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Abstract

This study is devoted to the possible presence of cirrus clouds in the stratosphere.
Three months of lidar data collected in the south of France (44◦ N) for detection of
stratospheric cirrus are carefully analyzed. Most of the cirrus clouds appear to be
located in the troposphere below the dynamical tropopause even when the cloud top5

is close to the thermal tropopause. Two cirrus are found to be unambiguously located
well above the local dynamical tropopause. According to high-resolution PV advection
calculations, these two clouds are observed inside air masses that originate from the
tropical regions and are then transported rapidly to mid-latitudes through isentropic
transport. The air mass history for one case is investigated with a 3-D trajectory model.10

The back-plumes indicate that the air mass, moist with respect to typical stratospheric
air, was transported from the subtropical troposphere to the lowermost stratosphere
in 4 days before detection above France. A continuous cooling of 5–10◦ along the
trajectory took place during its transit. This cooling could have been partly responsible
for the thin cirrus layer detected.15

1. Introduction

The depletion of ozone just above the tropopause region has a limited influence on total
ozone column trends and on UV radiation at ground level. However, the Earth’s climate
is very sensitive to ozone changes in this region. (Lacis et al., 1990; Ramaswamy et al.,
1992). Ozone trends in the lower stratosphere at mid-latitude are notoriously difficult20

to establish (WMO, 2002). It is acknowledge that ozone has decreased by between 5
and 20% in this region.

The exact reasons for this decline remain unclear. Heterogeneous reactions on
aerosol particles are able to destroy significantly ozone at polar latitudes due to very
low temperatures prevailing there (Solomon et al., 1986). However, it is not yet clear25

whether the entire observed decrease at mid-latitude is directly related to the polar
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depletion (WMO, 1999). The fact that reported ozone trends in the winter spring sea-
sons are twice those obtained for the summer autumn seasons (WMO, 1999) favors
a transport contribution rather than an in-situ mechanism. In the recent years, a lot of
efforts have been performed on the estimate of the potential ozone decline induced by
the transport. The contribution of the transport strongly depends on the meteorologi-5

cal conditions and the stability of the polar vortex (WMO, 2002) and approximately an
average of 40% of the observed decline of the mid-latitude ozone could be attributed
to the transport of polar ozone-depleted air into mid-latitudes.

It appears that transport from polar regions cannot be responsible for all the depletion
observed at mid-latitude and is not applicable to the summer and autumn trends. It is10

then necessary to search for other causes such as in situ chemistry.
Borrmann et al. (1996) showed that cirrus clouds might lead to heterogeneous chem-

istry similar to the one taking place on Polar Stratospheric Clouds and suggested that
these clouds could affect the abundances of ozone. Some observational studies (Re-
ichard et al., 1996; Roumeau et al., 2000) have found such diminutions of ozone in the15

presence of cirrus at both mid-latitude and tropical sites. While several studies (Stowe
et al., 1989; Wylie et al., 1994; Wang et al., 1996) reported frequent cirrus clouds
near the tropopause, Solomon et al. (1997) suggested that the chemistry associated to
these clouds at mid-latitudes may contribute ozone depletion observed at mid-latitudes
in the lower stratosphere and would permit to reconcile observed and modeled ozone20

trends at mid-latitudes (Meilinger et al., 2001).
Some studies have reported cirrus above the thermal tropopause (Sassen et al.,

1991; Murphy et al., 1990; Wang et al., 1996). To our best knowledge, no cirrus
has been shown to be clearly and unambiguously located in the stratosphere at mid-
latitudes. Here we report on the search for cirrus in the stratosphere using the French25

lidar database acquired in south of France at Observatory of Haute-Provence (OHP).
We find some observational evidence that thin cirrus can be observed high enough to
be unambiguously classified as a Mid-latitude Stratospheric Cloud type (MSC).

The paper is organized as follow. We briefly present data and the methodology in
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Sect. 2. Then after a short section on stratospheric cirrus detection, one case observed
during the night of 20 to 21 January 2000 is described and analyzed in Sect. 4. In
Sect. 5, the history of the air masse is investigated. And finally conclusions are drawn
in Sect. 6.

