Atmos. Chem. Phys. Discuss., 6, S3435–S3436, 2006 www.atmos-chem-phys-discuss.net/6/S3435/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License.

ACPD

6, S3435–S3436, 2006

Interactive Comment

Interactive comment on "Consecutive reactions of aromatic–OH adducts with NO, NO₂ and O₂: benzene, toluene, m- and p-xylene, hexamethylbenzene, phenol, m-cresoland aniline" by R. Koch et al.

B. Bohn

b.bohn@fz-juelich.de

Received and published: 30 September 2006

In Section 4.3 of the paper the authors cite Grebenkin and Krasnoperov (2004) who argue against an irreversible adduct loss in a reaction with O_2 by stating that a low value of the rate constant k_6 is inconsistent with its weak temperature dependence. I would like to note that in the presence of a fast equilibrium with a peroxy radical, the rate constant of adduct loss measured in the present work by Koch et al. most likely is

Printer-friendly Version

Interactive Discussion

Discussion Paper

FGU

an effective rate constant as outlined by Bohn and Zetzsch (1999):

$$k_6 = K_7 k_{\rm a} + k_{\rm b}$$

Here K_7 is the equilibrium constant of peroxy radical formation ($K_7 = k_7/k_{-7}$), k_a is the sum of first-order rate constants of unimolecular reactions possibly competing with peroxy radical dissociation back to the adduct and O_2 (e.g. formation of a bicyclic radical), and k_b is the sum of rate constant of O_2 reactions competing with formation of the peroxy radical (e.g. formation of HO₂ + phenol). Only in the case where $k_a = 0$, k_6 actually corresponds to the rate constant of an elementary reaction and the objection by Grebenkin and Krasnoperov (2004) is justified. The other extreme would be $k_b = 0$ where k_6 corresponds to the product $K_7 k_a$. In that case it can be shown that the effective activation energy of k_6 is the sum of the reaction enthalpy of peroxy radical formation (≈ -50 kJ mol⁻¹) and the activation energy of k_a . Thus, there may be compensating effects and a complex temperature dependence of k_6 is therefore not surprising.

Interactive comment on Atmos. Chem. Phys. Discuss., 6, 7623, 2006.

ACPD

6, S3435–S3436, 2006

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper