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Abstract

In this study a new extended Kalman filter (EKF) learning algorithm for feed-forward
neural networks (FFN) is used. With the EKF approach, the training of the FFN can be
seen as state estimation for a non-linear stationary process. The EKF method gives ex-
cellent convergence performances provided that there is enough computer core mem-5

ory and that the machine precision is high. Neural networks are ideally suited to de-
scribe the spatial and temporal dependence of tracer-tracer correlations. The neural
network performs well even in regions where the correlations are less compact and
normally a family of correlation curves would be required. For example, the CH4-N2O
correlation can be well described using a neural network trained with the latitude, pres-10

sure, time of year, and CH4 volume mixing ratio (v.m.r.). The neural network was able
to reproduce the CH4-N2O correlation with a correlation coefficient between simulated
and training values of 0.9997. The neural network Fortran code used is available for
download.

1. Introduction15

Compact correlations between long-lived species are well-observed features in the
middle atmosphere, as for example described by Fahey et al. (1989); Plumb and Ko
(1992); Loewenstein et al. (1993); Elkins et al. (1996); Keim et al. (1997); Michelson
et al. (1998); Rinsland et al. (1999); Strahan (1999); Fischer et al. (2000); Muscari et al.
(2003). The correlations exist for all long-lived tracers – not just those which are chem-20

ically related. This is due to their all be transported by the general circulation of the
atmosphere. The tight relationships between different constituents have led to many
analyses where measurements of one tracer are used to infer the abundance of an-
other tracer. These correlations can also be used as a diagnostic of mixing (Schoeberl
et al., 1997; Morgenstern et al., 2002) and to distinguish between air-parcels of different25

origins (Waugh and Funatsu, 2003). The description of such spatially and temporally
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dependent correlations are usually achieved by a family of correlations. However, a
single neural network is a natural and effective alternative as shown by our previous
study (Lary et al., 2004).

This study uses the same dataset as Lary et al. (2004) but uses a quicker and more
accurate extended Kalman filter learning algorithm for feed-forward neural networks as5

described in the next section.

2. Extended Kalman filter as a learning algorithm for feed-forward neural net-
work

For a general introduction to neural networks please see the book by Bishop (1996). In
this study we use a new advanced extended Kalman filter learning algorithm for feed-10

forward neural network. The algorithm used here gave better results in just 3 training
epochs (iterations) than our previous study (Lary et al., 2004) using the “JETNET 3.4”
package (Lonnblad et al., 1992; Peterson et al., 1994) achieved in 1 million epochs.

It is well known now that finding the optimal synaptic weights of feed-forward neu-
ral networks (FNN) employing gradient descent optimization techniques is plagued by15

extraordinarily slow convergence rates and misfittings (Shah et al., 1992; Blank and
Brown, 1994). A number of faster and more accurate methods have been suggested
(Blank and Brown, 1994; Iiguni et al., 1992; Watrous, 1987) at the expense of higher
computational cost at each iteration. The extended Kalman filter (EKF) is the best
known among them (Singhal and Wu, 1989).20

With the EKF approach, the training of the FFN can be seen as state estimation for
a non-linear stationary process (Singhal and Wu, 1989). What this means exactly will
be explained in details in the following sections. The EKF method gives excellent con-
vergence performances provided that there is enough computer core memory and that
the machine precision is high. For a large FNN, the storage requirement can become25

prohibitive. Furthermore, it was noticed (Bierman, 1977) that round off errors due to
poor computer precision can sometimes make the algorithm numerically unstable.
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The storage issue has been addressed by a number of research groups (Shah et al.,
1992; Puskorius and Feldkamp, 1994). They attacked the estimation problem (train-
ing) by partitioning it into a set of subproblems assuming the existence of mutually
independent groups of weights; the numerical stability issue can be overcome by using
the square root of the estimate error covariance matrix (background error covariance5

matrix) instead of propagating the full estimate error covariance matrix (Bierman, 1977;
Zhang and Li, 1999). It should be, however, noted that only the global (full) EKF is de-
scribed by Bierman (1977); Zhang and Li (1999). We are not aware of anyone who has
combined the partitioning approach with the square root scheme. As our work required
neural networks of moderate sizes, we employed the global EKF in conjunction with the10

square root scheme for training the FNN.
In the following section we describe briefly how the EKF can be used as a training

technique for the FNN. We also give a comprehensive description of how our training
algorithm has been implemented.

2.1. Employment of EKF As FNN training algorithm15

Singhal and Wu (1989) first suggested to use an extended Kalman filter for training
neural networks. Their argument was simple and it can be put as follows

– Multilayer feed-forward neural networks can be viewed as a static non-linear dy-
namic system whose state is the vector containing all its synaptic weights.

– Therefore the training of the neural networks can be considered as a state esti-20

mation problem for a stationary non-linear system.

– Furthermore, Kalman filter is known to give an optimal estimate of states of linear
dynamic systems. It is also equally well known that an extended version of the
Kalman algorithm can be used for estimating the approximate conditional means
and covariance of1 of the non-linear dynamic systems.25

1conditional mean and covariance: because the EKF is not an optimal filter.
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– Hence, if the neural network is formulated in terms of space-state concepts similar
to those of a static non-linear dynamic system, then the best conditional mean and
covariance of the synaptic weight vector can be found by employing an extended
Kalman filter.

