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Abstract

An automated, ground-based instrument was used to measure gas-phase hydroper-
oxides at the Jungfraujoch High Altitude Research Station as part of the Free Tro-
pospheric EXperiment (FREETEX) during February/March 2003. A nebulising reflux
concentrator sampled ambient air twice hourly, prior to on-site analysis by HPLC speci-5

ation, coupled with post-column peroxidase derivatisation and fluorescence detection.
Hydrogen peroxide (H2O2) concentrations reached up to 1420 pptv over the 13-day
period with a mean of 206±261 pptv (± one standard deviation). Methyl hydroperox-
ide (CH3OOH) reached up to 921 pptv with a mean of 76±96 pptv. No other organic
hydroperoxides were detected. The lack of an explicit diurnal cycle suggests that hy-10

droperoxide concentrations are chiefly influenced by transport processes rather than
local photochemistry at this mountainous site. We find elevated concentrations of H2O2
in air masses originating from the south-west indicative of higher concentrations of HOx
due to more active photochemistry. Air which has been recently polluted exhibits low
H2O2 concentration due to a combination of suppression of HO2 by NOx and depo-15

sition. We also conclude that despite being at a high alpine site, the vast majority of
the air observed was extensively influence by the boundary layer during our campaign
(diagnosed from high CO concentrations and the high NOx to NOy ratio) resulting in
deposition of H2O2 to the surface and hence reduced H2O2 concentrations. The con-
centrations of H2O2 sampled here are consistent with previous box modelling studies20

of hydroperoxides which invoked a depositional sink.

1 Introduction

Hydroperoxides play an important role in gas-phase free radical chemistry of the at-
mosphere and in the aqueous-phase chemistry of acid precipitation. Hydroperoxides
such as hydrogen peroxide (H2O2) and methyl hydroperoxide (CH3OOH) are produced25

through the self-reaction of peroxy radicals (hydroperoxy, HO2 and organic peroxy,
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RO2) (e.g. Lee et al., 2000). These peroxy radicals are intimately linked to ozone pro-
duction and loss, leading to hydroperoxides being a key diagnostic of the chemical
state of the atmosphere. The chemistry of the Ox, HOx and ROx is summarized in
Fig. 1. H2O2 is also a major oxidant of SO2 in clouds (Penkett et al., 1979) so along-
side O3 and OH, its measurement is needed to assess the oxidative capacity of the5

atmosphere.
Previous analyses of H2O2 and CH3OOH observations have identified key physical

and chemical processes controlling their concentration (e.g. Heikes et al., 1987). As
shown in Fig. 1, the production of H2O2 is controlled by the abundance of HO2, which
shows sensitivity to HOx (OH and HO2) production, loss and recycling. Formation of10

peroxy radicals is predominantly through the photo-oxidation of carbon monoxide (CO)
and volatile organic compounds (VOC), by the OH radical (detailed in Lightfoot et al.,
1992). A second significant source is from formaldehyde (CH2O), which undergoes
photolysis and reaction with OH to produce HO2.

Air-masses rich in NOx tend to show lower H2O2 concentrations as peroxy radicals15

oxidise NO to NO2 rather than self-reacting to form H2O2 (Tremmel et al., 1993; Penkett
et al., 1995) and total radical loadings are suppressed by HNO3 production through the
reaction of OH with NO2 radicals (Poppe et al., 1993). According to Lee et al. (2000),
substantial suppression of hydroperoxide production occurs at NO concentrations ex-
ceeding 100 pptv. In contrast, it is calculated that NO concentrations below 3 to 2020

pptv are needed for hydroperoxide production to dominate (Reeves and Penkett, 2003;
Crutzen and Zimmermann, 1991; Finlayson-Pitts and Pitts, 1986). Such low concen-
trations of NO can only be found in very remote regions of the troposphere lacking NOx
sources.

Lower concentrations of H2O2 are observed in air masses exposed to the ground25

or clouds due to dry and wet deposition (e.g. Kleinman, 1986; Heikes et al., 1987;
Chandler et al., 1988; Gallagher et al., 1991). Rapid loss of gaseous H2O2 into clouds
is due to a high Henry’s law coefficient of H2O2(HH2O2 is 7.73×104 M atm−1 at 298 K,
Sander et al., 2003) and rapid oxidation of S(IV) species to S(VI) within the aqueous
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phase. Other important H2O2 and CH3OOH sinks are their reaction with OH radicals
and photolysis at ultraviolet wavelengths generating OH and in the case of CH3OOH,
OH and CH3O.

The aim of this paper is to investigate the impact of these chemical and physical pro-
cesses on the concentration of H2O2 and CH3OOH at a remote mountainous site and5

to understand the usefulness of H2O2 observations as a diagnostic of the atmospheric
compositional system.