2. Data and methodology description5

At Observatory of Haute-Provence in France (44◦ N, 6◦ E), a program of systematic lidar
soundings has been running for two decades. Despite being mainly devoted to strato-
spheric observations as part of the Network of Detection of Stratospheric Changes
(Kurylo and Solomon, 1990), the troposphere is also investigated simultaneously with
similar techniques. Clouds with optical depths, as small as 0.03, can be detected with10

the system because measurements are performed at night with a powerful lidar and a
small field of view of the receiver. In addition, the thickness of the clouds can be ac-
curately determined because the vertical resolution of the measurements is only 75 m.
As described in Goldfarb et al. (2001), the presence of cloud is determined when the
signal is greater than a threshold equal to three times the standard deviation of the15

scattering ratio at the cloud height.
A climatology of cirrus clouds at mid-latitudes has been derived from 3 years of lidar

data (Goldfarb et al., 2001). It has shown that cirrus were present half the time and that
about half of them could be classified as sub-visible cases according to the definition of
Sassen (1989). Goldfarb et al. (2001) also reported that most of the cirrus were located20

just below the thermal tropopause (according to the WMO definition) but many of them
were partly observed above the thermal tropopause. The thermal tropopause was de-
termined from systematic radio-soundings performed at Nı̂mes by the French meteoro-
logical center (Météo-France), about 110 km westward from the lidar site. As a result of
this separation, the temperature at the cirrus height could not expected to be accurate25

by less than a few K. More importantly, the thermal tropopause is not the best criteria
for distinguishing tropospheric from stratospheric air. A preferred criteria is based on
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the potential vorticity (PV). When diabatic and turbulent effects can be neglected, the
potential vorticity of an air parcel is conserved along its three dimensional trajectory.
On a time scale of few days, it is almost the case in the stratosphere. A threshold
value of 1.6 PVU (PV units) for the tropopause has been defined by WMO (1986) and
Hoerling et al. (1991) suggest to consider 3.5 PVU threshold value. So instead of con-5

sidering tropopause as a sharp transition, a smoother transition zone can be defined
by these two PV thresholds.

Due to the need for a PV estimate, collocated with cloud observations, a three-
dimensional high-resolution PV advection model called MIMOSA (Modèle Isentropique
de transport Méso-échelle de l’Ozone Stratosphérique par Advection) is used to de-10

rive the PV profile above the OHP station (Fig. 1). The model is forced by ECMWF
daily analyses. The advection of PV takes place on isentropic surfaces. PV is also
relaxed towards ECMWF analyses with a time constant of 10 days. The advection
scheme is semi-Lagrangian. More details on the model can ne found in Hauchecorne
et al. (2002). The ability of MIMOSA to describe small-scale-structures through the15

advection of PV as a quasi-passive tracer has already been demonstrated in the up-
per troposphere – lower stratosphere domain (Hauchecorne et al., 2002; Heese et al.,
2001). A typical PV profiles depict small values (around or smaller than 1 PVU) for
potential temperature below a 330 Kelvin (approximately 12 km) and then, due to the
static stability of the stratosphere, exhibit a rapid and monotone increase with values20

around 8 PVU at 400 Kelvin (16 km).
In order to determine the geographical origins and the thermal history of air masses,

reverse plume dispersion calculations are performed using the FLEXPART model (ver-
sion 5.1) that is extensively described in Stohl (1998). The trajectory model is driven
by ECMWF ERA40 reanalysis with 1◦ horizontal resolution, 60 vertical levels and 3 h25

time resolution (ECMWF, 1995). The code permits to advect large plumes of passive
tracer by reverse non-isentropic three dimensional transport including parametriza-
tion of sub-grid scale orographic processes and convection following the formulation
of Emanuel and Zivkovic-Rothman (1999) designed for improving convection in tropi-
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cal region. Even though simulation is initialized in the stratosphere, convective scheme
was turned on since, as preliminary analysis suggested, a tropical origin is suspected
for air masses of interest. A last specificity of Flexpart consists in accounting for
stochastic fluctuation by solving Langevin equations in the plume dispersion modelling
(Stohl and Thomson, 1999). The transport calculations by FLEXPART is expected to5

be slightly more reliable the isentropic transport by MIMOSA because the trajectories
are 3-D (cross-isentropic transport is accounted for). It also includes a random com-
ponent for a representation of the effect of turbulence that permits to reproduce more
realistically the spreading of cluster trajectories.

