Atmos. Chem. Phys. Discuss., 6, S3296–S3297, 2006 www.atmos-chem-phys-discuss.net/6/S3296/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License.

ACPD

6, S3296–S3297, 2006

Interactive Comment

Interactive comment on "Rocket measurements of positive ions during polar mesosphere winter echo conditions" by A. Brattli et al.

A. Brattli et al.

Received and published: 22 September 2006

Comment 1: This is a correct summary of our paper.

Comments 2-4: In frequency space we have used the following conventions: $\omega = 2\pi\nu$, where ν is frequency and ω is angular frequency. Likewise, in geometric space, we have used $k = 2\pi/\lambda$ (as stated in line 2 on page 7104), where k is wavenumber and λ is the wavelength. This is done throughout the paper, and can easily be verified by looking at the scales in figures 1 and 4 through 6 (bottom: wavenumber k, top: $2\pi/k$). Thus, there is no 2π ambiguity. We have used the terms wavelength and scale length interchangeably, which might have caused the confusion.

Comment 5: The referee has in fact left out a factor of 2π in the wavelength/scale length calculations, and the numbers cited in the comments are therefore not correct.

We have calculated the dissipation energies using equation 15 and used the inner scale $l_0 = 2\pi/k$, following Lübken et al. (1993), as cited in the paper.

Comment 6: The intention behind plotting $k^{-5/3}$ lines in the plots were so the reader can decide for him-/herself if he/she thinks the slope agrees with a $k^{-5/3}$ spectrum or not. We have indeed made fits to the spectral plots, which we explicitly state in lines 6-8 on page 7104, but these are not plotted in the figures.

Interactive comment on Atmos. Chem. Phys. Discuss., 6, 7093, 2006.

ACPD

6, S3296–S3297, 2006

Interactive Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper