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Abstract

We explore the use of a fixed-lag Kalman smoother for sequential estimation of atmo-
spheric carbon dioxide fluxes. This technique takes advantage of the fact that most
of the information about the spatial distribution of sources and sinks is observable
within a few months to half of a year of emission. After this period, the spatial struc-5

ture of sources is diluted by transport and cannot significantly constrain flux estimates.
We therefore describe an estimation technique that steps through the observations se-
quentially, using only the subset of observations and modeled transport fields that most
strongly constrain the fluxes at a particular time step. Estimates of each set of fluxes
are sequentially updated multiple times, using measurements taken at different times,10

and the estimates and their uncertainties are shown to quickly converge. Final flux es-
timates are incorporated into the background state of CO2 and transported forward in
time, and the final flux uncertainties and covariances are taken into account when esti-
mating the covariances of the fluxes still being estimated. The computational demands
of this technique are greatly reduced in comparison to the standard Bayesian synthe-15

sis technique where all observations are used at once with transport fields spanning
the entire period of the observations. It therefore becomes possible to solve larger in-
verse problems with more observations and for fluxes discretized at finer spatial scales.
We also discuss the differences between running the inversion simultaneously with the
transport model and running it entirely off-line with pre-calculated transport fields. We20

find that the latter can be done with minimal error if time series of transport fields of
adequate length are pre-calculated.

1. Introduction

Understanding the interannual variability of the sources and sinks of atmospheric car-
bon dioxide is critical to the success of managing carbon reservoirs and emissions.25

One approach that has been used over recent years to quantify the atmospheric car-

1892

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/1891/acpd-5-1891_p.pdf
http://www.atmos-chem-phys.org/acpd/5/1891/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 1891–1923, 2005

Improved Kalman
Smoother technique

L. M. P. Bruhwiler et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

bon budget involves estimating net fluxes from oceans and terrestrial regions using in-
verse techniques. These techniques involve comparing predictions from atmospheric
transport models and measurements of atmospheric carbon abundances at observa-
tion sites distributed over the regions of interest. The spatial pattern of the observed
and predicted differences is used to infer the spatial distribution of sources and sinks5

of carbon dioxide by seeking a distribution of fluxes that in a least squares sense min-
imizes the difference between the model predictions and observations, as well as any
prior information used to constrain the problem.

The technique that has been most commonly employed to estimate carbon fluxes
thus far is the Bayesian synthesis inversion (e.g. Enting et al., 1995). For this method,10

a cost function is formulated that has two terms; one involving the observations and
one involving a prior estimate of the fluxes. The resulting flux estimates are therefore
constrained both by the observations and a prior guess of the solution. Prior infor-
mation is needed for the case of atmospheric inversions because the observational
network is generally too sparse to permit estimation of fluxes on the scales of interest.15

More specifically, the problem tends to be underdetermined in regions where obser-
vations are sparse, and possibly over-determined in regions where there are many
observations, depending on the spatial scale of the fluxes to be estimated.

Most studies employing the Bayesian synthesis inversion technique have been exe-
cuted in what has been referred to as “batch” mode (Gelb, 1974) wherein fluxes for all20

source regions are estimated at all times simultaneously using all of the observations.
In the case of an annual mean inversion, the vector containing the sources and sinks is
the size of the number of fluxes being estimated, and annual averages of observations
are used. Examples of annual mean studies of this type are described by Fan et al.
(1998), Bousquet et al. (1999), and Gurney et al. (2002). Annual mean inversions are25

comparatively simple and do not require much computational expense, however, they
do not result in information about seasonal cycles.

A more complex approach that does yield seasonal cycles of sources and sinks is the
cyclo-stationary approach. Multi-year monthly average observations and a state vec-
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tor that includes monthly values for each source region are used to estimate monthly
fluxes (e.g. Kaminski et al., 1999 and Gurney et al., 2004). This approach does not give
information about the variability of carbon sources and sinks from year to year. In addi-
tion, since monthly average transport information rather than annual average transport
information must be used, the size of the problem is significantly larger than for the5

annual case. The state and observation vectors are a factor of 12 larger, while the
matrix of response functions (giving the response at each observation site from pulses
emitted and transported from each source region) is a factor of 12 squared larger. Thus
more computational resources are required for the cyclo-stationary problem.

The variability of carbon sources and sinks from month to month and year to year10

is of considerable interest. In particular, the behavior of carbon fluxes over the recent
decades at contintental and ocean basin spatial scales may be estimated using existing
observational network data and analyzed for changes over time. The first such study
was described by Rayner and Law (1999) and a more recent study is that of Rodenbeck
et al. (2003) who estimated fluxes at the spatial scale of the transport model grid used.15

For these types of problems, the batch Bayesian synthesis grows very computationally
demanding.