3. Stratospheric cases identification10

During the first three months of 2000, 58 nights of lidar operations were conducted,
and cirrus clouds were observed on 27 nights. A similar frequency of occurrence was
obtained on a larger lidar data set (Goldfarb et al., 2001). Ten cirrus, among all the
27 detections, were found to be located in the stratosphere when the tropopause is
calculated according to the thermal gradient. However, only two of them are found15

above the dynamical tropopause defined as 1.6 PVU surface calculated from MIMOSA
fields. This corresponds to a frequency of occurrence of 3–4% for stratospheric ice
clouds. Some sharp horizontal gradients (Fig. 3) can be noted that may explain the
disagreement with the previous estimates of the location of the cirrus according to the
thermal tropopause (Goldfarb et al., 2001).20

4. Case study

We now focus our attention on the highest cirrus. During the night of 20 to 21 January,
a thin cloud (Fig. 2) was detected between 13.5 and 13.9 km (respectively 367 to 374 K)
from 20:50 to 22:00 UT above OHP. Another cirrus is present at lower altitude (8–10 km)
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in the troposphere during a longer period with a mean backscattering ratio of nearly a
magnitude larger than the upper cloud that exhibited a mean backscattering during the
whole period of 1.5. The thermal tropopause is at 11.1 km or in potential temperature
at 325 K (estimated from the radiosonde profiles).

The PV field shows a very disturbed situation (Figs. 3, 4). The PV profile above OHP5

at midnight on 20 January, indicates a threshold value of 1.6 PVU at 310 K (Fig. 1). A
fine structure of tropospheric air centered at 325 K (see Fig. 3) is noticeable above this
level and then the PV profile crosses again the 1.6 PVU threshold at 332 K. If the upper
limit (3.5 PVU) proposed by Hoerling et al. (1991) is used instead then the potential
temperature covered by the tropopause region can extend as high as 340 K.10

This cloud appears to be clearly well above the tropopause whatever the definition
of it. Around the altitude of the cloud a slight PV anomaly can be noticed suggest-
ing a possible origin from a region close to the tropopause or even the troposphere.
Nonetheless, the PV themselves within the anomaly remains large and characteristic
of stratospheric conditions. The cloud seems to located in the upper part of the PV15

anomaly. This might be due to the fact that the temporal coincidence is not perfect (PV
profile at midnight, cirrus detected between 20:50 to 22:00). The meridional section of
the PV shows that this structure extends to up to 400 K (Fig. 3).

The anomaly is caused by a laminae structure that forms about a week before, and
passes over the lidar location during the night of 20 to 21 January. This structure20

found its origin in the tropical area. The structure appears clearly more than 5 days
before detection above OHP and its development can be decomposed in the model
simulations day after day with a twisted motion on the isentropic plan before being
observed above France. It then moves southward, out of France and dissipates (at
least in the MIMOSA model).25

Plume dispersion computation calculated using a different advection tool, the FLEX-
PART model, show also that air masses are first coming from England after crossing
the Atlantic northward from the Bermudes. The FLEXPART simulation is initialized by
releasing 20 000 air parcels in 20 January 2000, uniformly spread between 18:00 and
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24:00 UT within a spatial box of 10◦ in longitude 5◦ in latitude centered on the OHP
station (43◦56′ N, 5◦42′ E), and within an altitude range from 12 and 16 Km above see
level (Fig. 5). A large domain was initially chosen to take into account possible drifts of
the advection caused by non-perfect meteorological analyses. Among these parcels,
about 3604 are released at the altitude of the observed cirrus (13.5 to 13.9 km) includ-5

ing 310 that are coming from the troposphere.
The length of the trajectory and the time for transit from the troposphere up to

the stratosphere above OHP, are in good agreement with the statistical study of
Fueglistaler (2004) based on ECMWF trajectories. The analysis shows median length
of several tenth thousand kilometers from Africa and South America with a residence10

time around the 360 K level of few days.
The origin of the subset of air masses having encountered the troposphere during the

6 previous days has been identified on FLEXPART simulations and compared with the
initial volume of individual air parcels (Fig. 5). The most peculiar feature of this plume
structure is its thin filament-like pattern very similar to the MIMOSA pattern although15

initial air parcel emission was done within a broader rectangular spatial domain for
10×5◦.