2 Experimental

2.1 Site description

The observations are from the FREE Tropospheric EXperiment (FREETEX) that took10

place in February to March 2003 at the Sphinx Observatory, Jungfraujoch High Alti-
tude Research Station (7.98◦ E, 46.55◦ N) (subsequently referred to as JFJ) situated
at 3580 m above mean sea level (a.m.s.l.). There have been three previous FREE-
TEX campaigns in 1996, 1998 and 2001 at this site (Zanis et al., 1999, 2000a, b,
2003; Carpenter et al., 2000). The Sphinx Observatory resides in a saddle between15

the two alpine summits, Jungfrau (4155 m a.m.s.l.) to the south-west and Mönch
(4099 m a.m.s.l.) to the north-east, in the Swiss Alps. This leads to mainly north-
westerly and southerly air masses reaching the station. The site characteristics are
described in Zellweger et al. (2003). The observatory is usually thought to be located in
the lower free troposphere (FT) in winter and early spring but can experience planetary20

boundary layer (PBL) air (Carpenter et al., 2000), especially in the summer when con-
vection is enhanced (Baltensperger et al., 1997; Lugauer et al., 1998, Zellweger et al.,
2003). The high altitude site is thought to experience few local emission sources, and
therefore can offer ideal conditions for long-term sampling of free tropospheric air. The
JFJ is incorporated in the Swiss National Air Pollution Monitoring Network (NABEL),25

which is maintained by EMPA Dübendorf on behalf of the Swiss Federal Office for the

7180

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/7177/2006/acpd-6-7177-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/7177/2006/acpd-6-7177-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 7177–7205, 2006

Hydroperoxides at
Jungfraujoch
Observatory

S. J. Walker et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Environment (FOEN). Among other species, NO, NO2, O3 and CO are measured rou-
tinely and are available with a time resolution of 30 min. All meteorological parameters
are measured by the Federal Office of Meteorology and Climatology (MeteoSwiss).
Due to the importance of monitoring long-term trends of gaseous and aerosol param-
eters in the free troposphere, the JFJ station has been incorporated into the Global5

Atmosphere Watch (GAW) program of the World Meteorological Organization (WMO)
as a Global GAW Station.

2.2 Method for hydroperoxide sample collection and analysis

Sample collection took place at the Sphinx laboratory between the 27 February and
the 12 March 2003. Figure 2 shows a schematic diagram of the analytical system.10

Samples were obtained from the gas-phase using an amber-glass nebulising reflux
concentrator (Fig. 2) based on the design by Cofer et al. (1985). Atmospheric air was
drawn by a vacuum pump from the NABEL inlet (previously described in Zellweger et
al., 2000), through ∼5 m 1/4” OD Teflon (perfluoroalkoxy) tubing into the nebuliser, at a
flow rate of 2.7 l min−1. The residence time in the inlet tubing was less than 4 sec. A15

sampling time of 25 min provided sufficient concentration of the solution for analysis.
Collection efficiencies of 75±3% and 40±2% have been previously determined experi-
mentally for H2O2 and CH3OOH respectively and were assumed in this study (Jackson
and Hewitt, 1996; Morgan, 2004).

Once collected, aqueous samples were injected through a 0.2µm filter onto the20

HPLC where hydroperoxide speciation was achieved using a C-18 reversed-phase
column. Helium-degassed mobile phase was supplied at a flow rate of 0.6 ml min−1.
Post-column, the hydroperoxide components were derivatised in a reaction coil in the
presence of horseradish peroxidase to form a stable dimer, based on the technique de-
veloped by Lazrus et al. (1985, 1986). The derivatisation reagent was raised to pH 5.825

by the addition of potassium hydroxide (1 M) and buffered by potassium hydrogen ph-
thalate (0.5 M). A peristaltic pump delivered the derivatisation reagent at constant rate
of 0.25 ml min−1. The pH was then raised above 10 to produce the fluorescent anionic
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dimer form via a Nafion membrane submerged in 100 ml NH4OH (30%). Detection
was achieved using a fluorescence spectrophotometer with excitation and emission
wavelengths of 305 and 410 nm respectively, via a xenon short arc lamp. Calibration of
the system was carried out daily. Further details of this method can be found in Mor-
gan and Jackson (2002). Based on three and ten times the standard deviation of the5

base line noise, the instrument limit of detection and quantification at 95% confidence
(Taylor, 1987) during the campaign was found to be 21 and 68 pptv respectively.

2.3 Other measurements

An overview of measurement techniques including detection limits and uncertainties
of O3, CO, NOx and NOy can be found in Zellweger et al. (2000) and for toluene and10

benzene in Reimann et al. (2004). A further suite of species, namely NMHCs, CO, O3,
PAN and the photolysis rate coefficient, j (O1D), were measured throughout the cam-
paign by the University of Leeds (School of Chemistry) and are described in Whalley
et al. (2004).