In this study we propose a technique wherein the meaurements are used to sequen-
tially estimate fluxes. This technique relies on the observation that, at a particular time,
current measurements from no longer constrain fluxes from sufficiently far into the past20

very well due to the tendency of atmospheric mixing to smooth out spatial gradients
over time. We find that observations and transport information only from the most re-
cent 6 to 9 months needs to be retained in order to achieve very good agreement with
flux estimates from the batch method. Stepping through the observations and keeping
only a subset of transport information results in considerable computational savings,25

and it becomes possible to efficiently estimate fluxes over multiple decades without
significant loss of information contained in the observations. This numerical efficiency
comes at the cost of a slightly increased estimated flux uncertainty as we will show.

We refer to our technique as a Kalman smoother because it produces estimates
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of fluxes at a particular time using observations from that time step as well as ob-
servations from subsequent times. A filter, on the other hand, would use only past
observations to estimate fluxes at a particular time step. Our technique is built upon
the optimal filtering technique originally developed by Kalman (1960) for estimating the
state of a system given imperfect prior information and observations. Among the first5

applications for Kalman filtering was to navigation systems.
The application of the Kalman filter to atmospheric problems was pioneered by Hart-

ley (1992) and Hartley and Prinn (1993) for the estimation of regional emissions of
the chloroflourocarbon CFC11. The problem of inverting for time-varying fluxes was
explored by HaasLaursen et al. (1996) using an idealized transport model. They pro-10

posed an adaptive-iterative Kalman filter wherein fluxes at a particular time step are
repeatedly estimated until convergence, and the covariance is reinitialized if the poste-
rior model-observation difference grows too large. The technique we describe here is
different from this work in several important ways. We estimate fluxes at each time step
multiple times using a different set of observations each time. By using observations15

from multiple time steps into the future to constrain fluxes at a particular time, we are
able to allow information from source regions to propagate for as long as necessary.
The time period over which transport information is retained is the “fixed-lag”.

As has been pointed out by Enting (2002), a shortcoming of a sequential estimation
technique such as that proposed here, is that the covariance is not necessarily prop-20

agated from states (fluxes) that are no longer being updated by observations to the
parts of the state vector that are still being updated. This effect is small if observations
and transport fields from many time steps are used. If shorter periods are used in the
sequential inversion, then the estimated flux uncertainty may be significantly underesti-
mated. In this study, we introduce an algorithm that corrects this deficiency by correctly25

propagating covariance from non-active to active parts of the state vector.
The next section briefly describes the transport model used in this study. This is

followed by Sect. 3, which describes the formulation of the fixed-lag Kalman smoother.
We then show how the flux estimates produced using our fixed-lag Kalman smoother
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compare with those calculated using the standard batch Bayesian synthesis inversion
technique. We introduce a method for propagating the covariance between time steps
no longer being estimated to time steps still in the state. In the last section, we discuss
the issue of running the fixed-lag Kalman smoother concurrently with the transport
model as opposed to using it with pre-calculated transport fields “off-line” from the5

transport model.

2. The transport model

The transport model used for this study is the coarse grid Tracer Model version 3 (TM3).
The horizontal resolution is roughly 7.5◦×10◦, with 9 vertical levels spanning the sur-
face to 10 hPa. The TM3 global transport model may be driven by either analyzed10

meteorological fields or those calculated by a general circulation model. For a detailed
description of an earlier version of the model, Tracer Model version 2 (TM2), and its
physical parameterizations, see Heimann and Koerner (2003). Both TM2 and TM3 in-
tegrate the tracer continuity equation for an arbitrary number of tracers using the slopes
advection scheme of Russell and Lerner (1981). Also included are stability-dependent15

vertical diffusion using the parameterization of Louis (1979), and a detailed convective
mass transport scheme by Tiedke (1989). The integration time step for TM3 is 3 h
rather than the 4 h time step of TM2.

Mass fluxes used by the TM3 model to transport atmospheric trace species must
be pre-calculated by post-processing assimilated meteorological data. This is a large20

computational task, and for this study we used coarse resolution fields because we
did not have access to higher resolution fields that covered the entire period spanning
1980 to 2001. Furthermore, in the work presented here, we are interested in estimating
monthly average fluxes using monthly average observations and response functions.
Use of higher resolution transport fields are therefore not likely to impact the results25

discussed here significantly, except that some observation sites may be excluded from
our inversions because the transport at these sites cannot be adequately simulated
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with a coarse resolution model. Furthermore, conclusions concerning the performance
of the fixed-lag Kalman smoother technique itself are unlikely to be dependent on the
resolution of the transport used. The windfields used to calculate mass fluxes used
in this study are European Centre for Medium Range Weather Forecasting (ECMWF)
reanalysis products from 1979 through 1992 and the National Center for Environmental5

Prediction reanalysis products from 1983 through 2001.

3. The Kalman Smoother

In this section we discuss the development of the Fixed-Lag Kalman Smoother starting
with basic consideration of Bayesian estimation. We also discuss a covariance prop-
agation scheme and show how results obtained using the new technique compare to10

those obtained with the more conventional Bayesian Synthesis inversion.

