
Supplement of “Inversion of
���

and � ��� emissions
using the adjoint of the IMAGES model”

J.-F. Müller and T. Stavrakou

Belgian Institute for Space Aeronomy, Brussels, Belgium

Manuscript submitted to

???

November 9, 2004



Abstract

This supplement contains three tables. The chemical species included in the IMAGES

model are presented in Table 1. The chemical reaction mechanism of the model is

described in Table 2. References for the reaction rates are also given. In Table 3 we

present the photodissociations included in the model, as well as references for their

cross sections, quantum yields, and products.
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Table 1. Chemical species included in the model.

Chemical species included in the model

Species Category Chemical Formula Name���
: 20.95% oxygen� �
: 79.05% nitrogen

Fixed � ��� (from ECMWF) water

� � : 550 ppbv hydrogen� ���
: 311 ppbv nitrous oxide���	�
: 0.5 ppbv carbonyl sulfide

��

ozone

� ���	� hydrogen peroxide

� � ��
 nitric acid� �
��� � ��� � �	��� � ��
�� � � ������� � ���	��� nitrogen oxides (family)� � � methane��� ��� ethane��� � � ethylene��
 ��� propane��
 ��� propylene� ���� !�"��� ��� � isoprene#  �$� �"��%$& � % � � '
-pinene��( � � other hydrocarbons���

carbon monoxide� � 
�� � methanol� � ��� formaldehyde� � 
�� � � acetaldehyde)�*,+ # *.-/�"� � �0� � � � �	� glycolaldehyde

� +�-�1 # *.-2� � �	� � �����"� � 
��43	� � � � �5�
� �	� � ��� � 3	���"� � 
��4� � �	� hydroxy carbonyls from ISOP

Long-lived 6 # ��17�"� � ��35��� � 
�� � �	� methylacrolein

(transported)
� � 
����5� � 
 acetone

� + # �8�"� � ��� � ���5� � 
�� hydroxy acetone

6:9�; �"� � ��35� � ���	� � 
<� methylvinylketone� � 
��5� � methyl peroxide��� � ���	� � ethyl peroxide ��	� � �"��
 ��� � � �5� � � peroxide from propylene� � 
����5�	� � peracetic acid��
 �	= �	� � peroxide from propane# ��>�(��	� � �"� � 
����5� � ���5� � � peroxide from acetone� ���� ��5� � �"��� ��� � � �5� � � peroxide from ISOP

6 # ��1
�5� � �"� � 
<���	� � �	� � � � ��� � � peroxide from MACR
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Chemical species included in the model (continued)

Species Category Chemical Formula Name
� �	� � � � �5� � �0���5� � � � 
<� � 3	� � � � � peroxide from

� �	�
 # � �"� � 
�����
 � ����� peroxy-acetyl nitrate

6  # � �"� � ��3	��� � 
<����
 � ����� peroxymethacrylic nitrate� ��� (�1 �"��� ��� � � � � ����� substituted organic nitrate from ISOP�����
sulfur dioxide��� ����
non-sea-salt sulfate- 6 � �"� � 
�� � � 
<� dimethyl sulfide��� �
carbon disulfide

� ��� hydrogen sulfide
� � % - �

oxygen atom (excited state)� � hydroxyl radical

� ��� hydroperoxyl radical� �
nitrogen oxide� ���
nitrogen dioxide

� � ��� pernitric acid� ��

nitrogen trioxide� ���	�
nitrogen hemipentoxide

Short-lived
� � 
����5� � � methylglyoxal� � 
��	� methylperoxy radical ������"��
 ��� � � ����� peroxy radical from propylene# ��>�(������"� � 
����5� � ���	��� peroxy radical from acetone

peroxy radical from HYDRALD+OH� ����� � �	� � ��������� � 
<� � 3	� � � � � and ISOPOOH+OH��� � ����� ethylperoxy radical��
 �	= ��� propylperoxy radical� ���� ��	��� � �	� � ��������� � 
�� � 35� � ��� peroxy radical from ISOP

6 # ��1
�	���"� � 
����	� � ����� � ��� � � peroxy radical from MACR+OH� � 
�����
 acetylperoxy radical

6 ����
��"� � ��35��� � 
�����
�� peroxymethacrylic radical
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Table 2. Chemical reaction mechanism and kinetic rates.

Chemical reaction mechanism and kinetic rates

Reaction Rate Ref.� � % - � � � ��� ��
�� � � ������� �	�
���<����
��.�	�����������
1,11� � % - � �!����� ��
��!��� ��� � �	�
��������
��.�����������
1� � % - � � � �����!� � ��� � ��� � �	�
��� �
2� � % - � � � ����� � �����	� ��� � �	�
�����
2� � % - � � � ����� � �!� � � !��"�,�	�
�����
2� � % - � �!� � ���#���"��$��"� � ��� � 
<����� ��� $ �	�
��� �
1�%�&� ���"� � ����� � ����� �'�&�(�)$ �"� � ���!� � ���� � % - � � � ���!� � � � �	� ����� �	�
��� �
1� � � � ����� � �����!��� ��� * �	�
��������
��.� ��$��)�����
1� � �!� � � 6 � � ���	� � 6 + &�3,!�� ���	�-���<� �.����������� %0/ &
1

+�1 3 ��� !��	�����<�
243 35�&�(!

� � �!� � ����
�� � ��� ��� � �	�
��� ����
��.�	�
���)�������
1� � �!��
�� � �	���!��� ��� $ �	�
��� ����
��.�	�6*�*��������
2

� ��������
���� � ��� �	� ���(���	�
��� ����
��.�	�6!�*��������
2� � � � ���	��� � ����� � ��� ��� � �	�
��� ����
��.�	����!��������
1� � � � ��� � ���!� � ��� $�� $ �	�
��� ����
��.�	�
�������������
1

� ����� � �	��� � ����� ��� ��� �	�
��� ����
��.�.!����������
1

� ����� � �	� � 6 � � ������� 6 ���"��� �	�-��� ����
��.�	�������������
1

� ����� � �	� � � ���
� � ���	� � � ��� ��� � ���	�-���,����
��.� ��*����������
1

� ����� � �	� � � ���!� 6 � � ���	� � � ���!� 6 ��� ��*��	�-$��,����
��.�.� �����������
1� ���!��
�� � �	���!��� ���(���	�
��� ����
��.�	����$����������
2� ��� � ����� � �	� �!� � ��� $ �	�
��� ����
��.� ��$��)�����
1� ������� � � 6 � � � ��
�� 6 + &�3 ��� � �	�-��� � �.����������� 
�/ %
2

+�1 37���"� �	�����<� �.����������� ��/ %
243 35�&�(!

� � ��
���� � � � ����� � ��
 + 3 + &�� + 
�8 9;:<�,�	��� + 
�8 9,:=� + ��� 2

+ &�3 ��� � �	�
���,����
��.�<��!��������
+ �
3 ��� � �	�
��� ����
��.� �&�����)�����
+ 
�3,!��($��	�-���,����
��.�	������$)�����

� ����� � �	� � 6 � � �	� � �	� � 6 + &�3>���(*��	�-���<� �.����������� 
�/ �
1

+�1 3?�&�"� �	����� � �.����������� %0/ �
243 35�&�(!

� ��� � ����� 6 � � ����� � �	� � 6 @BADC 3 ����� �	�
�)� ����
�� �	���)�����)�����
1

� ��� � ������� � � � ����� � �������	� ��� � �	�
��� ����
��.�.��*��)�����
1� ��������
�� � ��
��!��� ��� � �	�
��� ����
��.�	�
����$��������
1� ��
�� � �	���!� � � � ��� ��� $ �	�
��� �
1
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Chemical reaction mechanism and kinetic rates (continued)

Reaction Rate Ref.� ��
��!� � � � ����� � �	� ��� ���	�����<�
1� ��� � ��
���� � ��� ���($��	�����<����
��.�	�����������
1� ����� � ��
�� 6 � � ���	��� 6 + &�3 ��� � �	�-��� � �.����������� ��/ �
2

+)1 37��� � �	����� � �.����������� &�/ =
243 35��� !

� ���	� � 6 � � ����� � ��
�� 6 @ ADC 3;���(���	���)� ����
�� �	���)���&�������
2� � �!� � ���!� � 
������ � ��� ��� ��$��	����� ����
�� �	�
������$)�����
1� � 
��	� � � ������� � 
<�	� � ���	� ��� � �	����� ����
��.����$��������
3� � 
��	� � � ���!� � ���!� � ����� � �	� ���(*��	����� ����
��.�.�����������
3� � 
��	� � � ��
���� � ����� � ����� � ��� ��� � �	����� �
8� � 
��	� �!� � 
��	��� � � � ������� � ��� $�� � �	����� ����
��.�	��� ���������
5� � 
��	� �!� � 
��	����� � �����!� � 
�� � ���(���	�����,����
��.�����)!)�����
5� � 
��	� �!��
��!� � ���!� � ��� ��� � �	����! ����
��.�	���������������
3� � �!� � 
��	� � �'�&� ���"� � ���!��� � � �#�&� � � � 
��	� ���(*��	����� ����
��.� �����������
1� � �!� � ����� � ���!�!����� � ��� ��� � �	�����<�
1� ��
��!� � �����!���!� � �	� � � � ��
 !�� � �	����� ����
��.�	�
���)$�*)�����
5� � �!�����!������� � ��� ���($��	����� � �	���#�&�(! ������� �
1� � �!��� ��� � � ���!����� � ����� ���(*��	����� ����
��.�	����� ��$)�����
4��� � ������� � ����� � 
<� � ��� � ����� � ��� ��� � �	����� ����
��.�.��$��������
3��� � ������� � ��
���� � 
<� � ��� � �	� � � ��� ���($��	����� �
8��� � ������� � ��������� � ���5� � �!��� ��� � �	����� ����
��.�������������
3��� � �������!� � 
��	���#�&� � � � ��� ��� � �	����� �
5�%�&� * � � 
<� � ��� � �	��%�&� � � � 
<� � �'�&� � ��� � ��� ���� � �������!��� � �������5��� � � ��� !��(*��	�����,�
1� ��� ! � � 
<� � ���'�&� �,��� � ��� ���� � ���	� � ��� � �'�&� $ ��� � ���	� ���(*��	����� ����
��.� �����������
6�%�&� $ � � 
<� � ���'�&� $ � �� � �!��
 ��� �!��
 �	= �	��� � ��� *�� � �	����� ����
��.�	�6$����)�����
4��
 �	= ����� � ���'�&� * � � � 
<���	� � 
 ��� � �	����� ����
��.�.��$��������
5, ��%�&� ��� � � 
<� � ��� � �	� � � �	���
 �	= ����� � ��������
 �	= �5� � �!��� ���($&� �	����� ����
�� �	�������������
8��
 �	= �����!� � 
��	���#�&�(* � � � 
����5� � 
 ��� ��$��	����� ����
�� �	� �)�)�����
7�	� � ����� � �����
 �	= �	� � ��� � � � �����!��
 �	= ��� ���(*��	����� ����
��.� �����������
7� � �!� � 
����	� � 
�� # ��>�(��	��� � ��� ��� � �	����� ����
��.�	�6$ ���)�����
4# ��>�(������ � �
� � �	� �!� � ���!�!� � 
�����
 ���(*��	����� ����
��.�.�����������
3# ��>�(������ � �	��� # ��>�(��	� � ���	� *��(!��	����� ����
��.�������������
3# ��>�(�������� � 
<�����#�&�(���"� � 
�����
��!� � ���!� � ����� ���($��	����� ����
��.�.$����������
3
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Chemical reaction mechanism and kinetic rates (continued)

Reaction Rate Ref.�%�&� � � � + # � ��� � ���	��%�&� $ �"� � 
<���	� � ���!� � 
�� � �# ��>�(��	� � �!� � � # ��>�(������ � ��� ��� *��	����� ����
�� � �����������
7� � �!��
 ��� � 6 �  ��	� � 6 + &�3;*�� �	����� � �.����������� 
�/ �
4