In state estimation form, mathematically the neural network can be described by these5

two equations (Shah et al., 1992; Zhang and Li, 1999; Haykin, 2001).

wj+1 = wj + ej (1)

dj = h[wj ,xj ] + νj (2)

The first equation is known as the process equation, whereas the second equation is
called the observation equation.10

– j is the iterative index.

– h[wj , xj ] is the iterative varying function describing the network; the value of the
function is the FNN output.

– dj is the known output (observed, desired, or target) vector.

– νj is the measurement noise vector.15

– xj is the input vector.

– wj is the state (vector elements of which are the synaptic weights) of FNN at j.

– ej is the process noise vector.

The assumptions made are:
νj is a white noise with E [νiν

T
j ] = δi jRj covariance matrix.20

ej is a white noise with E [eie
T
j ] = δi jQj covariance matrix.

E [eiν
T
j ] = 0., for all i,j.
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2.2. Training procedure using EKF

The training (state estimation) is now a problem of determining ŵ (the state vector) that
minimizes the sum of squared prediction errors of all observed data so far.

Given dj ,hj ,Rj , and Qj , the EKF solution to finding ŵ can be obtained by using the
following recursion (Haykin, 2001)5

ŵj = ŵj−1 + Kj (dj − ŷj ) (3)

Kj =
Pj−1Hj

Rj + HT
j Pj−1Hj

(4)

Pj = Pj−1 − KjH
T
j Pj−1 + Qj (5)

Kj is the Kalman gain matrix at step j ; dj − ŷj vector contains the prediction errors
(innovations); ŷj is the prediction (=h[wj−1,xj ]); Pj is the estimate of conditional mean10

covariance matrix; Hj is a matrix of derivatives of hj with respect to all elements of
ŵj−1

Hj =
∂h[ŵj−1,xj ]

∂ŵj−1
(6)

2.3. Computational aspects

Consider a neural network with an architecture with one input layer containing n nodes15

plus one offset node, one hidden layer with m number of nodes plus one offset node,
and l number of output nodes in the output layer.

In this architecture w is a [m(n+1)+ m+1]×l vector ; x is (n+1) where x(1) is a
constant ; P and Q are l[m(n+1)+ m+1]× l[m(n+1)+ m+1] ; R and dj are l×l ; K is
[m(n+1)+ m+1]×l ; H is l[m(n+1)+ m+1]×l[m(n+1)+ m+1].20

3658

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/4/3653/acpd-4-3653_p.pdf
http://www.atmos-chem-phys.org/acpd/4/3653/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
4, 3653–3667, 2004

Neural networks and
tracer correlations

D. J. Lary and
H. Y. Mussa

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

For the training procedure to work, it requires values of Pj ,Rj , and Qj . Rj is just the
error covariance of the observation ( the known data ) so it is easy to calculate. Qj is
usually set to zero. However, P is not known a priori. So it is initialized at the beginning
of the training. Also w is initialized.

The training procedure is implemented as follows5

1. Initializations

– Choose random values for w0

– Set the offsets (biases) to nonzero constants.

– Initialise P0 to a small nonzero number.

2. Choose an input training pattern, xj , which is propagated through the network to10

yield an output.

3. Rj

– If the errors of the input pattern are known, calculate Rj .

– If not, use iteration-varying forgetting factor in its place (Zhang and Li, 1999).

4. Compute Hj15

5. Calculate Kj

6. Update

– ŵj by using the Kalman matrix and the innovations.

– Pj as shown in Eq. (5).

7. If the stopping criteria is met, exit. Otherwise go back to step 2.20

For full details of the process see Sect. 2 in Haykin (2001). In this work:
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– The FNN had only one output, i.e. dj , Rj , the innovation and the denominator in
Eq. (3) are all scalars.

– ŷj = h(w, x) = tanh[w(m(n + 1) + 1 : m + 1)T z(1 : m + 1)], where z(2 : m + 1) =

tanh[w(1 : n + 1)Tx(1 : n + 1)] and x(1) and z(1) are the biases in the input and
hidden layers respectively5

– Qj = 0.0

– Rj = Iλj , where λj is a forgetting factor given by Zhang and Li (1999):

λj = λ0λj−1 + (1 − λ0) (7)

λ0 and λ0 are tunable parameters.

– The square root of P was initialised and then propagated. This was done to10

guarantee the numerical stability of the algorithm Bierman (1977).