3.1. Background

Neglecting for the moment the use of prior information, the linear estimation problem
may be characterized by solution of

z = Hs + v (1)15

where z is a vector of observations, and N is the total number of observations. Alter-
natively, z may also be a vector of differences between model predictions and obser-
vations. In this case, the estimated fluxes are interpreted as adjustments to the fluxes
used in the model predictions (the “priors”). The matrix of basis functions, H, is dimen-
sioned N by M, where M is the number of fluxes to be estimated. The elements of H20

are calculated using an atmospheric transport model, and give the response at each
measurement site for each time due to emissions originating from each source region
at each time. s and v are random vectors where s is the vector of source strengths to
be estimated and v is the “data uncertainty”, which actually represents the inability of
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the coarse-resolution grid model to simulate near-field influences on the observations.
In this study, we refer to this as the model-data mismatch error.

For the problem under consideration, v arises chiefly from misrepresentation of
transport and near-field sources at measurement sites. The uncertainty of the CO2
measurements is about %.05 while the transport and misrepresentation errors are5

typically an order of magnitude larger. In general, model-data mismatch errors oc-
cur because the transport model calculates transport for grid boxes several hundred
kilometers in extent for comparison to what is essentially a point measurement. Small-
scale processes that dominate the observed signal are not likely to be represented well
by the transport model. Examples of these are circulations associated with coastlines10

and mountains, sporadic transport of plumes from urban areas, and small-scale mixing
processes associated with the planetary boundary layer. In addition, there may also
be errors in the wind fields used.

Typically, Gaussian statistics are assumed and the probability density function (pdf),
p, of observation vector, z, given source strength vector, s, is15

p(z |s) =
1√

2π|R|
e− 1

2 (z−Hs)T R−1(z−Hs) (2)

where R is the model-data mismatch error covariance matrix obtained by noting that
the expectation values <z−Hs>=<v>=0 so that

R =< (z − Hs− < z − Hs >)(z − Hs− < z − Hs >)T >=< vvT > (3)

Likewise, s is also assumed to be normally distributed about prior values sp so that20

its prior probability density function is given by

p(s) =
1√

2π|Q|
e− 1

2 (s−sp)T Q−1(s−sp) (4)

where Q is the covariance matrix specified for deviations from the prior flux estimates,
sp. R and Q are typically prescribed as diagonal matrices, the values of which specify
the relative confidence in observations and information about prior fluxes.25
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It is important to note that assuming that <z−Hs>=0 and <s−sp>=0 implies no bias
in either the transport or prior flux estimates. In either case, this assumption is unlikely
to be correct. Biases may, of course, be modeled with arbitrary magnitude. In the case
of transport, it is difficult to accurately characterize potential biases. Possible biases in
the prior flux estimates are also of concern, especially since the relative sparseness of5

current observational networks used for atmospheric inversions ensures that the prior
flux estimates will dominate the estimated fluxes in some regions.

Invoking Bayes’ Theorem,

p′(s|z) =
p(z |s)p(s)∫
p(z |s)p(s)ds

(5)

which states that the probability of a particular source vector given the observational10

data is equal to the probability of the data given that source vector times the prior
probability of that source vector normalized by the total probability of the data for all
source vectors. Considering the above pdfs, it follows that to maximize p′′(s), the
objective function that must be minimized is:

Ls = (z − Hs)TR−1(z − Hs) + (s − sp)TQ−1(s − sp) (6)15

At the minimum, the derivative of Ls with respect to s must be zero:

∂Ls
∂s

∣∣∣∣
s’

= −(z − Hs’)TR−1H + (s’ − sp)TQ−1 = 0 (7)

where the s’ indicates the “posteriori” source strength vector.
The posterior covariance estimate is found from the inverse of the Hessian of the

objective function:20

Q′ =
(
∂2Ls
∂s2

)−1

=
(

HTR−1H + Q−1
)−1

. (8)
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Equations (7) and (8) may be re-arranged to produce

s’ = sp + QHT
(

R + HQHT
)−1(

z − Hsp

)
(9)

Q′ = Q − QHT
(

R + HQHT
)−1

HQ (10)

Equations (9) and (10) are the discrete Kalman filter update equations (Kalman, 1960;
Gelb, 1974) where the Kalman gain matrix, K, may be identified as5

K = QHT
(

R + HQHT
)−1

(11)

In the above equations, the Kalman gain matrix functions as a weighting factor be-
tween the prior values of the source vector and flux error covariance matrix (sp and Q)
and new information from additional observations. The prior values may be those spec-
ified externally, or a previous estimate. As the misrepresentation error, R, approaches10

zero, the Kalman gain matrix approaches H# (the pseudo-inverse of H) and it may be
shown that s’ → (HTH)−1HTz. In this limiting case, only the observations and available
transport information are used to estimate s’ . If the model-data mismatch error is much
larger than the prior flux error (R�Q; i.e. Q≈0), the Kalman gain matrix goes to zero
and s’≈sp so that the observations are de-emphasized in the inversion.15

Equations (9) and (10) may be manipulated to give an alternate form of the Kalman
update equations:

s’ = sp +
[
HTR−1H + Q−1

]−1
HTR−1

(
z − Hsp

)
(12)

Q′ =
[
HTR−1H + Q−1

]−1
. (13)

Note that this form for Q is the same as Eq. (8).20

The dimension of the matrix to be inverted in the above equations is M×M, whereas
the corresponding term is of dimension N×N in Eqs. (9) and (10). If the number of
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fluxes to be estimated is significantly smaller than the number of observations, it is
more computationally efficient to use the latter form even though R−1 and Q−1 must
be calculated. R is generally assumed to be diagonal, and Q is relatively small in
dimension if the number of source regions is not large.