+)1 3;���(� �	�����<�
243 35�&� $

��
��!��
 ��� �#��� $��,� � ���!�'�&����� � �	� �#�&�(��� � � !�� $��	����$ ����
�� �	�
�������������
1�%�&�(��* � � ���'�&� $�! ���!�#��� $ � � 
�� � ��%�&� ���<� � 
<�����'�&� ��$ � � 
<���5� �� � �!��� � ��� 6 � 6 �  ��	� + &�3,��� �	����� � �.����������� 
�/ %
4

+)1 3;��� �	����� �
243 35�&� ��*

��
��!��� � ���!� � ���!�'�&� $ ���!�#������� � ��� ��� ���	�����,����
�� �	����!����������
5�%�&����� � � �#�&� � � � � 
<���	� � ������ � �
��� � 
<� � ����� � ����� � ����� � �	� ���"� �	����� ����
�� �.��$��������
5, � ������ � ��
��!� � 
�� � �!��� � ����� � ����� � ��� ��� $��	����� �
8 ������ � �	���  ��	� � ���	� �)� $��	����� ����
�� �������������
5 ��	� � �!� � �#�&�($  ������#�&�($ � � �'�&� $ � + # � � � ��� ��� *��	����� ����
�� � �����������
5� � 
�� � ���!� � �!� � 
�����
�� � ��� $�� !��	����� ����
�� �.�&���������
4� � 
�� � ��� � ��
���� � 
<����
�� � � ��
 ��� � �	����� ����
�� �	�
��*�!��������
4� � 
�����
�� � ���!� � 
��	� � � �����!����� *���� �	����� ����
�� � �)���������
3� � 
�����
�� � ��
���� � 
<����� � �����!����� �&��� �	����� �
8� � 
�����
�� � ����� 6 �  # � � 6 + &�3;*��($��	�
��� � �.�����)����� � / � 3

+)1 37����� �	�����<� �.����������� % / &
243 35�&� !

 # � � 6 ��� � 
<����
�� � �	��� 6 @ ADC 3;���(� �	�
��� ����
�� �	���)�����������
5� � 
�����
�� � �����'�&� � ��
��#�&� � ��� �&� ���	����� ����
�� �	�����)�������
3�%�&�"� � � 
<���	�5� � �#�&�(� � � 
����5� �� � 
�����
��!� � 
�����
�� � � � 
<����� � ����� ��� $��	����� ����
�� �.$����������
3� � 
��	� �!� � 
�����
���� � �����#�&�(� � � 
<��� ���(� �	����� ����
�� �.$����������
3�%�&� � � �	� �#�&�(� ���	���'�&���<� � 
����	� �� � 
����5�	� � �!� � �#�&�($ � � 
�����
�� � ��� ��� *��	����� ����
�� � �����������
5, ��%�&� $ � � �����#�&�($ ���	�

� ���� ��� � � � ���� ���� ��� $�� �	�����<����
�� �<� ���������
5� ���� ����
��'�&� � 6 # ��1 �#��� � 6:9�; �'�&������
��#��� �)� � � ���(�)$��	�����,����
�� �	���������������
5�%�&�(�)� ��
 ��� �#�&�(! � � ���!�#��� � ���

�%�&� � 6 ����
��#�&� �)! � �����'�&� � � � 
����	� �� ���� � � ��
��#���"����� � ��� (�1 �#�&� ���)! � �����'�&�(����� 6:9�; ���(�)���	����� ����
�� �	� ����!)�����
5 ��%�&����!)� 6 # ��1��'�&�(�)� � � � ���!�#���"����� � �	�
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Chemical reaction mechanism and kinetic rates (continued)

Reaction Rate Ref.� � �!��( � � �#��� * � ���� ��	� !�� �	�
���<����
��.�	�6$��)������� �
� ���� ��	��� � � �#�&� ��� 6 # ��1��#�&�(� � 6:9�; �'�&�(��* � ��� (�1 ��� � �	����� ����
��.�.��$��������

