Atmos. Chem. Phys. Discuss., 5, S4481–S4483, 2005 www.atmos-chem-phys.org/acpd/5/S4481/ European Geosciences Union © 2005 Author(s). This work is licensed under a Creative Commons License.

ACPD

5, S4481–S4483, 2005

Interactive Comment

Interactive comment on "Measurements of NO, NO_y , N_2O , and O_3 during SPURT: implications for transport and chemistry in the lowermost stratosphere" by M. I. Hegglin et al.

M. I. Hegglin et al.

Received and published: 15 December 2005

We thank Klaus Pfeilsticker for his comments and suggestions.

Comment 1: Suggests providing NO_y', also called excess NO_y. NO_y' is the difference between measured NO_y and calculated NO_y (NO_y*) by the equation: NO_y*=(N₂O^{trop}-N₂O^{meas})·0.065+NO_y^{trop}. 0.065 is also called the effective conversion efficiency (ECE).

Reply 1: One major outcome of the study presented here is that the changing air mass origin in the lowermost stratosphere leads to a seasonal cycle in the NO_y to N₂O

Print Version

Interactive Discussion

Discussion Paper

EGU

correlation slope (=ECE), which has to be accounted for in the calculation of NO_y '. A calculation of NO_y ' with the factor 0.065 is therefore not appropriate for the use in the LMS. The generally low correlation coefficients between NO_y and N_2O during the SPURT measurements, however, introduce a major uncertainty in the calculation of NO_y ' which should be investigated in detail. The discussion of NO_y ' from the SPURT measurements is therefore beyond the scope of this paper. The topic will be addressed in future studies. For (preliminary) results of NO_y ' calculated for the SPURT measurement campaign please refer to Hegglin (2004).

Comment 2: Suggests including the presentation of the NO_x/NO_y ratio.

Reply 2: We included a new Figure (Fig. 8) in the revised manuscript. The discussion of the figure yields further valuable information about possible sources of NO_y in the LMS.

Comment 3: Importance of halogen bearing gases for the calculation of NO_{crit}.

Reply 3: We included the reference of Salawitch et al. (2005) and also of Glasow et al. (2004) latter showing the importance of Br–chemistry also in the upper troposphere. Nevertheless, we did not extend our calculation of NO_{crit} to halogen chemistry since it is intended to be a first approximation of the chemistry in the UT/LMS region.

References

Hegglin, M. I.: Airborne NO_y -, NO-, and O_3 -measurements during SPURT: Implications for atmospheric transport, Disseration, Eidgenössische Technische Hochschule ETH Zürich, Nr. 15553,

URL:http://e-collection.ethbib.ethz.ch/show?type=diss&nr=15553, 2004.

Salawitch, R. J., Weisenstein, D. K., Kovalenko, L. J., Sioris, C. E., Wennberg, P. O., Chance, K., Ko, M. K. W., and McLinden, C. A.: Sensitivity of ozone to bromine in

5, S4481–S4483, 2005

Interactive Comment

Full Screen / Esc

Print Version

Interactive Discussion

Discussion Paper

the lower stratosphere, Geophys. Res. Lett., 32, L05811, doi:10.1029/2004GL021504, 2005.

von Glasow, R., von Kuhlmann, R., Lawrence, M. G., Platt, U., and Crutzen, P.J.: Impact of reactive bromine chemistry in the troposphere, Atmos. Chem. Phys., 4, 2481–2497, 2002.

Interactive comment on Atmos. Chem. Phys. Discuss., 5, 8649, 2005.

ACPD

5, S4481-S4483, 2005

Interactive Comment

Full Screen / Esc

Print Version

Interactive Discussion

Discussion Paper