3.2. Time-stepping5

Assume that J months of observations are available at n observation sites. Equa-
tion (1) may then be expressed (omitting v for the moment) as

zJ
zJ−1
·
·
·

z1


=



HJ,J HJ,J−1 · · · HJ,1
0 HJ−1,J−1 HJ−1,J−2 · · HJ−1,1
0 0 HJ−2,J−2 HJ−2,J−3 · HJ−2,1
· · · · · ·
· · · · · ·
0 0 0 · · H1,1





sJ
sJ−1
·
·
·

s1

 (14)

where each element of the vectors and matrix is itself a vector or matrix. Specifically,

z1
z2
·
·
·

zn

 ,



h1,1 h2,1 · · · h1,M
h2,1 h2,2 · · · h2,M
· · · · · ·
· · · · · ·
· · · · · ·

hn,1 · · · · hn,M


,



s1
s2
·
·
·

sM

 . (15)

10

Note that in Eq. (14) the subscript, J , denotes the set of most recent observations and
flux estimates, and the subscript 1 represents the earliest observations.

The size of the large matrix of basis functions in Eq. (14) (which we will refer to as
H∗) grows rapidly as the number of observations and source regions increases. For
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example, for 20 source regions and a modest observational network of 50 sites with 20
years of monthly average data H∗ is 12 000 by 4800. Consider a model with relatively
coarse horizontal resolution of 8◦ latitude by 10◦ longitude, or 864 surface grid cells.
An inversion for which every grid cell is a source region would have H∗ dimensioned
12 000 by 207 360. As the size of the matrices in the problem grows, the computational5

cost becomes an important issue.
The atmospheric inversion problem becomes more efficient by observing that the

basis functions, which are calculated by transporting pulses forward from each source
region or backwards in time from each observation site using an adjoint model, are
mixed throughout the troposphere until constant values are reached. Figure 1 illus-10

trates this for two sampling locations, and shows that most of the signal from each
source region occurs during the first 4–6 months. In the tropics, pulses from source
regions decay more rapidly than at high latitudes due to rapid vertical mixing through-
out a relatively deep tropospheric column. Note also that signals from adjacent regions
dominate the responses at observation sites. This implies that a pulse traveling from15

Australia to Mace Head, Ireland would contribute relatively little signal compared to re-
cent pulses from nearby source regions. In other words, Mace Head does not constrain
Australian sources well. We therefore keep only a subset of the transport information
so that Eq. (14) effectively becomes:

[
z j

]
=
[
Hj,j Hj,j−1 · · Hj,j−P

]


sj
sj−1
·
·

sj−P

 (16)

20

where j denotes the current time step and P is the number of months of transport
information kept at each time step. As Eq. (16) implies, the source vector at each time
step will be estimated P times, each time being compared to a different data vector
and using an H∗ matrix that has one new month’s worth of transport information while
the earliest month is dropped from H∗. As shown in Fig. 2, both the estimate and its25
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uncertainty converge with repeated iterations, and the last estimate is taken as the best
estimate. Note that the largest changes between iterations occur after the first iteration.
The difference between the second and third iteration is much smaller, and it is difficult
to tell the difference between subsequent iterations.

As expressed in Eq. (16), observations from only one time level are used to estimate5

fluxes at P time steps, whereas in the Batch calculation all observations are used at
once to estimates fluxes at all times. For the Kalman Smoother, the effect of stepping
through the observations in this manner implies that for a particular time step, the use
of observations from previous times is discontinued at a point where the observations
no longer significantly constrain the current time step. For this reason, no significant10

amount of information is lost by stepping through the observations, although higher
posterior uncertainties are expected since less information is used to constrain each
set of fluxes. Even these differences will be shown to be small in the next section.

4. Comparison to the Batch Bayesian Synthesis Inversion

Solving Eqs. (9) and (10) (or Eqs. 12 and 13) using observations at all available times15

for flux estimates and uncertainties is referred to as the “Batch” technique. For this
case, each estimate is constrained by observations at all subsequent times so that all
of the available data is used at once to determine the entire time series of fluxes and
uncertainty estimates. When a subset of the observations is used, it is reasonable
to expect that the decreased computing cost will come at the expense of larger esti-20

mated uncertainty, since each estimate is now constrained by less data. Since recent
emissions produce the largest signals at measurement sites and the largest spatial gra-
dients, the increases in estimated uncertainty are generally acceptably small provided
that at least several months of transport are used.