3 Results and discussion15

3.1 General observations

Figure 4 presents the 13-day time series for H2O2 and CH3OOH for the sampling pe-
riod. H2O2 ranged from below the limit of detection (21 pptv) up to 1420 pptv with an av-
erage concentration of 206±261 pptv (± one standard deviation). Table 1 presents this
data alongside previous measurements at other high altitude sites and from aircraft.20

The observations made during this campaign are consistent with previous measure-
ments. More specifically they are within the range of previous H2O2 measurements
at this site and other Alpine sites (<100–6000 pptv) (Dommen et al., 1995; Sigg et al.,
1992; Lehman et al., 1992). However, the observed mean for H2O2 appears lower than
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those previously observed at alpine sites. This may be because the previous measure-
ments were made during the summer, included forested areas (where hydroperoxides
can be produced through biogenic hydrocarbon oxidation), and also excluded periods
of cloud or rain (so concentrations were not reduced through wet deposition). Although
direct comparison between these datasets is difficult we conclude that our observa-5

tional dataset appear consistent with previous observations.
CH3OOH was observed during this campaign and ranged from below the detection

limit, up to 921 pptv, with a mean mixing ratio of 76±96 pptv. There are no previ-
ously published CH3OOH measurements for this site. Again these observations are
consistent with previous observations at other sites (see Table 1). No other higher10

hydroperoxides were detected. This will be discussed in more detail in Sect. 3.7.

3.2 Effect of local and synoptic scale meteorology

Mean diurnal cycles for H2O2 and CH3OOH are shown in Fig. 5. There is some sug-
gestion of a maximum in peroxide concentrations during the day indicative of photo-
chemical production (e.g. Dommen et al., 1995). However, there is significant variabil-15

ity, suggesting a large role for meteorology in determining the levels of hydroperoxides
sampled.

Four hydroperoxide maxima were observed on the 1, 6, 9 and 11 March. The vector-
averaged local wind direction throughout the campaign was north-westerly (312◦) with
no significant change in the mean local wind direction during these maxima. Thus, the20

local wind direction appears to offer little information on the magnitude of the hydroper-
oxide concentration.

Back trajectories were calculated each 6 h of the campaign using ECMWF anal-
ysed winds at 2.5×2.5◦ resolution and 31 levels using 3-D vertical advection via the
BADC Trajectory Service (http://badc.nerc.ac.uk). These trajectories agreed well with25

plots calculated using the FLEXTRA Trajectory Service (http://zardoz.nilu.no/∼andreas/
flextra+flexpart.html), which offers a finer resolution (1.125×1.125◦) appropriate for the
Alpine region. The “synoptic wind direction” (diagnosed from the last day of transport
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described by the trajectory) was in general from the west/north-west (consistent with
the observed wind direction) except during the 28 February to 2 March, 5 to 6 and 10 to
12 March when air-masses with a south-westerly character were sampled (see Fig. 3
for examples of these trajectories). Three of the four hydroperoxide maxima occurred
on the arrival of these synoptic south-westerly air-masses (1, 6 and 11 March). The5

maxima observed on the 9 March was during a period of north-westerly air (see Fig. 3),
and is discussed separately in Sect. 3.4.

During south-westerly flow, primary photochemical pollutants e.g. CO and NOx, were
often enhanced, as illustrated in Whalley et al. (2004) for this campaign and previously
seen in past campaigns at this site (Forrer et al., 2000; Carpenter et al., 2000). As10

described earlier, the relationship between hydroperoxides and primary pollutants (no-
tably NOx) is complicated. Hydroperoxide concentrations were sensitive to the NOx
concentration within these air-masses. High hydroperoxide concentrations were only
present when NOx concentrations were low. These air-masses were often photochem-
ically aged, as demonstrated by a lower NOx/NOy ratio. Chin et al. (1994) used the dis-15

tinction of a NOx/NOy ratio of <0.3 to evaluate when an air-mass could be described
as photochemically aged. Air-masses with ratios significantly above this can there-
fore be classed as recently polluted. Secondly, the toluene/ benzene ratio was also
used to support this classification, where values below 0.5 were indicative of aged air-
masses due to the shorter atmospheric lifetime of toluene compared to benzene (Li et20

al., 2006).
Using these classifications, the high NOx levels during 6 March, which in combina-

tion with wet and dry deposition in the humid ascending air-mass caused hydroperoxide
concentrations to reduce, can therefore be classed as fresh emissions (NOx/ NOy∼0.8)
within a south-westerly, ascended air-mass (from 750–850 hPa, ∼2 km). The toluene25