5. Air mass history

The envelope of the altitude of the air parcel reveals that corresponds to the subset of
cases exhibiting an origin at altitudes lower than the tropopause (Fig. 6). Tropopause20

definition in Flexpart relies on a thermal definition equatorward of 20◦ and a dynamical
one poleward of 30◦ with linear interpolation of both definition between these two limits
(James et al., 2003). Tropopause was crossed 3–4 days before the cloud observation
as shown on Fig. 6 where air masses were advected northward and eastward towards
England.25

In addition to the cloud occurrence statistic, a lot of uncertainty remains about the
formation and persistence of the MLC. With a single measurement, it is difficult to
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know if ice crystals were transported or if moist air froze as air crossed the cold point.
Holton and Gettelmen (2001) pointed out the importance of horizontal motion for cloud
formation and dehydration in the TTL, while Jensen et al. (2004) mentioned that the
cloud lifetime along the trajectories into mid-latitude regions are typically no longer than
a or two days.5

In our case, while air masses enter the stratosphere, temperatures continuously de-
creases (Fig. 6) by 5–10◦. The air laminae, is expected to be humid with respect to
the surrounding stratospheric air because of its subtropical tropospheric origin. This
moist air may freeze into ice crystal as temperature drops. At the same time, this air
parcel would be losing its integrity during transit due to mixing processes. At the cloud10

altitude, water vapor, given by the meteorological analyses, are not reliable enough to
calculate ice saturation level.

It is worth pointing out that the ozone levels in this air mass must have been low
because of its tropospheric origin. Unfortunately, no ozone measurements were made
on that day.15

6. Discussion and conclusions

This observational study shows that mid-latitude Stratospheric Clouds can exist under
certain conditions. The mechanism of isentropic transport of subtropical tropospheric
air into the mid-latitude stratosphere is not new and is an evident source of moist air
into the stratosphere. The significance of this source cannot be assessed from this20

case study. The data set analyzed here is too small to have a reliable estimate of
the occurrence of such clouds that form within air masses transported from the upper
tropical troposphere.

This case is a good illustration of air transport from the troposphere to the
stratosphere through what Sherwood and Dessler (2000) termed the TTL (Tropical25

Tropopause Layer) or sub-stratosphere (Thuburn and Craig, 2002). This layer is de-
limited by the level of zero net radiative heating (350 K), and the highest level reached
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by convection (420 K). The main conceptual idea for the entry of air from the strato-
sphere is the Brewer-Dobson circulation. This case (as many other) shows that this
happens through fine structures of respectively few kilometers vertically and section of
few hundred of kilometers that can extend over thousand kilometers that are likely to
be irreversible. This observation provides a good support of the statistic analysis of5

Fueglistaler (2004) that predicts the transport of moist air from the tropical tropopause
to the stratosphere based on meteorological analyses.

The presence of cirrus clouds in the lowermost stratosphere does not imply that
the heterogeneous chemistry operating on them is significant for the ozone budget as
speculated by Solomon et al. (1997). First, tropical upper tropospheric air contains10

very low amounts of chlorine and bromine. Second, mixing with the surrounding air
is required to allow an efficient chemical processing of large volumes of stratospheric
air. This situation is less favorable for ozone destruction, than the polar situation where
large volumes of stratospheric air can be processed by the usually stationary polar
stratospheric clouds, with air flowing through them. The persistence of those thin15

clouds is uncertain. On the other hand, these thin moist structures that penetrate
the stratosphere offer large surfaces of contact with stratospheric ozone rich air on the
edge of filamentary structures on regional and planetary scale. More data are required
to quantify the occurrence of such clouds and the exact surface of contact.

The cirrus formation through subtropical moist tropospheric air can be an efficient20

mechanism for water vapor transport and dehydration of the TTL. Cirrus formation must
be taken into account to explain water vapor distribution in the lower stratosphere.

Data from space as those available by CALIPSO should offer a global view and al-
low a better characterization of the history of the clouds as soon as they exhibit optical
depth sufficiently large for detection.. OHP database will continue to be analyzed with25

special attention on cases when simultaneous ozone and water vapor lidar measure-
ments are available.
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tribute to this study during their master preparation at the University of Versailles-Saint-Quentin.
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value. So instead of considering tropopause as a sharp transition, a smoother transition zone 

can be defined by these two PV thresholds.  

Due to the need for a PV estimate, collocated with cloud observations, a three-

dimensional high-resolution PV advection model called MIMOSA (Modèle Isentropique de 

transport Méso-échelle de l’Ozone Stratosphérique par Advection) is used to derive the PV 

profile above the OHP station (Figure 1). The model is forced by ECMWF daily analyses. 

The advection of PV takes place on isentropic surfaces. PV is also relaxed towards ECMWF 

analyses with a time constant of 10 days. The advection scheme is semi-Lagrangian.  More 

details on the model can ne found in Hauchecorne et al. (2002). The ability of MIMOSA to 

describe small-scale-structures through the advection of PV as a quasi-passive tracer has 

already been demonstrated in the upper troposphere – lower stratosphere domain 

(Hauchecorne et al, 2002, Heese et al., 2001).  A typical PV profiles depict small values 

(around or smaller than 1 PVU) for potential temperature below a 330 Kelvin (approximately 

12 km) and then, due to the static stability of the stratosphere, exhibit a rapid and monotone 

increase with values around 8 PVU at 400 Kelvin (16 km).  

 
Figure 1. Vertical profile of the potential vorticity for January 20 at midnight. The top and 

bottom heights of high altitude cloud around 370 K are reported and the level of the thermal 

tropopause around 325 K is indicated with a dashed line. 

Fig. 1. Vertical profile of the potential vorticity for January 20 at midnight. The top and bottom
heights of high altitude cloud around 370 K are reported and the level of the thermal tropopause
around 325 K is indicated with a dashed line.
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Figure 2. Mean vertical backscattering ratio profile obtained with the lidar at OHP from 

20:50 to 22:00 UT on January, 20th 2000. 

 

4. Case study 
 

We now focus our attention on the highest cirrus. During the night of January 20th to 

21th, a thin cloud (Figure 2) was detected between 13,5 and 13,9 km (respectively 367 to 374 

K) from 20:50 to 22:00 UT above OHP. Another cirrus is present at lower altitude (8-10 km) 

in the troposphere during a longer period with a mean backscattering ratio of nearly a 

magnitude larger than the upper cloud that exhibited a mean backscattering during the whole 

period of 1.5. The thermal tropopause is at 11,1 km or in potential temperature  at 325 

K(estimated from the radiosonde profiles).  

The PV field shows a very disturbed situation (figure 3, 4). The PV profile above OHP 

at midnight on January 20th, indicates a threshold value of 1.6 PVU at 310 K (Figure 1).  A 

fine structure of tropospheric air centered at 325 K (see figure 3) is noticeable above this level 

and then the PV profile crosses again the 1.6 PVU threshold at 332 K. If the upper limit (3.5 

PVU) proposed by Hoerling et al. (1991) is used instead then the potential temperature 

covered by the tropopause region can extend as high as 340 K.  

Fig. 2. Mean vertical backscattering ratio profile obtained with the lidar at OHP from 20:50 to
22:00 UT on 20 January 2000.
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 This cloud appears to be clearly well above the tropopause whatever the definition of 

it. Around the altitude of the cloud a slight PV anomaly can be noticed suggesting a possible 

origin from a region close to the tropopause or even the troposphere. Nonetheless, the PV 

themselves within the anomaly remains large and characteristic of stratospheric conditions. 

The cloud seems to located in the upper part of the PV anomaly. This might be due to the fact 

that the temporal coincidence is not perfect (PV profile at midnight, cirrus detected between 

20:50 to 22:00). The meridional section of the PV shows that this structure extends to up to 

400 K (Figure 3). 

 

 
 

Figure 3. PV meridional section, for latitudes from 30 to 60°N, at the OHP longitude, as 

deduced from the MIMOSA model for January 20th at midnight. The vertical structure is 

given for potential temperature from 300 to 400 K. The light-blue-purple colors correspond to 

air associated to the tropopause region, while orange yellow white colors indicate large PV 

values associated to stratospheric air. 