Figure 3 shows results from a 5 year test inversion for fluxes from 22 source regions25

corresponding to those used in the TransCom 3 model intercomparison (Gurney et al.,
2002, 2003; Law et al., 2003). For these calculations, the transport model was run

1903

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/1891/acpd-5-1891_p.pdf
http://www.atmos-chem-phys.org/acpd/5/1891/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 1891–1923, 2005

Improved Kalman
Smoother technique

L. M. P. Bruhwiler et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

with repeating meteorology (ECMWF assimilated winds from 1980). The prior fluxes
were specified from the same sources used for TransCom 3 (Takahashi et al., 1999,
CASA model), and were aggregated onto the Tracer Model 3 (TM3; Heimann and
Koerner, 2003) 8×10 horizontal grid using the procedure described by Gurney et al.
(2000). Representative values for the prior uncertainties and model-data mismatch5

errors were used for all calculations in this section (10 and 1 GtC/yr for the land bio-
sphere and ocean prior fluxes, respectively, and 0.3 and 1.5 ppm for marine boundary
layer and continental sites, respectively). Monthly average CO2 abundances from the
GLOBALVIEW data product for 1980–1985 were used at a subset of 88 measurement
sites. The measurement sites were selected based on whether they represented ma-10

rine boundary layer samples, were located far from large sources of emissions, or were
generally fairly well-simulated by the transport model. Vertical profiles from tall towers
and aircraft platforms were not used in these test inversions.

As shown in Fig. 3, the central value of the flux estimate probability distribution cal-
culated with the fixed-lag Kalman smoother agrees well with the batch calculation, es-15

pecially if the basis functions are transported for six months or more (i.e. each month
of fluxes is estimated using at least six months of subsequent observations). The dif-
ferences between the batch and Kalman smoother are largest for the case where only
one month of transport is retained, and this is not recommended since considerable
information remains in pulses well after the first month after emission. The length of20

time that basis functions need to be transported is determined by two opposing fac-
tors; the time taken to transport pulses from source regions to observation sites that
constrain the fluxes, and the diffusion of pulses by atmospheric mixing which flattens
spatial gradients.

Differences between the Kalman smoother and batch flux estimates are shown in25

Figs. 4 and 5 for a subset of flux regions. Although results are shown for only 4 of
22 source regions, they are representative of all source regions. As shown in the
top panels of Figs. 4 and 5, the central value of the posterior probability distribution
function agrees well for both techniques for North America with the exception of the
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case for which the basis functions are transported for only one month. The Kalman
smoother estimates approach the batch estimates as the number of months of trans-
port increases, as expected. For the Eastern Equatorial Pacific, the agreement is best
if the basis functions are transported for at least nine months. For Amazonia, the dif-
ferences between the Kalman smoother and the batch technique are approximately5

as large as the prior flux estimate for some months. It is interesting to note that the
solutions closest to the batch are those for which the basis functions are transported
for only three months. A possible explanation is that the vertical mixing in the transport
model is too weak, allowing tropical continental sites to “see” pulses which have been
transported for longer periods of time.10

Figures 4 and 5 also show that the differences between the smoother and batch un-
certainty estimates tend to be fairly small except for the case where the basis functions
are transported for only one month. It is noteworthy that the estimated uncertainty for
the Kalman smoother is sometimes smaller than that for the batch case. As noted
above, since the batch technique uses all of the available data rather than a subset,15

it should give the lowest uncertainties. In addition, the Kalman smoother uncertainty
estimates are often lowest for cases where the basis functions have been transported
for the least amount of time. For example, see the uncertainty differences for Amazonia
in Fig. 5. Here the estimate uncertainties for 3 month transport of basis functions are
often smaller than those obtained using 6 or more months of transport. Uncertainties20

estimated using only one month of transport are the most questionable, since these
estimates are often much less uncertain than the batch estimates.

The explanation for this behavior lies in the fact that the Kalman smoother does not
take into account the covariance between monthly fluxes that are no longer being es-
timated and those still being estimated. In addition, once a final estimate is made of25

a set of monthly fluxes, these fluxes are incorporated into the background state that
is propaged forward in time by using the calculated transport fields (e.g. the basis
functions). In effect, they are treated as known quantities, whereas they actually have
associated uncertainties and correlations with fluxes still being estimated. The flux is
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therefore essentially assumed to be perfectly well-known and error correlations with
time steps currently being estimated are neglected. Since time-dependent flux esti-
mates tend to over- and undershoot the solution at successive time steps, the total
uncertainty aggregated over time is likely to be smaller due to these temporal corre-
lations. On the other hand, the incorporation of estimated fluxes into the background5

state without accounting for estimated uncertainty implies a certain level of uncertainty
underestimation for subsequent time steps. In the next subsection, we propose a tech-
nique to correct these shortcomings.

