Interactive comment on "Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions: Part 1 - general equations, parameters, and terminology" by U. Pöschl et al.

R. Sander

sander@mpch-mainz.mpg.de
Received and published: 14 July 2005

Full Screen / Esc
General comments:
Pöschl et al. provide a very thorough analysis of gas-particle interactions. I would like to add a few remarks from a modeler's point of view. To describe the phase transfer in a model, the mass transfer coefficient k_{mt} is defined as a first order rate coefficient. Considering both gas-phase diffusion and interfacial mass transport, the following equation
is obtained (see Schwartz (1986) and Sander (1999) for details, full references can be

ACPD

 found in Pöschl et al.):$$
\begin{equation*}
k_{\mathrm{mt}}=\left(\frac{r^{2}}{3 D_{\mathrm{g}}}+\frac{4 r}{3 \bar{v} \alpha}\right)^{-1} \tag{1}
\end{equation*}
$$

Here, α is the accommodation coefficient, and all other symbols are the same as defined in Pöschl et al. To describe only the net flux, the uptake coefficient γ could be used here instead of α.

If only the interfacial mass transport is considered, the first order rate coefficient k_{i} is obtained:

$$
\begin{equation*}
k_{\mathrm{i}}=\frac{3 \bar{v} \alpha}{4 r} \tag{2}
\end{equation*}
$$

The ratio $k_{\mathrm{mt}} / k_{\mathrm{i}}$ is another way to describe the gas phase diffusion correction factor introduced by Pöschl et al.:

$$
\begin{equation*}
\frac{k_{\mathrm{mt}}}{k_{\mathrm{i}}}=\frac{\frac{4 r}{3 \bar{v} \alpha}}{\frac{r^{2}}{3 D_{\mathrm{g}}}+\frac{4 r}{3 \bar{v} \alpha}}=\frac{1}{1+\frac{r \bar{v} \alpha}{4 D_{\mathrm{g}}}} \tag{3}
\end{equation*}
$$

Using the approximation $3 D_{\mathrm{g}}=\lambda \bar{v}$, this can be transformed to

$$
\begin{equation*}
\frac{k_{\mathrm{mt}}}{k_{\mathrm{i}}}=\frac{1}{1+\alpha \frac{3 r}{4 \lambda}} \tag{4}
\end{equation*}
$$

which is identical to equation (20) obtained by Pöschl et al. I think it is useful to see that equivalent results are obtained for the new kinetic model framework by Pöschl et

Interactive Discussion

5, S1568-S1570, 2005

Interactive
Comment

Full Screen / Esc

```Print Version```
 Print Version

Specific comments:

ACPD

- I think the readability of the text and especially of the equations could be improved substantially by simplifying the symbols throughout the manuscript. For example, instead of X_{i} and Y_{j}, simply X and Y would be sufficient.
- Equation (4): I find the symbol C_{g} for the newly introduced gas phase diffusion correction factor confusing. In the literature, C_{g} is often used for the gas-phase concentration. What about using f_{g} for the factor, instead?
- Page 2118, line 13: The unit should be "molecules per unit volume per time" and not "molecules per unit volume".
- Page 2120, line 9: The Knudsen number should be defined when it is introduced: $\mathrm{Kn}=\lambda / r$.
- Page 2123, line 16: Change "occurr" to "occur".
- Appendix A: The unit of the fluxes J should be $\mathrm{m}^{-2} \mathrm{~s}^{-1}$ and not $\mathrm{m}^{2} \mathrm{~s}^{-1}$.
- Appendix A: The unit of $\left[\mathrm{Y}_{j}\right]_{b}$ should be m^{-3} and not m^{-2}.
- Page 2183, line 21: Change "cloiud" to "cloud".
- Figure 1: In the caption, it is said that both the symbols and the dotted lines are calculated according to equation (20). However, they are different. Please clarify.

```
```

Print Version

```
```

```
```

Print Version

```
```

Interactive comment on Atmos. Chem. Phys. Discuss., 5, 2111, 2005.
Interactive
Comment

```
Full Screen / Esc
```

```
Full Screen / Esc
```