to benzene ratio increased from a background level (the campaign median of ∼0.5) to
values above 1.5, which was also indicative of fresh emissions at this site (Li et al.,
2006a). The sources of these south-westerly air-masses appeared to be the indus-
trialised region of the Valais Valley (southern Switzerland) or the Po Valley (northern
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Italy), consistent with Seibert et al. (1998) and Forrer et al. (2000). The latter found
that the highest CO (double the average value) and NOx (>1 to <10 ppbv) concen-
trations were associated with winds that transported anthropogenic pollution to this
site from these industrialized regions of Switzerland and Italy. Similar conditions to
those described by Forrer et al. (2000) occurred on 6 March when a doubling of CO5

(>190 ppbv) and intense NOx (∼4 ppbv) was observed. Their paper described upslope
motion associated with this south-westerly flow, as a process of transporting polluted
air from lower altitudes to the site. The importance of these processes at this site was
highlighted by Carpenter et al. (2000), who observed diurnal CO and H2O cycles in-
dicative of daily upslope motion, and was developed further by Zellweger et al. (2003).10

Thus much of the variability seen in the hydroperoxide concentrations observed can
be attributed to changes in flow regime leading to changes in the levels of photo-
pollutants rather than local changes in photolysis rates.

3.3 Sampling of boundary layer and free tropospheric air

Mountain sites such as JFJ are often thought to offer sampling within the free tropo-15

sphere. In the previous section we have shown that there are examples of boundary
layer air being sampled. Quantifying the fraction of boundary layer air sampled is im-
portant for placing the observations made at this site into a context, and is described
e.g. in Zellweger et al. (2003).

The mean CO observed during the campaign was 140±14 ppbv consistent with the20

seasonal cycle of CO previously measured at JFJ (Rinsland et al., 2000; Forrer et
al., 2000; BUWAL, 2005). Carpenter et al. (2000) used the criteria of CO <200 ppbv,
NOx/NOy<0.3, and a coarse screening of cloudy days, by excluding periods when
global radiation was below the campaign median, to diagnose being within the free
troposphere. Data collected as part of this campaign fulfilled these criteria for only 4%25

data coverage, which was lower than previous research of Carpenter et al. (2000) at
this site, where free tropospheric air amounted to 17% using the same criteria during
FREETEX 1998. Various other criteria have been used to define free tropospheric air
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for longer campaigns at this site, with free tropospheric periods making up 40% during
March to August 1997 and 1998 (Zellweger et al., 2003) and 57% during 1993 to 1997
(Li et al., 20061) of the measurement period. The low proportion of free tropospheric
air during our campaign indicated that mainly boundary layer air was sampled and
highlights the need for long-term sampling at mountainous sites to allow a larger pro-5

portion of undisturbed free tropospheric air to be sampled. The periods that satisfied
free tropospheric criteria occurred for a short time on the 6 March and for longer peri-
ods towards the end of the campaign (9 to 12 March). Both examples corresponded
to elevated hydroperoxide levels, most likely due to a removal of dry deposition as a
hydroperoxide sink.10

Previous aircraft measurements of free tropospheric H2O2 have found a significant
correlation between H2O2 and the product of its precursors, O3 and H2O (Penkett et
al., 1995, 1998; Weinstein-Lloyd et al., 1998). The lack of a significant correlation
(R2<0.1) found from this dataset again implies that the simple free tropospheric as-
sumptions made in these papers are not appropriate at this site (i.e. all three papers15

used altitudes >1500 m and Weinstein-Lloyd et al. (1998) also used a coarse particle
count of <10 cm−3 to remove periods of cloud). After applying Carpenter et al. (2000)
criteria to determine only those periods where air was sampled within the free tropo-
sphere, a weak positive correlation was then observed (R2=0.3).

Most of the air observed during the campaign had a significant influence of the20

boundary layer. Occasions of free tropospheric air were observed, associated with
higher hydroperoxide concentrations; however they contributed negligibly to the overall
dataset. This reinforces the importance of the established filtering methods for free
tropospheric air, to stringently select data from mountainous sites, especially when
short-term campaigns as described in this research are undertaken.25

1Li, Y., Staehelin, J., Auvray, M., Bey, I., and Schultz, M.: Comparison between numerical
simulations of two 3-D global models (GEOS-CHEM and MOZART) with ozone observations at
Jungfraujoch (Switzerland) and ozone sondes from Payerne, Atmos. Environ., submitted, 2006.
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3.4 Impact of high and low NOx on hydroperoxides

It was shown earlier that higher concentrations of photo-pollutants in south-westerly
air can lead to enhanced hydroperoxide concentrations. The three examples of south-
westerly flow experienced during the campaign are described in Table 2, together with
a fourth example of enhanced hydroperoxides in a north-westerly air-mass.5