5. Propagation of covariance

Equation (6) may be rewritten in the form10

Lsu,sv
=
(

z −
[
Hu Hv

] [su
sv

])T

R−1
(

z −
[
Hu Hv

] [su
sv

])
+
([

su
sv

]
−
[

sp,u
sp,v

])T [
Quu Quv
Qvu Qvv

]−1 ([
su
sv

]
−
[

sp,u
sp,v

])
(17)

where the subscript, u, pertains to the part of the state still being estimated and v
pertains to the part of the state that is no longer being estimated. For example, if six
months of transport information is used in the estimation, then Hu is dimensioned the15

number of measurement sites, n, by the number of fluxes to be estimated (six times
the number of source regions for six months of transport). Hv is transport information
from some number of time steps farther back than six months ago, for which estimates
are no longer being made. It is dimensioned n by the number of months for which we
intend to consider correlations times the number of source regions. Likewise, the terms20

Quv and Qvu represent the covariance between states still being estimated and those
no longer being estimated.
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Taking the derivative of Eq. (17) with respect to su gives

∂Lsu,sv

∂su
= −(z − Husu − Hvsv )TR−1Hu + (su − sp,u)TQ−1

aa + (sv − sp,v )TQ−1
ba (18)

where

Q−1 =
[

Quu Quv
Qvu Qvv

]−1

=

[
Q−1

aa Q−1
ab

Q−1
ba Q−1

bb

]
(19)

We the set Eq. (18) to zero. Given that we are no longer updating our estimate of sv ,5

then s′
v=sp,v , and the last term on the right-hand side of Eq. (18) drops outs. Solving

for su gives

s′
u = sp,u + QaaHT

u

[
R + HuQaaHT

u

]−1(
z − Husp,u − Hvs’v

)
. (20)

Finally,

Q−1
aa = (Quu − QuvQ−1

vv Qvu)−1 (21)10

Q−1
ab = (Q−1

ba)T = −(Q11 − Q12Q−1
22 Q21)−1Q12Q−1

22 (22)

Q−1
bb = (Q22 − Q21Q−1

11 Q12)−1 (23)

by using a matrix partitioning identity. Note that Eq. (20) looks exactly like Eq. (9),
the original Kalman filter update equation, except that Hvsv is subtracted from z and Q
is replaced by Qaa. Hvs′

v accounts for the final estimate of sv in the model-observation15

difference vector, z, while Qaa takes into account any correlations of sv with states still
be estimated (su). As suggested by Eq. (20), Qaa is the result of a correction to the
covariance matrix of states still being estimated, Quu. This correction takes the form
of correlations between states still being estimated and the set of final estimates, nor-
malized by the covariance matrix of the final estimates. This implies that the correction20

1907

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/1891/acpd-5-1891_p.pdf
http://www.atmos-chem-phys.org/acpd/5/1891/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 1891–1923, 2005

Improved Kalman
Smoother technique

L. M. P. Bruhwiler et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

will be largest when the correlations are large and the uncertainty of sv is small. The
correction will be small when the correlations are small or the uncertainty of the final
estimate is large. The correlation between successive time steps is expected to be the
most significant; however, it is possible to apply the correction for up to one less than
the number months of states which are still being estimated.5

An expression for the covariance is found by calculating the inverse of the Hessian
of the revised objective function (Eq. 17). This leads to

H−1 =

HT
uR−1Hu + Q−1

aa HT
uR−1Hv + Q−1

ab

HT
vR−1Hu + Q−1

ba HT
vR−1Hv + Q−1

bb

−1

=

Q′
uu Q′

uv

Q′
vu Q′

vv

 (24)

The top left term is the covariance of the part of the state that is still being estimated;
the cross terms relate to the covariance of the part of the state that is no longer being10

estimated with the part of the state that is still being estimated. These are incorporated
into the new expression for the covariance:

Q′ =
[
(HT

uR−1Hu + Q−1
aa )

− (HT
uR−1Hv + Q−1

ab)(HT
vR−1Hv + Q−1

bb)−1(HT
vR−1Hu + Q−1

ba)
]−1

(25)

where Q−1
aa , Q−1

ab , Q−1
ba and Q−1

bb are defined by Eqs. (21–23s). Note that (HT
uR−1Hu +15

Q−1
aa )−1=Q′

uu
Equation (23) is similar in form to Eq. (13) with Qaa replacing Q and subtraction of

a term describing correlations in covariance between states still being estimated and
states for which final estimates have been calculated. Note that correlations for up to
the number of months of transport retained less one may be incorporated into the co-20

variance propagation scheme. As shown in Fig. 6, the differences between including
1 month of correlations and not propagating the covariance are large (the red curve,
0 months and the light blue curve, 1 month), but including additional months has a
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generally small effect. Furthermore, including the propagation of covariance improves
agreement between the Kalman smoother and the Batch calculations significantly for
the estimated fluxes. Although the differences are fairly small for the uncertainty esti-
mates, the Kalman smoother uncertainty estimates are always greater than the Batch
uncertainty estimates, as expected. Figure 7 shows the same comparison for Amazo-5

nia, where the agreement between the Kalman smoother and the Batch technique is
also improved.