5, ��%�&� � � � �	� � � �����'�&� $&��� � �����#�&�(�)� � +�-�1 # *.-� ���� ��	��� � ��
�� � ����� � �����'�&� ! � � ��� ���($��	����� �
5,8�%�&� ��$ 6 # ��1��'�&� ��$ 6 9�; �#�&� � � +�-�1 # *.-� ���� ��	��� � ����� � ���� ��5� � ��� �)!��	����� ����
�� �	�������������
5,8� ���� ��	���!� � 
������'�&� ��$ � � 
<� � � � �����5��� � � � ��� $�� � �	����� ����
��.�<�����������
5�%�&����� 6 # ��1��'�&� ��! 6 9�; �#�&�(� � +�-�1 # *.-� ���� ��	���!� � 
�����
���� � 
<����� � �����#��� ! � � ��� ��� � �	�����<�
5�%�&� ��$ 6 # ��1��'�&� ��$ 6 9�; �#�&� � � +�-�1 # *.-

6 # ��1���� � �'�&� $ 6 # ��1
�����#�&�($ � �����#�&�($ 6 ����
 ���(*�!��	�����<����
�� �	����$)�����
5

6 # ��1�����
��#��� * � � 
<���	� � ���#�&� �)��$ � ��� ��� � �	����$ ����
��.�	�
��$����������
5�%�&� � ���!�#��� � ��
��#�&� � � � �����#�&� �&��$ � �

6:9�; �!� � � 6 # ��1
�	� ��� �����	����� ����
�� �<��$ �)�����
5

6:9�; �!��
��#�&�(* � � ���!�#��� ��$ � � 
����	� � �!�#���(�)* � � ���($ ���	����! ����
�� �	�
��$ �&�������
5�%�&�(��! � �	� �#�&� �)$ �����#�&� ���,� � 
�� � �!�#��� � ��


6 # ��1
�	��� � ��� � �����'�&� ��� � �	� �#�&� � ���"����� � + # ��� ��� � �	����� ����
��.�.��$��������
5, ��%�&� $����"� � 
�����
���)�*,+ # * - ��%�&� ��$��"� � ���!�!� � 
����	� � �	�

6 # ��1
�	��� � ���!� ��� (�1 ���(���	����� ����
��.�.��$��������
5

6 # ��1
�	��� � ��
�� � �����#��� ��� � �����'�&� � ���"���!� � + # ��� ���($��	����� �
5,8�%�&� $����"� � 
�����
���)�*,+ # * - ��%�&� ��$��"� � ���!�!� � 
����	� � �	�

6 # ��1
�	��� � ����� 6 # ��1
�5� � ���(* ���	����� ����
�� �	�������������
5,8

6 # ��1
�	���!� � 
������'�&�"��� � �	���#��� *�* � � ���!�'�&�����<��� $�� � �	����� ����
��.�<�����������
5�%�&� ���,� � 
<���	� � ���#��� ��$ � � 
<� � �'�&� ��! )�*,+ # * -

�%�&� ��� � + # � �#�&� ��! � � 
�����

6 # ��1
�	���!� � 
�����
��'�&� $�� )�*,+ # * - ��� � 
<��� ��� � �	�����<�

5�%�&� � � ���!�'�&� ��� � �	� �#�&� ��$ � � 
����5� � ��%�&� � � � + # � �#�&�($�� � � 
�����
��#��� ��$ � � ���
6 # ��1
�5� � �!� � �#�&�($ 6 ����
��#��� � 6 # ��1
�	� ���(���	�����<����
��.� �����������

5�%�&����� � � ��� � � ���
6 ����
�� � ��� � ������� � �����!� � 
�����
 *�� � �	����� ����
��.� �����������

5, �
6 ����
�� � ��
�� � �	����� � �����!� � 
�����
 ��� � �	����� �

5,8

6 ����
�� � �����'�&� � ��
��#��� � � � 
����5� � ���(���	����� ����
��.�	�����)�������
5�%�&�"� � � 
<���	�5� � �#�&� � ���

6 ����
��!� � 
��	��� � � � ���!� � ������� � 
<����
��!����� ��� � �	����� ����
��.�.$����������
5, �

6 ����
��!� � 
�����
�� � �������!� � 
�������� � �����!� � 
�����
 $�� � �	����� ����
��.�.$����������
5, �

6 ����
�� 6 ����
���� ��������� � � ���!� � � � 
<����
 ���($��	����� ����
��.�.$����������
5, �

7



Chemical reaction mechanism and kinetic rates (continued)

Reaction Rate Ref.