In the early morning of 6 March (Example A, Table 2), high levels of hydroperoxides
(1.0 and 0.4 ppbv H2O2 and CH3OOH respectively) occurred in drier, south-westerly
air that had remained at relatively constant altitude (600–700 hPa), with relatively low
CO (∼110 ppbv) and NOx levels (∼0.3 ppbv), compared to the rest of the campaign.
However, a spike in NOx of over 1 ppbv, at 07:00 caused a brief, partial reduction in10

hydroperoxides, due to suppression of HO2 by elevated NOx. This air-mass displayed
a moderate NOx to NOy ratio (∼0.6), together with a relatively large increase in longer-
lived alkanes compared to small increases in short-lived alkenes (see Whalley et al.,
2004). These observations suggest slight photochemical aging and could be caused
by some vertical mixing into the air-mass, by aged air from ∼650 hPa (∼5 km), 5 days15

earlier (see black line, bottom left panel, in Fig. 3). Hydroperoxides were therefore
sustained in this event by a combination of photochemically aged air with an abundance
of HOx, low NOx, and little surface deposition.

In the afternoon of the 6 March (Example B, Table 2), freshly emitted NOx in a moist
air-mass (relatively humidity >80%) arrived from the south-west and caused the sup-20

pression of hydroperoxides for over 10 h. This increase in NOx was due to a shift to
ascended air (from 750–850 hPa, see light blue and green lines, Fig. 3) that also exhib-
ited enhanced CO (>150 ppbv). NO concentrations detected during this period were
five times the level that Lee et al. (2000) (>100 pptv) showed, which resulted in sub-
stantial suppression of hydroperoxide production alongside increased hydroperoxide25

deposition. Hydroperoxides were therefore reduced by a combination of high NO (av-
erage of 64 pptv) that competed with peroxy radical self-reactions, high NO2 (average
of 2450 pptv) for several hours, providing a sink for OH (e.g. Poppe et al., 1993), wet de-
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position (see Sect. 3.5) and contact with the surface, allowing increased dry deposition
of H2O2.

During 11 to 12 March (Example C, Table 2), back-trajectories showed a south-
westerly air-mass that had descended from 400–600 hPa over 5 days, with little influ-
ence of air from lower altitudes (see blue lines in bottom right panel, Fig. 3). This very5

dry air (RH<20%) had a low NOx/NOy ratio (<0.3) and so can be considered as pho-
tochemically aged (Chin et al., 1994). To support this classification, 11 to 12 March
also showed toluene/benzene ratios below 0.5 (Li et al., 2005). Although CO remained
around 140 ppbv, the relatively long lifetime of CO (∼60 days) (Volz et al., 1981) com-
pared to other photochemical tracers, means this air-mass could still have been of free10

tropospheric origin. This air-mass could therefore become rich in hydroperoxides be-
cause, little dry deposition could occur and there was a lack of NOx which prevented
the competing reactions to H2O2 and CH3OOH production. The high concentrations of
hydroperoxides imply that HOx was readily available.

During 9 to 10 March (Example D, Table 2), a descending north-westerly also gave15

observed hydroperoxide maxima alongside a NOx to NOy ratio of ∼0.4. This aged air-
mass had descended from ∼500 hPa for the previous 5 days (see green and orange
lines, top panel, Fig. 3). Again a lack of NOx and dry deposition allowed hydroperoxides
to accumulate, but these peaks are less intense than for the previous examples (A to
C) that arrived in south-westerly air, which supports the findings that more HOx was20

available in south-westerly air-masses, which have been subjected to more intense
sunlight and so have enhanced radical concentrations.

Overall we find that oxides of nitrogen have a significant impact on the concentrations
of hydroperoxides. Air coming from the south-west with moderate levels of NOx exhibits
significantly higher hydroperoxide concentration than air which is more significantly25

polluted air, or air coming from the north. This is due to a combination of a history
of higher photolysis rates and water vapour concentration, leading to enhanced HOx
production in south-westerly air, with also reduced HOx loss and lower OH to HO2
ratios due to the moderate NOx concentrations.
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3.5 Wet deposition and cloud processing

Unlike the case on the 6 March, the decrease in hydroperoxide concentration observed
on the 1 March was not due to a combination of deposition and an increase in NOx. The
trajectories showed a change to an ascending air-mass, associated with an increase
in relative humidity (>90%) and increased deposition, but no increases in NOx were5

observed. Dilution effects with an air-mass that had been exposed to increased dry
deposition to the surface could therefore have been partly responsible for the observed
reduction in hydroperoxides. The high humidity indicates that cloud processing had
also occurred. Previous studies have shown that air-masses exposed to cloud process-
ing exhibit lower concentrations of H2O2 due to wet deposition (e.g. Heikes et al., 1987;10