The relative effects of propagating the covariance on calculations with varying
amounts of basis function transport are shown in Fig. 8. In contrast to Fig. 5, the
calculation using only 3 months of transport generally has the highest estimated un-10

certainties, although the differences are fairly small. This is consistent with the expec-
tation that estimates using the least amount of data should, in general, have the highest
estimated uncertainties.

6. Discussion

The method we have described up to this point assumes that the inversion is done15

“on-line”. In other words, the transport model is run forward with prior flux estimates to
produce a prediction of CO2 abundances that are then compared with observed CO2
at each site. The final flux estimates produced by the inversion are then incorporated
into the background state of CO2 using transport information in the form of the basis
functions, and the transport model is run to the next inversion time step. The fixed-lag20

Kalman smoother may also be used “off-line” without actually running the transport
model. The pre-calculated basis functions are used to reproduce the transport fields
that propagate the optimized fluxes forward in time, thus updating the background state.
In principle, this gives exactly the same results, since the basis functions are a formal
decomposition of the model’s transport. Using the basis functions is more compu-25

tationally efficient since only a few simple matrix multiplications are required to yield
concentrations at each observations site used, compared to a full transport model run
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for the “on-line” fixed-lag Kalman smoother. If the basis functions are stored as three-
dimensional arrays, then changes in the network configuration may be easily taken into
account by appropriately sampling the fields. On the other hand, if the basis functions
are computed using the adjoint approach, then new adjoint runs must be initiated for
each added observation site.5

A disadvantage of the offline method is that a perfect decomposition of forward trans-
port requires the basis functions to extend infinitely long in time, eliminating the advan-
tage of needing only a few months of basefunctions at a time in solving the inverse
problem with the Kalman smoother. For batch inversions, basis functions are often
propagated for a period of a few years and are thereafter approximated by an asymp-10

totic approach to the constant well-mixed value eventually achieved by atmospheric
mixing. We have chosen to truncate the basefunctions after several months, since in-
formation about a given initial pulse is diminishing due to mixing in the atmosphere.
The truncated part is replaced by a simple exponential decay to the asymptotic value
achieved after a sufficiently long period of mixing by atmospheric transport. In this way15

we hope to preserve the numerical efficiency of the Kalman smoother for off-line cal-
culations. Clearly, one must ensure that this truncation is not too short, and one must
assess the impact on flux estimates.

We find that when at least six months of basis functions are used to recreate the
background state, the difference in model predicted concentrations and estimated20

fluxes are acceptably small. The differences are random and not in the form of a
bias (i.e. they have a zero mean), and always well within the regional and monthly flux
uncertainty. Using the Kalman smoother in “off-line” mode therefore comes at a small
price in increased uncertainty, with great savings in computational costs. Solving the
inverse problem can be done off-line with a subset of the basis functions, and does25

not require further use of a transport model. Using the off-line Kalman smoother, the
solution was obtained in approximately five minutes on a simple Macintosh PC and im-
plemented using IDL. With this computational efficiency, many more experiments can
be done quickly to explore the sensitivity of the flux estimates along several axes of
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uncertainty.
Another aspect of our fixed-lag Kalman smoother that we wish to highlight is its in-

herent flexibility in regard to the use of prior flux and uncertainty estimates. In this study
we have used prior flux information as a first guess when the fluxes at a particular time
step are estimated for the first time. Thereafter, the previous estimate and estimated5

uncertainties are used as the first guess for each iteration. An alternative approach is
to use previous results generated by the smoother as the first guess for each new time
step. These could be in the form of simply estimates from the previous time step, or
averages of previous estimates. Estimates produced this way would be virtually free
of prior assumptions and would be determined only by observations with the exception10

of the very first time step. The fact that estimation of time-varying fluxes occurs se-
quentially in our method makes a calculation such as this straightforward, and we are
currently exploring the use of our smoother in this way.

7. Conclusions

The fixed-lag Kalman smoother technique introduced in this study offers a numeri-15

cally efficient method for estimating fluxes and flux uncertainties of atmospheric trace
species. This method relies on the fact that information about the spatial distribution
of sources is preserved only for a limited amount of time before mixing by atmospheric
transport dilutes signals from source regions. We have shown that excellent agreement
with the standard Bayesian synthesis “batch” technique can be achieved by retaining20

transport information in the basis functions for as little as 6 months. Transporting basis
functions for this shorter period of time, rather than the usual multiple years greatly
reduces the computational expense of the flux estimation. In addition, the sizes of the
matrices in the problem are also much smaller. With this technique, it therefore be-
comes possible to do inversions spanning multiple decades with relatively little compu-25

tational expense. Calculations testing sensitivity to specified parameters are therefore
feasible. If three dimensional basis functions are pre-calculated and stored, then it also
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becomes possible to evaluate issues related to the distribution of observing sites. Net-
works with large numbers of sites may be easily used to produce flux estimates with
the fixed-lag Kalman smoother.

