to allow for the use of probing distributions that are not
symmetric. In Hastings’ algorithm, the probability that the proposed Markov step is
accepted is the product of the ratio of the likelihood function times the ratio of the
probing distribution evaluated at the current position and the proposed position. In
both algorithms, the probability that a move is accepted is determined by comparing
the acceptance probability with U, where U is a random number generated on the
interval [0,1]. By comparing the acceptance probability to a random number on [0,1]
we ensure that the Markov chain is allowed to explore regions of low probability.

To understand why α has the form of equation (3) can be seen by examining the ap-
proach of Hastings (1970). We wish to construct a Markov Chain with a stationary
distribution (or target distribution) π. The reversibility condition requires that:

πipij = πjpji (20)

where πi is the probability of position i and pij is the probability of moving from position
i to j. Assume that pij has the form (Hastings, 1970):

pij = qijαij (i 6= j) , (21)

with
pii = 1−

∑
j 6=i

pij (22)

In words, equation (21) says that the probability of moving from state i to state j is the
product of the acceptance probability αij and a probing distribution qij . The question
is what form should the acceptance probability take to satisfy the reversibility condition
(equation (20)). For the general case, Hastings suggested the acceptance probability:

αij =
sij

1 + πi
πj

qij

qji

(23)
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where sij is a symmetric function of i and j chosen such that 0≤ αij ≤1 (Hastings,
1970). Substituting equation (23) into equation (21):

pij =
qijsij (πjqji)
πiqij + πjqji

(24)

Similarly, the expression for pji is given by:

pji =
qjisji (πiqij)
πiqij + πjqji

(25)

Multiplying equation (24) by πi and equation (25) by πj , and recalling that the function
sij is symmetric, i.e., sij = sji, we arrive at πipij = πjpji, thus demonstrating that the
acceptance probability given by equation (23) satisfies the reversibility condition.

Various forms have been suggested for the function sij . Barker suggested simply sij=1
(Barker, 1965), while Hastings proposed:

sij =

 1 + πiqij

πjqji

(
πjqji

πiqij
≥ 1

)
1 + πjqji

πiqij

(
πjqji

πiqij
≤ 1

) (26)

Combining equations (26) and (23) we arrive at:

αij =

 1
(

πjqji

πiqij
≥ 1

)
πjqji

πiqij

(
πjqji

πiqij
≤ 1

) (27)

The πi’s comprise the distribution of steady state probabilities of the Markov Chain, i.e.,
in Bayesian notation πi = p(θi|Data). Similarly, in words qij is the probability of going to
state j given that the current state is state i, i.e., qij = p(Xn+1 = j|Xn = i) = PD(θ∗|θ),
and thus equation (27) can be written as:

αij = min
{

1,
p(θ∗|Data)
p(θ|Data)

PD(θ|θ∗)
PD(θ∗|θ)

}
(28)
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The algorithm of Metropolis is a special case of the more general Hastings algorithm.
Metropolis suggested a symmetric probing distribution (i.e., qij = qji, which implies
that the ratio PD(θ|θ∗)

PD(θ∗|θ) is unity) and thus the acceptance probability is given by:

αij = min
{

1,
p(θ∗|Data)
p(θ|Data)

}
(qij = qji) (29)

• Comment: The arguments for the setup of the likelihood function are plausible.
The observations Xobs entering the likelihood functions p(Xobs|X) are formally
“mean values”. Do you use time-averaged values derived from high-resolution
time series for these “mean values”, and do you presume thereby already the
validity of the ergodic hypothesis?

The AMS observations are 4-minute averages; temperature and relative humidity are
averaged from per minute data or, where these are unavailable, interpolated from
hourly averaged data to the AMS time stamp; the TILDAS observations are available
at a one second time resolution; the FTIR observations are 5-minute averages that
were interpolated to the AMS time stamp. No further averaging was done when run-
ning MCMC analysis, i.e., the MCMC analysis was conducted on each 4-minute set of
observations independently.
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