Chandler et al., 1988; Gallagher et al., 1991). As to be expected, H2O2 observed dur-
ing this event reduced faster than CH3OOH (by a factor of ∼2.4) due to its much higher
solubility. However, the ratio of the Henry’s Law coefficients (HH2O2/HCH3OOH∼260) im-
plies that CH3OOH should be taken up by water droplets by a factor of ∼100 times less
than this, relative to H2O2. This rapid uptake of CH3OOH relative to H2O2 could imply15

that processes exist at the JFJ to facilitate its uptake into water droplets. However the
exact mechanism leading to this enhanced loss of CH3OOH relative to H2O2 and the
magnitude of the role of dilution is unclear.

3.6 Agreement with a previous photochemical box model

Zanis et al. (1999) described constrained box modelling work of the radicals at the20

JFJ site during April to May 1996. However, at the time of their study, observations of
hydroperoxides were not available to help constrain their modelling effort. Their work
simulated H2O2 concentrations in the order of a magnitude, from 1700 to170 pptv with-
out and including dry deposition respectively. The mean observed H2O2 observations
of 206 ±261 pptv during this campaign are thus much more consistent with the calcu-25

lations that include a surface depositional sink. Meteorological conditions during the
1996 campaign were comparable to our campaign in 2003, with similar temperature,
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pressure and wind speeds, and consistent concentrations of O3 and water vapour. The
main differences between the two campaigns were the lower CO, j (O1D) and NO mea-
sured in 2003 compared to 1996. The variations in the concentrations of photochemical
pre-cursors to H2O2 between the two campaigns alone, is not sufficient to account for
an order of a magnitude difference between the previously modelled concentration of5

H2O2 without a depositional sink and our observations. Again we conclude that depo-
sitional processes are critical at this site for determining hydroperoxide concentration.

Mean NO levels during this 2003 campaign were low (∼19 pptv), which places the
site during the observation period slightly below the NO regime (20 to 100 pptv) set by
Zanis et al. (1999) for simultaneous O3 and H2O2 production. H2O2 can be produced10

alongside O3 in this regime because there is sufficient NO to lead to O3 production,
but peroxy radical combination reactions are still able to dominate over the loss of OH
through NO2. During the campaign, the data selected using the criteria of Carpenter
et al. (2000) for free tropospheric air, also did not display a significant anti-correlation
between O3 and H2O2 (R2=0.2). This is consistent with simultaneous production of15

both O3 and H2O2 but is in contrast to the previously observed anti-correlation between
O3 and H2O2 for the free troposphere (e.g. Ayers et al., 1992). Again this observational
evidence strongly supports the case that the JFJ station mainly observed boundary
layer air during this campaign and did not strongly sample the free troposphere (even
during periods where “free tropospheric” criteria were satisfied).20

The box modelling described by Zanis et al. (1999) is only consistent with the hy-
droperoxide observations made during this study if there is a significant and sustained
surface depositional sink of the hydroperoxides. Thus even at this high altitude moun-
tain site, the impact of the boundary layer cannot be ignored and as a consequence,
filtering and data flagging of air disturbed by the surface is essential.25

3.7 Other hydroperoxides

The oxidation of hydrocarbons within the atmosphere should lead to the production of a
large number of hydroperoxides. Previous observations have detected hydroxymethyl
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hydroperoxide (HOCH2OOH) peroxyacetic acid (CH3C(O)OOH), and ethylhydroperox-
ide (C2H5OOH) at this altitude (Fels and Junkermann, 1994; Weinstein-Lloyd et al.,
1998; Crounse et al., 2005, private communication). However, they were not observed
during this study. This is surprising given that two of these species have higher solubil-
ity than H2O2 and CH3OOH respectively (HHOCH2OOH=1.7×106 M atm−1, Sander et al.,5

2003, and HCH3C(O)OOH=473 M atm−1, Seinfeld and Pandis, 1998), which should permit
more efficient collection via this technique (giving ∼94 and ∼43% respectively based on
the sampler collection efficiency and the Henry’s Law Constant for these compounds).
Using these collection efficiencies and the limit of detection for the instrumental set-
up, an upper limit of ∼22 and ∼48 pptv can therefore be stated for HOCH2OOH and10

CH3C(O)OOH respectively. The collection efficiency is expected to be low (<40%) for
hydroperoxides less soluble than CH3OOH, such as C2H5OOH, meaning that concen-
trations must be above 50 pptv to be sampled successfully.