We have shown that the cost of the numerical efficiency gains is a relatively small
increase in the estimated flux uncertainty. A problem that we encountered with the5

fixed-lag Kalman smoother in its original form was that the estimated uncertainty for
the fixed-lag Kalman smoother was often smaller than for the Batch technique. The
reason for this was that the covariance with fluxes no longer being estimated was not
being propagated forward in time. Essentially, once a final estimate of the flux at a
particular time step was computed, its effect was included into the background state10

with no uncertainty and no correlation with states still being estimated. We therefore
developed a method to correct for this, resulting in flux uncertainty estimates that are
consistent with the expectation that the uncertainties for the Batch technique are the
smallest since the most data are used to constrain fluxes at a particular time, whereas
for the Kalman smoother only a subset of observations are used for any one time-step.15

The fixed-lag Kalman smoother introduced in this study is a promising technique for
future atmospheric inversion problems because it can rather easily handle inversions
over long periods of time, such as multiple decades. Furthermore, it can potentially
be used to handle large observational networks. In the future, atmospheric inversions
may well be used to estimate fluxes at ever smaller scales using large amounts of20

data collected at high time frequency. The fixed-lag Kalman smoother described in
this study could potentially be used as the basis of an ensemble technique capable of
handling the demanding flux estimation problems of the future (Peters, 20051).

1Peters, W.: An ensemble data assimilation system to estimate CO2 surface fluxes from
atmospheric trace gas observations, in preparation, 2005.
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Fig. 1. Monthly average basis functions calculated as one-month pulses transported forward
from each source region and sampled at a particular observation site (Mace Head and Samoa
are shown here). The rate at which carbon was emitted from each region was 1 GtC/yr and
emissions over each region were distributed using scaling derived from the CASA model net pri-
mary productivity (Randerson et al., 1997; Takahashi et al., 1999) ocean flux estimates based
on observed partial pressure of CO2 in seawater.
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Fig. 2. Flux estimates (top) and uncertainties (bottom) for Temperate North America for one
year out of a 5 year test inversion with 22 source regions. The legend refers to cases where
1 to 6 months of transport were retained in the state. The test inversion used a subset of
the GLOBALVIEW data product, prior flux estimates from CASA model (Randerson et al.,
1997; Takahashi et al., 1999), and cyclic meteorology from ECMWF (the European Centre
for Medium-Range Weather Forecasting). 88 observation sites were used and the standard
deviation of the model-data mismatch error was assumed to be 0.3 ppm for marine boundary
layer sites and 1.5 ppm for continental sites. The uncertainties of the prior flux estimates were
assumed to be 10 GtC/yr for the terrestrial biosphere, and 1 GtC/yr for the oceans.
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Fig. 3. Flux estimates (top) and uncertainties (bottom) for Temperate North America and the
Eastern Equatorial Pacific for one year out of a 5 year test inversion. The legend refers to prior
flux estimates, estimates produced with the batch technique, or estimates where varying num-
bers of months of transport were retained in the state. Details of the calculation are described
in the text and in the Fig. 2 caption. The behavior of these two source regions is representative
of all 22 source regions.
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Fig. 4. Flux estimate differences (top, Kalman smoother – Batch) and uncertainty differences
(bottom) for Temperate North America and the Eastern Equatorial Pacific for one year out of
a 5 year test inversion. The legend refers to estimates produced with the batch technique, or
estimates where varying numbers of months of transport were retained in the state. Details of
the test inversion are described in the text and the Fig. 2 caption.
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Fig. 5. Difference (Kalman smoother – Batch) in flux estimates (top) and uncertainties (bottom)
for Boreal North America and Amazonia for one year out of a 5 year test inversion. The legend
refers to estimates produced with the batch technique, or estimates where varying numbers of
months of transport were retained in the state. Details of the test inversion are described in the
text and the Fig. 2 caption.
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Fig. 6. Difference (Kalman smoother – Batch) in flux estimates (top) and uncertainties (bottom)
for Temperate North America and the Eastern Equatorial Pacific for one year out of a 5 year
test inversion. Details of the test inversion are described in the text and the Fig. 2 caption. The
numbers given in the legend refer to the number of preceeding months of correlations retained
outside of the state currently being estimated.
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Fig. 7. Difference (Kalman smoother – Batch) in flux estimates (top) and uncertainties (bottom)
for Amazonia for one year out of a 5 year test inversion. Details of the test inversion are de-
scribed in the text and the Fig. 2 caption. The numbers given in the legend refer to the number
of preceeding months of correlations retained outside of the state currently being estimated.
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Fig. 8. Difference (Kalman smoother – Batch) in uncertainty estimates for Amazonia for one
year out of a 5 year test inversion. Details of the test inversion are described in the text and
the Fig. 2 caption. The numbers given in the legend refer to the number of months the basis
functions are transported.
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