6 ����
�� � ����� 6  # � ��� � �	�
���<� �.����������� %0/ &
5

6  # � � 6 ����
�� � ��� @BA C 3;��� � �	�
��� ����
��.�	���)�����������
5� � 
����5� � ����� � ��� � 
<����
������!� � ��� *�� � �	�
��� ����
��.�.*����������
5� � 
����5� � ��� � ��
�� � � ��
������!�!� � 
�����
 ��� � �	�
��� ����
��.�	����*�!��)�����
5#  �$� �!� � �?���"� � ���� ���� ��� ���	�
���<����
��.�<����������� �

,7#  �$� �!��
��'�&� !�* 6 # ��1��'�&� ��� 6:9�; ��� ��� �	����$ ����
��.�	�-��� ������� �
,12�%�&����� ��
��#�&� ��$�� � � �#�&� ����� ��
 ���� ���(� � � � �����#�&�($&�<�����#�&� ��� � � ����%�&� ��� 6 ����
��#��� ���,� � 
����	� �#  �$� � � ��
��?���"� � ���� ������ � �	� ���(���	�
��� ����
��.�.$�!�$)�����

5,13� ��� (�1 �!� � � � � ��
��'�&� $ ����� � ��� ���($��	�
���<�
5, �� � +�-�1 # * -!�#�&�($ � � ���� ��� (�1 � � ��
�� � ����� � �	� � � +�-�1 # *.- ��� � �	�
��� ����
��.�	����*�!��)�����
5� � � � +�-�1 # * -4� � ��� ���(*�!��	�����<����
��.�	����$)�����
5

� ����� � ��� � �����?��� $ � �	� �!��� ��� � �	�
��� ����
��.�.��$��������
5�%�&� ��$�� � + # � �!� � 
����	� � �!��)�*,+ # * -��

� ����� � ��
�� � �����5��� $ � �����!��� ���($��	�
��� �
5,8�%�&� ��$�� � + # � �!� � 
����	� � �!��)�*,+ # * -��

� ����� � ����� � �	� � ���(* ���	����� ����
��.�	�������������
8

� �����!� � 
������#�&�(� � � 
<� � � � �	� $�� � �	�
��� ����
��.�<�)���������
5�%�&�"� � � �����#�&� �,���

�%�&��� � � + # � �!� � 
����	� � �!�!)�*,+ # *.- �
� �����!� � 
�����
��!���!��� � 
<�����?��� $ � �	� ���(���	�
��� ����
��.�.!����������

5�%�&� ��$�� � + # � �!� � 
����	� � �!��)�*,+ # * -��
� �	� � �!� � � � ���!� � ��� ���(���	�
��� ����
��.�	�����������

9
� �	� � �!� � � � ���!�!� � ���(!����	����� ����
��.� ��$��)����� � �

9� ���� ��5� � �!� � �'�&� $ � �����#�&�($ � ���� ��	� ���(*��	�
��� ����
��.� �����������
5� � 
�� � �!� � � � �����!� � ��� !�� � �	�
��� ����
��.�	�6!����������
1

6  # � �!� � � 6 �#�&�($�� � + # � � � ��
 + &�3;*�� �	�
�)� � �.����������� 
�/ �
5�	� � ����� � ����� � 6 +�1 3;��� � �	�����<�

243 35�&�($
 # � �!� � �!� � ���8� � ��
 ��� � �	�
���,�

1� � � � + # � ��� � 
<���	� � �!� � �	� ��� � �	�
��� �
5� � �!)�*,+ # *.-
�#�&�(* � � 
�����
��#��� �,�����#�&�(! � �	� ��� � �	�
���<�
5� � � � ��� � � �	� �!���	� !�� �	�
��� ����
��.�	�-��$)�����
1� � �!���	� � � �	� �!���	� ��� � �	�
��� ����
��.�	���������)�����
1,10� � � - 6 � ��� ����� � � � ��� ��� ���	�
���<����
��.�	�
��!��������
1,10� � � - 6 � �'�&� ! �������5��� � � � ��� ��� ��� �	����� ����
��.�.��$�������� � ' � �	��� ' �4�
1�%�&� � � �&� ! �������'�&� �,�������5���($ � � ���5� ' 37��� ��$����	�6�&�<����
�� ������!��)������8 9;:
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Chemical reaction mechanism and kinetic rates (continued)

Reaction Rate Ref.� ��
�� - 6 ��� � � ��
���� ������� � � ��� ���(���	����� ����
��.�.$����������
1,10� � �!��� �������5�	�!������� � �	� *��(*��	����! ����
��.� �������������
10� � �!������� 6 �!������� � �	� � 6 + &�3;���	�6�&�<� �.����������� 
�/ 

1

+)1 37��� $��	����� �
243 35��� !

���	���������
in-cloud

� ���
10� ���	� �!��� � �� ��� � � ��
��!���

� �� � 35�&���
14, �� ��
��!��� ���� � � � ��
������

� �� � 35�&�(���&�
14, �

� �����!���
���� �#��� $ � ��������� �

���� � 35�&� �
14, �

Read
������� �	�
���<�

as
��� ��������� �.%4%

;
�

=temperature (K);
8 9,:

is the air density ( ����� �
	�� � �
	 �
� 


);
� � ���

is the atmospheric pressure
����� � � ; �

is the reaction probability on aerosols. Units for first-, second-,

and third-order reactions are � �
	 �.%
,

	 �


����� �
	�� � �

� %
� ��	 �.%

and
	 � � ����� �
	�� � �

� �
� �
	 � %

respectively.

Three-body reaction rates are calculated with + 3 ����� ���%�� ���
� ��� �!�
" 2�# %$� � % &!'
( ��) ���
� ��� �!�
"+*,�.-!/�0 (
� . Rates for

equilibrium reactions calculated as + 3 +21 � @ ADC , where +31 is the rate of the formation reaction and

@BA C is the equilibrium constant.

References: 1, DeMore et al. (1997); 2, Sander et al. (2000); 3, Tyndall et al. (2001); 4, Atkinson

et al. (1999); 5, Horowitz et al. (2003); 6, Müller and Brasseur (1995); 7, Brasseur et al. (1998); 8,

Saunders et al. (2003); 9, Brocheton (1999); 10, Pham et al. (1995); 11, Ravishankara et al. (2002);

12, Atkinson (1994); 13, Martinez et al. (1999); 14, Jacob (2000).

Notes.

� . Rate assumed equal to the rate of the corresponding reaction of
��� � ���	� .

� . Rate assumed equal to the rate of the corresponding reaction of
� � 
<�	� � .3

. Based on Horowitz et al. (2003) assuming that the peroxy radical produced in this reaction reacts

with
� �

. The conversion of
� �

to
� �	�

is neglected.

� . Rate assumed equal to the rate of the corresponding reaction of
� � 
<����
 .

� . Products as in Horowitz et al. (2003), except that
� � �

is replaced by � � ��
 , a more likely product

in the
� � -addition pathway of alkyl nitrates (Atkinson, 1994).

�
. Adapted from Brasseur et al. (1998).

�
. OTHC represents all non-methane VOCs (NMVOCs) non explicitly included in the mechanism.

See article for details.

� . The heterogenous reaction of a gas on sulphate aerosols is represented as a pseudosecond-order

reaction between the gas and particulate sulphate.
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Table 3. Photodissocations included in the model.

Photodissociations

Reaction Cross section Quantum yield Products��������� �!��
��!��

1
�
,14 � 2 � 1 �� ��������� � � ���!��

2 2 1 ���
������ �!� � % - � �!���
3 4 1 �� ��
������ � � ���!���
2 5 1� ��
������ � � ��������

2 5 1 �� ����������� � � �	��� � ��

2 2 1

� � ��
������ ��� � � � �	� 1 2 � 1

� � ��������� � � �	��� � �	� 2 A ,6 1 ,7 � 3
16

� ����������� ��� � ��� � 4 2 � 1� � ���!����� �!������� � ��� 8 2 1 �� � ���!����� � � � �!��� 8 2 1� � 
�� � ������� ��� � 
<�����!����� � ��� 11 2 16)�*,+ # *.-!����� �!� � ���!�����!� � � �	� 13 13 � 16� � 
����	� � 
������ ��� � 
<����
���� � 
<��� 12 15 16� � 
����	� � ���	��� �!� � 
�����
������!� � �	� 2 2 16� � 
��	� � ����� ��� � ����� � ������� � 4 2 � 1 �
6 # ��1 ����� �'�&� ��� � 6 ����
��!� � � 9 9
 16� �&�(!)� �"� � 
�����
��!����� � �����!� � ���	�
6:9�; ����� �#���"� ��
 ��� �'�&�"� ���

9 2 16� �&�(� � � 
��	���#��� � � � 
�����
 # � ����� �#�&�(!��"� � 
�����
�� � ����� 4 2 � 16� �&� � �"� � 
��	� � � ��
��!�������� ��� (�1 ����� � � ���������!� � �	� �!� � ��� 10 � 2 � 16 ��5� � ����� �!� � 
�� � ���!� � ��� + + 16� � ������� ���� � ���5� � ����� �!� � 
�� � ��� � �	� �!� � + + 16��
 �	= �5� � ����� �#��� * � � � 
����	� � 
 + + 16�5� � � � ���# ��>�(��5� � ����� �!� � ���!�!� � 
�����
���� � + + 16
� �	� � ����� ��� � + + 16� � 
����	�5� � ����� �!� � 
������!� � �!����� � �

16

6 # ��1
�	� � ����� ��� � �'�&� *�� ��� + + 17� �&� ��! � � ���!� � �	� �!� � 
����5� � �
6 # ��1
�	� � ����� �?������! � �	�
����� 
 


17� �&�(*��,� � �#�&�(*��,� � 
����5� � �� �&� ��! # ��>�(��	� �
6  # � ����� � 6 ����
�� � �	� � �

16
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Photodissociations (continued)

Reaction Cross section Quantum yield Products

References: 1, DeMore et al. (1997); 2, Atkinson et al. (2002); 3, Molina and Molina (1986); 4,

Sander et al. (2000); 5, Johnston et al. (1996); 6, Knight et al. (2002); 7, Roehl et al. (2002); 8, Meller

et al. (2000); 9, Raber and Moortgat (1996); 10, Atkinson et al. (1999); 11, Martinez et al. (1992);

12, Gierczak et al. (1998); 13, Bacher et al. (2001); 14, Kockarts (1994); 15, Warneck (2001); 16,

Horowitz et al. (2003); 17, Brocheton (1999).

Notes: � ) Hertzberg continuum (205-240 nm) � ) Schumann-Runge bands (175-205 nm)
3
) Quantum

yield is taken equal to 1. � ) Oxygen and hydrogen atoms as well as � ��� and
� � 
�� radicals

produced in the mechanism are assumed to react instantly with
� �

, an excellent approximation in

the troposphere. � ) 190-280 nm temperature-independent cross sections
�

) 280-350 nm temperature-

dependent cross sections
�

) The contribution of near-IR radiation to the photolysis of � � �5� is about��� � � �
�.%

during daytime throughout the atmosphere (Roehl et al., 2002; Salawitch et al., 2002). � )

Use the corresponding
� � 
�� � � photolysis quantum yield increased by a factor of 1.6 (Bacher

et al., 2001). � ) � ��� (�1 is assumed to photolyse as
�

-
��� ��� � � ��� . � ) Constant value of 0.05

(upper limit) + ) � 3 � �"� � 
��5� � � 
 ) � 3 � �"� � 
�� � �5� � ) � 3%�&� ��*�� � � � ���	��� � ) � 3 � �  # � �
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