Fels and Junkermann (1994) observed levels of HOCH2OOH up to 550 pptv
at a mountainous alpine site (1780 m a.m.s.l.), and reported that CH3OOH and15

HOCH2OOH were the dominant ROOH, with C2H5OOH and CH3C(O)OOH contribut-
ing <10%. However, their research was conducted during summer, and at lower alti-
tude, where sources of ROOH are more abundant. In comparison, the JFJ measure-
ments were made during early spring when concentrations would be expected to be
lower. A more recent study by Valverde-Canossa et al. (2005) inferred ROOH con-20

centrations from aqueous-phase cloud water samples at a mountainous site in Ger-
many (937 m a.m.s.l.) with CH3OOH, HOCH2OOH and 1-hydroxyethyl hydroperoxide
(CH3CH(OH)OOH) concentrations of <40, <0.020 and <3.5 pptv respectively. These
levels of ROOH were below the detection limit of the analytical instrument used at JFJ.

Significant levels of CH3C(O)OOH (100–300 pptv) were observed in the recent25

INTEX-NA aircraft campaign at the same altitude as JFJ over the Atlantic coast of
USA (Crounse et al., 2005), private communication]. Observations of H2O2 during the
INTEX-NA campaign were a factor of as much as 10 higher than were observed during
this JFJ campaign. Thus if the CH3C(O)OOH concentrations scales with H2O2 con-

7191

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/7177/2006/acpd-6-7177-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/7177/2006/acpd-6-7177-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 7177–7205, 2006

Hydroperoxides at
Jungfraujoch
Observatory

S. J. Walker et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

centrations, we would expect concentrations of CH3C(O)OOH of around 10–30 pptv,
which is below the detection limit and thus would not be detected with this instrument.
It seems likely that other hydroperoxides are present in the atmosphere at JFJ. How-
ever, their expected concentrations are likely to be below those that can be observed
by the current instrumental set-up.5

4 Conclusions

Gas-phase hydroperoxide measurements were made at Jungfraujoch High Altitude Re-
search Station as part of the FREETEX campaign during February and March 2003.
These are the first speciated hydroperoxide measurements for this site, providing a
quantitative assessment of both inorganic and organic hydroperoxide concentrations.10

H2O2 and CH3OOH were detected but no other hydroperoxides were detected, con-
sistent with our understanding of their concentrations within the atmosphere. Although
a diurnal cycle in both H2O2 and CH3OOH was observed, it was not strong because
of meteorologically-driven variability. Air masses from the south-west typically showed
higher hydroperoxide concentrations due to enhanced photochemistry. Air masses15

which had been exposed to high levels of recent pollution showed lower concentra-
tions of hydroperoxides due to suppression of HO2 by NOx. Despite being a high alpine
site, it is believed that for only 4% was truly free tropospheric air sampled during the
FREETEX 2003 campaign. Thus deposition to both the surface and to clouds played
a significant role in determining the concentrations of hydroperoxides at this site. The20

concentrations of hydroperoxide measured are consistent with previous box-modelling
work for the site only if a significant deposition source is included in the box model.
Thus comparisons between these observations and the results of chemical transport
models should be carried out carefully to reflect the influence of the boundary layer at
this site.25
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Table 1. Selected hydroperoxide measurements at high altitude.

Altitude
(km a.m.s.l.)

Location Time of year Mean H2O2(pptv,
range)

Mean CH3OOH
(pptv,
range)

Notes

High Altitude Sites

3.6 Jungfraujoch,
Swiss Alps (47◦ N,
8◦ E)

Feb–March 2003 206±261 (<21–
1424)

76±96 (<21–921) This work, no significant diurnal
cycle

0.5–5.0 Ground and
Airborne, Swiss
Plateau/Alps (incl.
JFJ, 47◦ N, 8◦ E)

June–July 1990
July–Aug 1991

∼1400 for JFJ excl.
rain/cloud
events (<100–
6000)

Not measured
(ROOH <300)

No distinct diurnal cycle, air-
borne sampling via manned
balloon/glider (Dommen et al.,
1995; Sigg et al., 1992; and
Lehman et al., 1992)

1.2–1.8 Ground, Bavarian
Alps, Germany
(47◦ N, 11◦ E)

June–Sep 1990 ∼750 (<50–1750) ∼100 (<20–550) Diurnal variation, HOCH2OOH
<550 pptv, also detected
C2H5OOH and CH3C(O)OOH,
total ROOH was 10–40% H2O2
(Fels and Junkermann, 1994)

2.8 Mt. Norikura, cen-
tral Japan (37◦ N,
137◦ E)

July–Sep 1993,
1994

1100±750 for Au-
gust (100–4500)

Not measured
(ROOH <1000,
Semi-quantitative)

Peak H2O2 at night (Watanabe
et al., 1995)