3. Results: the CH4-N2O correlation

Figure 1a shows an example of using the new EKF learning algorithm for feed-forward
neural networks for the CH4-N2O correlation from the Cambridge 2D model (Law and
Pyle, 1993a,b) (red crosses with validation points as green crosses). The CH4-N2O15

data is shown by the yellow filled blue circles. The correlation coefficient between the
actual solution and the neural network solution was 0.9997 after just 200 iterations
(epochs). The same correlation coefficient is obtained after just 3 iterations (epochs).
Overlaid on the same panel are the previous results of Lary et al. (2004) (cyan crosses)
which used “Quickprop” learning and required 106 iterations to reproduce the CH4-20

N2O correlation with a correlation coefficient between simulated and training values of
0.9995. So the new algorithm gives better results with much less expense. Figure 1b
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shows a scatter diagram of the known N2O concentration against the neural network
N2O concentration. Figure 1c shows the way the rms error changes with epoch.

Both CH4 and pressure are strongly correlated with N2O as can be seen in Fig. 1 of
Lary et al. (2004). Latitude and time are only weakly correlated with N2O but still play
a small role in capturing some of the details of the CH4-N2O correlation in Panel (a).5

A polynomial or other fit will typically do a good job of describing the CH4-N2O cor-
relation for high values of CH4 and N2O. However, for low values of CH4 and N2O
there is quite a spread in the relationship which a single curve can not describe. This
is the altitude dependent regime where the correlation shows significant variation with
altitude (Minschwaner et al., 1996). Figure 1a shows a more conventional fit using10

a Chebyshev polynomial of order 20 overlaid on the neural network fits. This fit was
chosen as giving the best agreement to the CH4-N2O correlation after performing fits
using 3667 different equations. Even though this is a good fit the spread of values can
not be described by a single curve. However, a neural network trained with the latitude,
pressure, time of year, and CH4 volume mixing ratio (v.m.r.) (four inputs) is able to well15

reproduce the N2O v.m.r. (one output), including the spread for low values of CH4 and
N2O.

3.1. Scaling

Variable scaling often allows neural networks to achieve better results. In this case all
variables were scaled to vary between ±1. If the initial range of values was more than20

an order of magnitude then log scaling was also applied. In the case of time of year
the sine of the fractional time of year was used to avoid a step discontinuity at the start
of the year.
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4. Conclusions

Neural networks are ideally suited to describe the spatial and temporal dependence of
tracer-tracer correlations. Even in regions when the correlations are less compact. Us-
ing a new extended Kalman filter learning algorithm for feed-forward neural networks
the correlation coefficient between the actual solution and the neural network solution5

was 0.9997 after just 200 iterations (epochs). The same correlation coefficient is ob-
tained after just 3 iterations (epochs). This can be compared to our previous study
(Lary et al., 2004) which used “Quickprop” learning and required 106 iterations to re-
produce the CH4-N2O correlation with a correlation coefficient between simulated and
training values of 0.9995. So the new algorithm gives better results with much less10

expense.
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Fig. 1. The neural network used to produce theCH4-N2O correlation in Panel (a) is our new extended Kalman filter learning algorithm
for feed-forward neural networks (red crosses with validation points as green crosses). The data is shown by the yellow filled blue circles.
The correlation coefficient between the actual solution and the neural network solution was 0.9997 after just 200 iterations (epochs). The
same correlation coefficient is obtained after just 3 iterations (epochs). Overlaid on the same panel are the previous results ofLary et al.
(2004) (cyan crosses) which usedQuickprop learning and required 106 iterations to reproduce theCH4-N2O correlation with a correlation
coefficient between simulated and training values of 0.9995. A Chebyshev polynomial of order 20 is also shown (small black circles) for the
sake of comparison. This fit was chosen as giving the best agreement to theCH4-N2O correlation after performing fits using 3667 different
equations. Even though this is a good fit the spread of values can not be described by a single curve. However, a neural network trained with
the latitude, pressure, time of year, andCH4 volume mixing ratio (v.m.r.) (four inputs) is able to well reproduce theN2O v.m.r. (one output),
including the spread for low values ofCH4 andN2O. Panel (b) shows a scatter diagram of the knownN2O concentration against the neural
networkN2O concentration. Panel (c) shows the way the rms error changes with epoch.
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Fig. 1. The neural network used to produce the CH4-N2O correlation in (a) is our new extended
Kalman filter learning algorithm for feed-forward neural networks (red crosses with validation
points as green crosses). The data is shown by the yellow filled blue circles. The correlation
coefficient between the actual solution and the neural network solution was 0.9997 after just 200
iterations (epochs). The same correlation coefficient is obtained after just 3 iterations (epochs).
Overlaid on the same panel are the previous results of Lary et al. (2004) (cyan crosses) which
used “Quickprop” learning and required 106 iterations to reproduce the CH4-N2O correlation
with a correlation coefficient between simulated and training values of 0.9995. A Chebyshev
polynomial of order 20 is also shown (small black circles) for the sake of comparison. This
fit was chosen as giving the best agreement to the CH4-N2O correlation after performing fits
using 3667 different equations. Even though this is a good fit the spread of values can not be
described by a single curve. However, a neural network trained with the latitude, pressure, time
of year, and CH4 volume mixing ratio (v.m.r.) (four inputs) is able to well reproduce the N2O
v.m.r. (one output), including the spread for low values of CH4 and N2O. (b) shows a scatter
diagram of the known N2O concentration against the neural network N2O concentration. (c)
shows the way the rms error changes with epoch.
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