 

The anomaly is caused by a laminae structure that forms about a week before, and 

passes over the lidar location during the night of January 20 to 21rst. This structure found its 

origin in the tropical area. The structure appears clearly more than 5 days before detection 

above OHP and its development can be decomposed in the model simulations day after day 

Fig. 3. PV meridional section, for latitudes from 30 to 60◦ N, at the OHP longitude, as deduced
from the MIMOSA model for 20 January at midnight. The vertical structure is given for potential
temperature from 300 to 400 K. The light-blue-purple colors correspond to air associated to
the tropopause region, while orange yellow white colors indicate large PV values associated to
stratospheric air.
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with a twisted motion on the isentropic plan before being observed above France. It then 

moves southward, out of France and dissipates (at least in the MIMOSA model). 

 

 
 

 
 

Figure 4. PV map on a geographical sector including Europe. The potential vorticity is given 

for potential temperature corresponding to the top (374 K) and the bottom (367 K) part of the 

cloud. 

 

Fig. 4. PV map on a geographical sector including Europe. The potential vorticity is given for
potential temperature corresponding to the top (374 K) and the bottom (367 K) part of the cloud.
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Plume dispersion computation calculated using a different advection tool, the FLEXPART 

model, show also that air masses are first coming from England after crossing the Atlantic 

northward from the Bermudes. The LEXPART simulation is initialized by releasing 20,000 

air parcels in January 20th, 2000, uniformly spread between 18:00 and 24:00 UT within a 

spatial box of 10° in longitude 5° in latitude centered on the OHP station (43°56’N, 5°42’E), 

and within an altitude range from 12 and 16 Km above see level (Figure 5). A large domain 

was initially chosen to take into account possible drifts of the advection caused by non-perfect 

meteorological analyses. Among these parcels, about 3604 are released at the altitude of the 

observed cirrus (13,5 to 13,9 km) including 310 that are coming from the troposphere. 

The length of the trajectory and the time for transit from the troposphere up to the 

stratosphere above OHP, are in good agreement with the statistical study of Fueglistaler 

(2004) based on ECMWF trajectories. The analysis shows median length of several tenth 

thousand kilometers from Africa and South America with a residence time around the 360 K 

level of few days.  

 

 
Figure 5. Geographical position on January 20th, 2000 at 18:00 of air parcels released at the 

altitude of the cirrus and that have gone below the thermal tropopause (backwards in time). 

The rectangle box corresponds to the spatial domain where back-trajectories were initialized. 

 

The origin of the subset of air masses having encountered the troposphere during the 6 

previous days has been identified on FLEXPART simulations and compared with the initial 

Fig. 5. Geographical position on 20 January 2000 at 18:00 of air parcels released at the
altitude of the cirrus and that have gone below the thermal tropopause (backwards in time).
The rectangle box corresponds to the spatial domain where back-trajectories were initialized.
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volume of individual air parcels (Figure 5). The most peculiar feature of this plume structure 

is its thin filament-like pattern very similar to the MIMOSA pattern although initial air parcel 

emission was done within a broader rectangular spatial domain for 10x5°. The number of air 

parcel satisfying both criteria, arrival at the altitude of the cirrus (13,5-13,9 Km) and a stay in 

the troposphere, is 890. 

 

5. Air mass history 
 

The envelope of the altitude of the air parcel reveals that corresponds to the subset of 

cases exhibiting an origin at altitudes lower than the tropopause (Figure 6). Tropopause 

definition in Flexpart relies on a thermal definition equatorward of 20° and a dynamical one 

poleward of 30° with linear interpolation of both definition between these two limits (James et 

al., 2003). Tropopause was crossed 3-4 days before the cloud observation as shown on figure 

6 where air masses were advected northward and eastward towards England.  

  

 
Figure 5. Envelopes of altitude relative to the tropopause (top panel), and of the 

corresponding temperatures (bottom panel), for a cluster of air back-trajectories, starting from 

OHP on January 20th at night. Simulations are based on meteorological analyses and 

FLEXPART simulations. 

Fig. 6. Envelopes of altitude relative to the tropopause (top panel), and of the corresponding
temperatures (bottom panel), for a cluster of air back-trajectories, starting from OHP on 20 Jan-
uary at night. Simulations are based on meteorological analyses and FLEXPART simulations.
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