Airborne

0.3–13 North Pacific
Ocean (0–65◦ N,
115◦ E–125◦ W)

Autumn 1991 <1000 (for >45◦ N)
(<30–6000)

<500 (for >45◦ N)
(<50–3000)

Other ROOHs not detected
(<100 pptv) (Heikes et al.,
1996a)

0.3- 10 South Atlantic and
W. Indian Oceans
(20◦ N–40◦ S,
60◦ W–40◦ E)

Sep–Oct 1992 3200±1800 (for
MBL to 4 km)
(300–6000)

1000±450
(400–1900)

Vertical H2O2 profiles (Heikes et
al., 1996b)

0–12 Tropical South
Pacific (0–30◦ S,
170◦ E–110◦ W)

Sep–Oct 1996 200±110 (0–1600) 80±80 (0–1200) Vertical H2O2 profiles, for
3.5 km, H2O2 and CH3OOH
∼1100 and ∼500 pptv (Cohan et
al., 1999)

10 Tropical South Pa-
cific (13◦ S, 152◦ E)

April 1999 77±21 (50–120) 64±24 (50–500) (Ravetta et al., 2001)

0.5–3.0 Nashville,
Tennessee
(36◦ N, 87◦ W)

July 1995 2400 (median)
(<100–5000)

1700 (median)
(500–3750)

Assumed only H2O2, CH3OOH
and HOCH2OOH (also
detected) were collected
(Weinstein-Lloyd et al., 1998)

0.7–3.7 Central Arkansas
(35◦ N, 92◦ W)

Jan–Oct 1988 ∼200 winter mean
(<10–8000)

Not measured (Ray et al., 1992)

0–3.5 Eastern U.S. (25–
44◦ N,
76–89◦ W)

Oct–Nov 1984 400–1900
(<200–4100)

Not quantitative
(ROOH < 500)

Vertical H2O2 profiles (Heikes et
al., 1987).
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Table 2. Composition of air-masses with varying NOx to NOy ratios leading to hydroperoxide
production and suppression.

A) Semi-polluted,
SW air-mass

B) Freshly polluted,
SW air-mass

C) Photo-
chemically aged,
SW air-mass

D) NW descending
air

Air-mass
altitude origin
(Table 2 panel,
trajectory colour)

Remained at
∼650 hPa, some
vertical mixing
with aged air from
>5 km (left panel,
black/dark blue)

Ascended from
∼800 hPa in last
5 d (left panel, light
blue/green)

Descended from
∼500 hPa in last
5 d (right panel,
dark/light blue)

Descended from
∼500 hPa in last
5 d (top panel,
green/orange)

Start time 00:00 6 March 08:00 6 March 07:00 11 March 14:00 9 March

Relative
humidity (%)

∼50 >80 <20 30–80

NOx/NOy 0.6 0.8 0.3 0.4
NO (pptv) <93 <510 <40 <30
CO (ppbv) 95–134 ≤193 112–147 120–150
O3 (ppbv) 45–55 25–40 50–65 54–58
H2O2 (pptv) ≤1010 <75 ≤1424 ≤682
CH3OOH (pptv) ≤440 <85 ≤922 ≤392
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Fig. 1. Tropospheric gas-phase reactions linked to hydroperoxides.
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Fig. 2. Schematic diagram of gas-phase sampling and analysis of hydroperoxides using a
nebulising reflux concentrator, HPLC and post-column derivatisation.
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Descending north-westerly 

 

 
Plot: 9 March 

 

Ascending south-westerly Descending anti-cyclonic, south-westerly 

 
Plot: 6 March 

 
Plot: 11 March 

 

Fig. 3. Typical 5-day back-trajectories of air-masses sampled at JFJ (provided by the BADC
Trajectory Server). Arrival dates of trajectories are shown. Trajectory release times are 00:00
(black), 06:00 (dark blue), 12:00 (light blue), 18:00 (green) and 24:00 (orange) in GMT. Crosses
are every 6 h along trajectory.
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Fig. 4. Time series of H2O2, CH3OOH, O3, CO, relative humidity (RH), NO2, NO, NOx to NOy
ratio, NOy and the toluene to benzene ratio. Arrows in top panel and dashed vertical lines
indicate changes in the prevailing wind direction deduced from the last day of 5-day back-
trajectories (see Sect. 3.2 for further details). Descending air from >3.6 km (blue arrows),
ascending air from <2 km (red arrows) and level (green arrows) indicates air that had remained
at constant altitude for the last 5 days. Local NO and toluene contamination has been removed.
Tick marks on time axis refer to noon (GMT).
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Fig. 5. Mean diurnal cycles for H2O2 (black crosses/line) and CH3OOH (grey points/line) where
error bars show 1 standard deviation.
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